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Research Center for Nuclear Physics, Osaka University,
Ibaraki 567-0047, Japan

(Received June 15, 2001)

We apply a self-consistent relativistic mean-field variational “Gaussian functional” (or
Hartree) approximation to the linear σ model with spontaneously and explicitly broken
chiral O(4) symmetry. We set up the self-consistency, or “gap” and the Bethe-Salpeter
equations. We check and confirm the chiral Ward-Takahashi identities, among them the
Nambu-Goldstone theorem and the (partial) axial current conservation [CAC], both in and
away from the chiral limit. With explicit chiral symmetry breaking, we confirm the Dashen
relation for the pion mass and partial CAC. We solve numerically the gap and Bethe-Salpeter
equations, discuss the solutions’ properties and the particle content of the theory.

§1. Introduction

The Gell-Mann–Levy [GML] linear sigma model has long been a subject of
nonperturbative studies, both for its particle physics and statistical mechanics ap-
plications. 1), 2) In this paper we apply a new chirally invariant version of the Lorentz
invariant self-consistent mean-field variational approximation that goes by many
names, inter alia the Gaussian functional approximation 3), 4) to the linear sigma
model. The improvement that we present in this paper is the correct implementation
of the chiral symmetry in this approximation. We prove the chiral Ward-Takahashi
identities, among them the Nambu-Goldstone theorem, the Dashen relation, and the
axial current (partial) conservation (PCAC) in this approximation. Then we present
a numerically obtained solution of the gap and Bethe-Salpeter equations and discuss
the particle content of the theory in this approximation.

Our motivation for this study is the desire to publicize progress made in un-
derstanding the Gaussian approximation, which is often used in finite tempera-
ture/density applications, 5), 6) albeit often in incomplete form, and the hope that
this work will ultimately lead to the clarification of the scalar meson spectroscopy,
and in particular of the so-called σ meson. For this reason, the present study of the
GML model must be considered as a methodological work providing preparatory for
a full-fledged, Nf = 3 calculation.

This paper consists of six sections. In §2 we introduce the linear Σ model.
In §3 we outline the Gaussian approximation, and in §4 we demonstrate its chiral
invariance. In §5 we present results of the numerical solution of the gap and the
Bethe-Salpeter equations and analyze the solutions. Finally, we summarize and
draw conclusions in §6.

∗) Address after 1st July 2001: Vinča Institute of Nuclear Sciences, P. O. Box 522, 11001

Belgrade, Yugoslavia.
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§2. The linear Σ model

We confine ourselves to the O(N = 4) symmetric linear σ model for the sake of
simplicity. The Lagrangian density of this theory is

L =
1
2
(∂µφ)2 − V (φ2) , (2.1)

where
φ = (φ0, φ1, φ2, φ3) = (σ,π)

is a column vector and

V (φ2) = −1
2
µ2

0φ
2 +

λ0

4

(
φ2
)2
.

We assume here that λ0 and µ2
0 are not only positive, but such that spontaneous

symmetry breakdown (SSB) occurs in the mean-field approximation [MFA], to be
introduced below. As the chiral symmetry breaking (χSB) term in the Lagrangian,
we choose

LχSB = −HχSB = εσ, (2.2)

as suggested by the underlying NJL quark model. The interaction potential in the
new field variable s ≡ σ − 〈σ〉0B reads

V =
1
2

(
m2

σBs
2 +m2

πBπ2
)
+

(
m2

σB −m2
πB

2fπB

)
s
(
s2 + π2

)

+

(
m2

σB −m2
πB

8f2
πB

)(
s2 + π2

)2
. (2.3)

The scalar meson (σ) mass, the vacuum expectation value (v.e.v.) and the pion (π)
mass are

〈σ〉0B = vB = fπB = − ε

µ2
0

+ λ0
v3
B

µ2
0

, (2.4a)

m2
σB = −µ2

0 + 3λ0f
2
πB , (2.4b)

m2
πB = −µ2

0 + λ0f
2
πB =

ε

vB
. (2.4c)

Note that once the pion mass mπB and decay constant fπB have been fixed, there is
only one free parameter left in this (tree) approximation, the scalar meson σ mass
mσB. The quartic coupling constant λ0 can be expressed as

λ0 =

(
m2

σB −m2
πB

2f2
πB

)
. (2.5)

This relation is a powerful result, as it implies a cubic dependence of the σ decay
width on its mass:

Γσππ = 3
(
m2

σB −m2
πB

)2
32πf2

πBmσB

√
1−

(
2mπB

mσB

)2

. (2.6)
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Therefore, as soon as the σ mass exceeds the two-pion threshold, the decay width
increases so quickly that instead of a sharp “peak” in the cross section there is a
broad “bump”, unrecognizable as a resonance. This fact is a consequence of the
strong coupling implied by Eq. (2.5), which in turn is a consequence of the linear
realization of the chiral symmetry in the Born approximation. Here, natural (and
long-standing) questions arise: Does this effect survive after taking into account
the loop corrections? What kind of a particle, if any, corresponds to the σ field,
and how does one identify it? Many studies have been devoted to answering these
questions, but most suffer from either being perturbative, which is unacceptable in
the strong coupling case, or from not being chirally symmetric. We satisfy both of
these requirements by employing the non-perturbative, chirally symmetric method
described in the next section.

§3. The Gaussian variational method

Over the past 20 years we have seen the relativistic Rayleigh-Ritz variational
approximation based on the Gaussian ground state (vacuum) functional elevated
from a little-known specialist technical tool 3) to a textbook method. 4) This method
sometimes also goes by the names ‘self-consistent mean field approximation’ (MFA)
and ‘Hartree + RPA’.∗) In the following we use these terms interchangeably.

3.1. The basics of the Gaussian functional approximation

We use the Gaussian ground state functional Ansatz

Ψ0[�φ] = N exp
(
− 1
4h̄

∫
dx

∫
dy [φi(x)− 〈φi(x)〉]G−1

ij (x,y) [φj(y)− 〈φj(y))〉]
)
,

(3.1)

where N is the normalization constant, 〈φi(x)〉 is the vacuum expectation value
(v.e.v.) of the i-th spinless field (which henceforth we will assume to be translation-
ally invariant, 〈φi(x)〉 = 〈φi(0)〉 ≡ 〈φi〉), and

Gij(x,y) =
1
2
δij

∫
dk

(2π)3
1√

k2 +m2
i

eik·(x−y).

Furthermore, note that we have explicitly kept h̄ (while setting the velocity of light
c = 1) to keep track of quantum corrections and count the number of “loops” in our
calculation. Then the “vacuum” (ground state) energy density becomes

E(mi, 〈φi〉) = −ε〈φ0〉 − 1
2
µ2

0〈φ〉2 +
λ0

4

[
〈φ〉2

]2
+ h̄

∑
i

[
I1(mi)− 1

2
µ2

0I0(mi)− 1
2
m2

i I0(mi)
]

∗) Due to the Bose statistics of our fields and the covariance of our approach, RPA might be

equivalent to the Tamm-Dancoff approximation (TDA) in this case.
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+
λ0

4


6h̄

∑
i

〈φi〉2I0(mi) + 2h̄
∑
i�=j

〈φi〉2I0(mj)

+ 3h̄2
∑

i

I2
0 (mi) + 2h̄2

∑
i<j

I0(mi)I0(mj)


 , (3.2)

where

I0(mi) =
1
2

∫
dk

(2π)3
1√

k2 +m2
i

= i

∫
d4k

(2π)4
1

k2 −m2
i + iε

= Gii(x,x) , (3.3)

I1(mi) =
1
2

∫
dk

(2π)3

√
k2 +m2

i = − i
2

∫
d4k

(2π)4
log

(
k2 −m2

i + iε
)
+ const. (3.4)

We identify h̄I1(mi) with the familiar “zero-point” energy density of a free scalar
field of mass mi.

The divergent integrals I0,1(mi) are understood to be regularized via a UV mo-
mentum cutoff Λ. Thus we have introduced a new free parameter into the calculation.
This was bound to happen in one form or another, since even in the renormalized
perturbation theory one must introduce a new dimensional quantity (the “renormal-
ization scale/point”) at the one loop level. We treat this model as an effective theory
and thus keep the cutoff without renormalization.∗)

3.2. The gap equations

We vary the energy density with respect to the field vacuum expectation values
〈φi〉 and the “dressed” masses mi. The extremization condition with respect to the
field vacuum expectation values reads(

∂E(mi, 〈φi〉)
∂〈φi〉

)
min

= 0; i = 0, · · · 3

or
(
∂E(mi, 〈φi〉)

∂〈φ0〉
)

min

= −ε+ 〈φ0〉
[
−µ2

0 + λ0

(
〈φ〉2 + 3h̄I0(m0) + h̄

3∑
i=1

I0(mi)

)]
min

= 0 ,(
∂E(mi, 〈φi〉)
∂〈φj=1,2,3〉

)
min

= 〈φj〉

−µ2

0 + λ0


〈φ〉2 + h̄

3∑
j �=k=0

I0(mk) + 3h̄I0(mj)






min

= 0 .
(3.5)

Note that if we assume that 〈φ0〉 and 〈φ1,2,3〉 are simultaneously nonzero in the chiral
limit ε → 0, then after subtracting one of the equations (3.5) from the other, we

∗) There are several renormalization schemes for the Gaussian approximation, but as their names
(“precarious” and “autonomous”) suggest, they are unstable. 8)
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Linear Σ Model in the Gaussian Functional Approximation 1199

Fig. 1. The one-point Green function Schwinger-Dyson equation determining the dynamics of the

σ model in the Hartree approximation: the one-loop graph (a), and the tree tadpole diagram

(b). The solid line denotes the bare meson multiplet, and the double solid line is the dressed

meson multiplet. The shaded blob together with the double line leading to it (the “tadpole”)

denotes the vacuum expectation value of the field (i.e. the one-point Green function), and the

solid dot in the intersection of the four lines denotes the bare four-point coupling. The diagrams

are explicitly multiplied by their symmetry numbers.

are forced to conclude that I0(M = m0) = I0(µ = m1,2,3), or that these two masses
are identical. This, however, leads one to the symmetric phase of the theory, so we
must ignore this possibility. Instead, we assume only one 〈φi〉 to be nonzero, e.g.
〈φ0〉 = v �= 0, while 〈φ1,2,3〉 = 0. Thus the first set of energy minimization equations
in the Gaussian variational approximation 7) reads

µ2
0 = −ε

v
+ λ0

[
v2 + 3h̄I0(M) + 3h̄I0(µ)

]
, (3.6a)

〈φi〉 = 0 , i = 1, 2, 3 , (3.6b)

where the divergent integral I0(mi) is understood to be regularized via a UV mo-
mentum cutoff Λ, either three dimensional or four dimensional.

Equations (3.6a) and (3.6b) can be identified with the truncated Schwinger-
Dyson (SD) equations 4) for the one-point Green function (see Fig. 1). We associate
the nonvanishing vacuum expectation value (v.e.v.) with the “sigma meson” field
φ0, whose apparent mass is given by m0 =M , and the remaining three fields φi(i =
1, 2, 3), of mass mi = µ, form the pion triplet. The second set of energy minimization
equations reads

M2 = −µ2
0 + λ0

[
2〈φ0〉2 + 〈φ〉2 + 3h̄I0(M) + 3h̄I0(µ)

]
= −µ2

0 + λ0

[
3v2 + 3h̄I0(M) + 3h̄I0(µ)

]
, (3.7a)

µ2 = −µ2
0 + λ0

[
〈φ〉2 + h̄I0(M) + 5h̄I0(µ)

]
= −µ2

0 + λ0

[
v2 + h̄I0(M) + 5h̄I0(µ)

]
. (3.7b)

Equations (3.7a) and (3.7b) also have the Feynman-diagrammatic interpretation
shown in Fig. 2. Upon inserting Eqs. (3.6a) and (3.6b) into Eqs. (3.7a) and (3.7b),
the following two coupled “gap” equations emerge:

M2 =
ε

v
+ 2λ0v

2 , (3.8a)

µ2 =
ε

v
+ 2λ0h̄ [I0(µ)− I0(M)] . (3.8b)
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Fig. 2. Two-point Green function Schwinger-Dyson equation: the one-loop graph (a), and the tree

tadpole diagram (b). The symbols have the same meaning as in Fig. 1.

One might be tempted to identify µ with the pion mass and M with the σ mass,
then solve these equations and stop there. However, with ε = 0 these equations
admit only massive solutions M > µ > 0 for real, positive values of λ0 and µ2

0

and any real ultraviolet cutoff Λ in the momentum integrals I0(mi) and I1(mi) as
these are positive definite (for any real mass). In other words, the “pion” (φ1, φ2

and φ3) excitations are massive, with mass µ �= 0, in MFA, even in the chiral limit.
This looks like a breakdown of the O(4) invariance of this method, but, as discussed
at length in Ref. 7), there is a simple solution obtained using the Bethe-Salpeter
equation.∗) Before proceeding to solve the gap equations (3.8a) and (3.8b), we will
have to determine the value of the ε parameter in terms of observables calculated in
the Gaussian approximation. For this purpose we also have to use the Bethe-Salpeter
equation.

3.3. The Bethe-Salpeter equation (“RPA”): σπ scattering

In Ref. 7) we showed that the Nambu-Goldstone particles appear as poles in
the two-particle propagator; i.e., they are bound states of the two distinct massive
elementary excitations in the theory. We specify the two-body dynamics in the
theory in terms of the four-point SD equation or, equivalently, of the Bethe-Salpeter
equation (see Figs. 3 and 4). We focus on the s-channel part Dπ(s) of the total
four-point scattering amplitude T (s, t, u). Its four-point SD equation reads

Dπ(s) = Vπ(s) + Vπ(s)Ππ(s)Dπ(s) , (3.9)

Ππ(s) = IMµ(s) = ih̄

∫
d4k

(2π)4
1

[k2 −M2 + iε] [(k − P )2 − µ2 + iε]
, (3.10)

Vπ(s) = 2λ0

[
1 +

(
2λ0v

2

s− µ2

)]
= 2λ0

[
1 +

M2 − ε
v

s− µ2

]
, (3.11)

with the solution

Dπ(s) =
Vπ(s)

1− Vπ(s)Ππ(s)
, (3.12)

∗) It is well known from the quantum many-body literature that the Hartree or mean-field

approximation does not respect internal symmetries. The corrective measure goes by the name of

random phase approximation (RPA).
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Fig. 3. Four-point Green function Schwinger-Dyson or Bethe-Salpeter equation. The square “box”

represents the potential, and the round “blob” is the BS amplitude itself. All lines represent

dressed fields like the double lines in Figs. 1 and 2.

Fig. 4. The potential (square “box”) entering the Bethe-Salpeter equation, as defined in the RPA.

where s = (p1 + p2)2 ≡ P 2 is the center-of-mass (CM) energy. This propagator can
also be written in the form (see Ref. 17))

Dπ(s) 
g2
πφiφ0

s−m2
π

, (3.13)

where

g−2
πφiφ0

≡ g−2
eff =

(
1

2λ0(M2 − µ2)

)

(

M2

M2 − µ2

)

+
1

(4π)2

[
1
2
+

(
µ2

M2 − µ2

)(
1−

(
M2

M2 − µ2

)
log

(
M2

µ2

))]



(

M2

2λ0(M2 − µ2)2

)
=
(

v

M2 − µ2

)2

. (3.14)

We see that the second term in curly brackets is roughly 1% as large as the first one,
and therefore we may neglect it in the first approximation.

Here we have simply presented the correct form of the four-point SD equation
based on the truncation of the exact SD equation. 4) The derivation from the Gaus-
sian approximation in the symmetric phase of the theory can be found in Ref. 3).
The corresponding derivation in the asymmetric (Nambu-Goldstone) phase can be
found in Ref. 9). Furthermore, this BS equation is also the “random phase approx-
imation” (RPA) equation of motion that describes “quasi-particles” in this theory
(see Refs. 6), 9) and 10)).

3.4. The Bethe-Salpeter equation: ππ scattering

The dynamics are specified in terms of the SD, or equivalently, Bethe-Salpeter
(BS) equation for the four-point Green functions Dij(s), where the indices i and j
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denote the isospin of the pions in the initial and final states, respectively. We use the
isospin invariance to split this 9× 9 matrix equation into three invariant subspaces:
(a) isoscalar, (b) isovector, and (c) isotensor. Because we consider S-wave scattering,
the isovector amplitude vanishes identically, due to the Bose-Einstein statistics of the
pions. The isotensor BS equation is linear and can be solved straightforwardly, but
it is without distinguishing features. On the other hand, in the isoscalar channel we
expect to see the σ meson. The corresponding BS equations consist of four coupled
equations that can be put into 2× 2 matrix form. 11)

The main difference between the isoscalar channel and the pion channel, consid-
ered in §3.3, is that here we have two distinct intermediate states, one with two
“elementary” sigma fields (φ0) and the other with two “elementary” pion fields
(φi, i = 1, 2, 3). The isoscalar SD equations couple these two channels:

DMM (s) = VMM (s) +
1
2
VMM (s)IMM (s)DMM (s) +

3
2
VMµ(s)Iµµ(s)DµM (s) ,

DMµ(s) = VMµ(s) +
1
2
VMµ(s)Iµµ(s)Dµµ(s) +

1
2
VMM (s)IMM (s)DMµ(s) ,

DµM (s) = VµM (s) +
1
2
VµM (s)IMM (s)DMM (s) +

1
2
Vµµ(s)Iµµ(s)DµM (s) ,

Dµµ(s) = Vµµ(s) +
1
2
Vµµ(s)Iµµ(s)Dµµ(s) +

3
2
VµM (s)IMM (s)DMµ(s) . (3.15)

The equations in (3.15) can be cast into matrix form as

Dσ = V +
1
2
V Π Dσ , (3.16)

Dσ ≡
(
DMM DMµ

DµM
1
3 Dµµ

)
, (3.17)

where the boldfaced symbols are matrices. The solution to the matrix equation
(3.16) is

Dσ = (1− 1
2
V Π)−1 V , (3.18)

where

V =

(
VMM VMµ

VµM
1
3 Vµµ

)

= 2λ0




3
[
1 + 3M2− ε

v
s−M2

] [
1 + 3M2− ε

v
s−M2

]
[
1 + 3M2− ε

v
s−M2

] [
5 + 3M2− ε

v
s−M2

]

 , (3.19)

and

Π =

(
IMM 0
0 3 Iµµ

)
. (3.20)
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The invariant functions Iii(s) and Jii(s) are given by

Iii = i

∫
d4k

(2π)4
1[

k2 −m2
i + iε

] [
(k − P )2 −m2

i + iε
]

= Iii(0) +
s

(4π)2
(−1 + Jii(s)) , (3.21)

where s = P 2, and the real and imaginary parts of Jii(s) are

Jii(s) =




√
4m2

i

s
− 1 arcsin

(√
s

4m2
i

)
, (0 <

s

4m2
i

< 1)√
1− 4m2

i

s

[
log

(√
s

4m2
i

+
√

s

4m2
i

− 1

)
− i

π

2

]
. (1 ≤ s

4m2
i

<∞)

(3.22)
The equal mass integrals at zero momentum Iii(0) are cutoff-dependent con-

stants (“subtraction constants” in the dispersion relations language) whose values
are determined by the solutions M,µ and Λ to the gap equation (5.1). Thus, fixing
of the subtraction constants is one of the primary consequences of the self-consistent
gap equations. We use

I
(4)
ii (0) = (4π)−2

[
x4

x4 + 1
− log(x4 + 1)

]
; x4 =

(
Λ4

m

)2

, (3.23a)

I
(3)
ii (0) = 2(4π)−2

[
x3√

x3(1 + x3)
− ln(

√
x3 +

√
1 + x3)

]
; x3 =

(
Λ3

m

)2

. (3.23b)

Thus self-consistency of the gap equations enters into the scattering problem and
constrains the remaining free parameters.

We see from Eq. (3.15) that in order to calculate the DMM amplitude, we need
to know the DµM (s) amplitude, and vice versa. In other words, we must solve the
system of four coupled equations (3.15). It turns out that this system splits into two
systems with two unknowns, with the same discriminant D. This fact, (a) ensures
that there are at most two poles in the solutions, and (b) greatly simplifies the
algebra. The solutions to the equations (3.15) are

DMM (s) =
1

D(s)
(VMM (s)− 12λ0Iµµ(s)VMµ(s)) ,

Dµµ(s) =
1

D(s)
(Vµµ(s)− 12λ0IMM (s)VMµ(s)) ,

DµM (s) = DMµ(s) =
1

D(s)
VMµ(s) =

1
D(s)

VµM (s) , (3.24)

where

D(s) = 1− 1
2
[VMM (s)IMM (s) + Vµµ(s)Iµµ(s)] + 6λ0IMM (s)Iµµ(s)VµM (s)

(3.25)
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is the discriminant of “one half” of the system of Eq. (3.15). Elementary and com-
posite states in the s-channel manifest themselves as poles in the Dσ(s) matrix, or
equivalently as roots of

(s−M2)D(s) = 0. (3.26)

This equation is identical to the formula for the σ mass in the optimized perturbation
theory (OPT). 12)

An inspection of Eq. (3.25) leads one to think that (s − M2)D(s) should be
a quadratic polynomial (function) of s and therefore have two roots, since each
(s−M2)Vij(s) is a linear function of s. However, as a consequence of chiral symmetry,
one finds that the function (s−M2)D(s) is (only) linear in s. This, in turn, ensures
that there is only one root of the “eigenvalue” equation (3.26), and hence only one
pole in the σ propagator at least for small values of s, where the Iii functions’
logarithmic s dependence may be neglected. For large values of s, this is no longer
the case, as we show in §5.

§4. Chiral symmetry Ward identities in the Gaussian approximation

Chiral Ward-Takahashi identities follow from the underlying chiral symmetry
of the linear sigma model and typically relate (n-1)-point Green functions to other
n-point functions and/or currents. These identities were developed by Lee at the
perturbative one loop level, 13) and by Symanzik at arbitrary orders of perturbation
theory. 14) We call them the Lee-Symanzik [LS] identities. To our knowledge, for se-
lected infinite classes of diagrams in the linear sigma model no proofs of LS identities
were given prior to Ref. 7). The NG theorem is the simplest LS identity. When the
chiral symmetry is explicitly broken, NG theorem turns into a relation between the
chiral symmetry-breaking parameter and the NG boson mass, as first discussed by
Dashen. 15) The NG theorem in the chiral limit has already been addressed in the
Gaussian approximation and related formalisms in Refs. 7), 6) and 16). For this
reason, we consider the nonchiral case.

4.1. Dashen’s formula and the Nambu-Goldstone theorem

As shown in Ref. 7), in the chiral limit the Nambu-Goldstone particle appears
as a zero-mass pole in the pion channel two-particle propagator Eq. (3.12). Next,
we consider the zero CM energy P = 0 polarization function Vπ(0)Ππ(0) in the
nonchiral case. We use Eq. (3.7b) to write

Vπ(0)Ππ(0) =
2λ0h̄

(M2 − µ2)
[I0(M)− I0(µ)]

[
1− M2 − ε

v

µ2

]

=

(
ε
v − µ2

M2 − µ2

)[
1− M2 − ε

v

µ2

]
(4.1)

and then use Eq. (3.7a) to obtain the final result,

Vπ(0)Ππ(0) = 1− ε

v

(
M2

µ2(M2 − µ2)

)
+O(ε2) . (4.2)

Downloaded from https://academic.oup.com/ptp/article-abstract/106/6/1195/1837369
by Belgrade University user
on 15 March 2018



Linear Σ Model in the Gaussian Functional Approximation 1205

The propagator Eq. (3.12) evaluated at zero momentum can be written as

Dπ(0) 
g2
πφiφ0

−m2
π

= −
(
2λ0

m2
π

)(
M2 − µ2

M2

)2

=
Vπ(0)

1− Vπ(0)Ππ(0)
= −2λ0

(
v

ε

)(
M2 − µ2

M2

)2

, (4.3)

which leads to the result ε = m2
πv+O(ε2). This is also in agreement with a general

result due to Dashen. 15) The vacuum expectation value of the Σ operator, when
sandwiched between two vacuum states, yields Dashen’s formula,(

fm2f
)ab

= fam
2
abfb = −〈0

∣∣∣[Qa
5, [Q

b
5,HχSB]

]∣∣∣ 0〉+O(m4
π) , (4.4)

for the pseudoscalar meson mass squared (m2
ps) and decay constant fa for an arbitrary

chiral symmetry-breaking term in the Hamiltonian density HχSB. This is a model-
independent result based on the equations of motion in the Heisenberg representation
and on the LSZ reduction formulas. We use the canonical commutation relations
and the axial charge to evaluate the Σ operator in the linear Σ model,

Σδab =
[
Qa

5, [Q
b
5,HχSB(0)]

]
= −εσδab , (4.5)

which vanishes when the chiral symmetry is not explicitly broken. Taking the vacuum
expectation value of this expression, we find

(mπfπ)
2 = ε〈0 |σ| 0〉+O(ε2) , (4.6)

which leads to
ε = m2

πfπ . (4.7)

This relation is satisfied both in the Born and Gaussian approximations, which
indicates that both are chirally symmetric. Now that ε has been fixed, note that the
gap equation (3.8b) implies m2

π ≤ µ2, in agreement with the variational nature of the
Gaussian approximation. This is important in the numerical calculations discussed
below and for the physical interpretation.

4.2. Axial current Ward identity

The axial current matrix element corresponding to the Feynman diagrams dis-
played in Fig. 5 reads

Ja
µ5(p

′
, p) = 〈φa(p′)|Jµ(0)|φ0(p)〉

= (p
′
+ p)µ + qµ

(
M2 − ε

v

q2 − µ2

)

−Γµ5(q)Dπ(q) , (4.8)

where Γµ5(q) is defined by

Γµ5(q) = i

∫
d4k

(2π)4

[
(2k + q)µ + qµ

(
M2 − ε

v

q2 − µ2

)]
1

[k2 −M2] [(k + q)2 − µ2]

(4.9)
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Fig. 5. Axial current matrix element.

and satisfies the chiral Ward identity, 18)

qµΓµ5(q) =

[
µ2

2λ0

(
Vπ(0)Ππ(0)− Vπ(q2)Ππ(q2)

)
− ε

v

(
Ππ(0)−Ππ(q2)

)]
.

(4.10)

We insert the vertex Γµ5(q) in Eq. (4.9) together with the two-body propagator
Dπ(q2) in Eq. (3.12) into Eq. (4.8) to find

Jµ5(p
′
, p) = (p

′
+ p)µ + qµ

(
M2 − ε

v

q2 − µ2

)

− qµ
q2

[
µ2

2λ0

(
Vπ(0)Ππ(0)− Vπ(q2)Ππ(q2)

)
− ε

v

(
Ππ(0)−Ππ(q2)

)]

×
(

Vπ(q2)
1− Vπ(q2)Ππ(q2)

)

 (p
′
+ p)µ + qµ

(
M2 − µ2 −m2

π

q2 −m2
π

)
. (4.11)

Here we have qν = (p
′ − p)ν . This result manifestly lacks a pole at q2 = µ2.

The composite state plays precisely the role of the Nambu-Goldstone boson in the
conservation of the (axial) Noether current, i.e., in the basic axial Ward-Takahashi
identity

qνJν5(p
′
, p) =

(
p
′2 − µ2

)
−
(
p2 −M2

)
+m2

π

(
M2 − µ2 −m2

π

q2 −m2
π

− 1

)
, (4.12)

which follows directly from Eq. (4.11). Furthermore, fπ is defined by

〈0|Jµ5|Π(q)〉 = fπ(q)qµ = geffΓµ5(q), (4.13)

from which (in the chiral limit) it follows that

fπ(0)geff =M2 − µ2, (4.14)

by way of the axial Ward identity Eq. (4.10). This result, together with Eq. (3.14)
for geff forms the basic result for the composite pion decay constant,

fπ = fπ(0) = g−1
eff

(
M2 − µ2

)
= v

[
1 +O

(
(4π)−2

)]
 v. (4.15)
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§5. Numerical solutions

5.1. The self-consistency or gap equation

Having determined the value of the parameter ε = vm2
π in terms of observables,

we can solve the gap equations. We fix the v.e.v. v at a value of 93 MeV for the
pion decay constant fπ and a value of 140 MeV for the physical pion mass mπ. As
a result, the system of gap equations (3.8a) and (3.8b) turns into a single equation:

v2 = f2
π =

(
M2 − ε

v

µ2 − ε
v

)
h̄ [I0(µ)− I0(M)]

=

(
M2 −m2

π

µ2 −m2
π

)
h̄ [I0(µ)− I0(M)] . (5.1)

Here, we have used Eq. (3.3) as the integral to be regulated. We give here the
results for (covariant) four-dimensional Euclidean cutoff regularization the three-
dimensional regularization of this quadratically divergent integral:

I
(4)
0 (m2) = (4π)−2m2 [x4 − ln(1 + x4)] ; x4 =

(
Λ4

m

)2

, (5.2a)

I
(3)
0 (m2) = 2(4π)−2m2

[√
x3(1 + x3)− ln(

√
x3 +

√
1 + x3)

]
; x3 =

(
Λ3

m

)2

.

(5.2b)
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Fig. 6. Solutions to the nonchiral gap equation in the Gaussian approximation to the O(4) linear

sigma model with different values of the (three-dimensional) cutoff Λ3.
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Fig. 7. Solutions to the nonchiral gap equation in the Gaussian approximation to the O(4) linear

sigma model with different values of the (four-dimensional) cutoff Λ4.

Note that the h̄ → 0 limit of Eq. (5.1) is non-trivial: on the right-hand side, both
the numerator and the denominator vanish. Further, note that one parameter, in
this case the cutoff Λ, remains free.

Numerical solutions to the equation (5.1) are plotted in Figs. 6 and 7 for various
values of the cutoff Λ. Every point on the (µ,M) curve represents a solution to the
gap equation, thus signalling the existence of freedom of choice in the form of one
continuous free parameter. This free parameter can be related to the bare coupling
constant λ0 by Eq. (3.8a) for every (µ,M) pair.

In Figs. 6 and 7 we see that as the cutoff Λ increases, all solutions to the gap
equation approach the symmetry restoration limit M → µ for large values of M , or
equivalently large values of λ0. This implies that the large boson loop effects lead
to symmetry restoration, in contrast to the fermion loops, which lead to symmetry
breaking. Solutions that lie above the 2µ threshold require rather small values of
(either kind of) cutoff Λ. However, this is in agreement with the small (second)
meson-loop cutoff found in 1/Nc studies of the NJL chiral quark model. 19) This does
not mean that the loop effects are necessarily small, however.

5.2. The Bethe-Salpeter or scattering equation

We reduced the BS equation (3.15) in the isoscalar channel to solving a single
algebraic equation (3.26) involving the transcendental analytic functions IMM (s) and
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Iµµ(s) with branch cuts at imaginary parts above the corresponding thresholds.∗)
This equation has, in general, real and imaginary parts: For σ mass values lying
below the two-body threshold, only the real part is relevant, while for heavier σ
masses the imaginary part must be taken into account as well. The latter determines
the natural decay width of the σ meson.

From numerical solutions to the real part of Eq. (3.26) shown in Fig. 8, it can
be seen that the σ mass is always shifted downward from the “elementary” sigma
field (φ0) mass M , in agreement with the variational property of the mean-field
approximation. For small values of M (≤ 2µ) (i.e., when the coupling constant λ0

lies below some critical value λc, which is a function of the masses µ,M and the
cutoff Λ), the σ meson mass (i.e., the real part of the pole position) drops below
the 2µ threshold, and the σ meson comes to consist predominantly of the bare φ0

state with some 2π and 2σ “cloud” components admixed to its wave function.∗∗)
With increasing coupling constant λ0, the physical σ’s mass increases above the 2µ
threshold, and the “bare” and “dressed” components of the wave function can no
longer be separated. Then, the state itself must be considered as predominantly
a meson-meson composite. For weak couplings, only one state has been found to
exist in the σ channel of the MFA. In Fig. 8 it can be seen that the σ mass changes
continuously with decreasing coupling λ0 and connects smoothly to the perturbative
σ mass in the weak coupling limit.

Note, further, that for many values of the cutoff Λ and above some critical
value of M , far into the 2µ continuum, there is a second root of the real part of
Eq. (3.26). As increases M ∼ √

λ0, the two roots sometimes merge into one and
then immediately disappear (see Fig. 9). For other values of the parameters, the
two roots diverge, the smaller one moving down to zero, while the heavier one moves
back up in mass again. In either case, the smaller zero, which is connected to the
perturbative solution, has an upper limit generally below 1 GeV. This is perhaps the
most interesting result of this paper. We remind the reader that these results are
not artifacts of the Gaussian approximation viewpoint, as exactly the same equations
govern the OPT meson masses.

The question of the physical meaning of the two zeros arises; i.e., if actual poles
exist on the second unphysical Riemann sheet of the S-matrix that can be associated
with these zeros in the real part of the inverse propagator? The larger zero is almost
certainly not a conventional pole, because the derivative of Eq. (3.26) evaluated at
the root has sign opposite to that at the smaller root. Because this derivative is
related to the effective coupling constant squared, this implies that the upper state
has a non-Hermitian coupling to the bare states. This question is more difficult to
address, as it demands analytic continuation onto the second Riemann sheet. It will
be left to a future investigation.

∗) IMM (s) and Iµµ(s) have logarithmic branch points and therefore infinitely many sheets, in

contrast with the nonrelativistic case, in which the branch points are of the square root type, with

only two sheets.
∗∗) Another interpretation of these results (that might be only semantically different from that

one) has been given in the language of operator many-body (“quasi-particle RPA”) methods. 6), 10)
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Fig. 8. The solution mσ to the Bethe-Salpeter equation in the isoscalar channel as a function of

the variational parameter M for various values of the cutoff, Λ. The curves denoted 2µ show

the movement of the 2µ threshold for corresponding values of the parameters M and Λ.
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Fig. 9. The solution mσ to the Bethe-Salpeter equation in the isoscalar channel as a function of

the variational parameter M for a small cutoff, Λ = 0.2 GeV. Note the double-valued nature of

these functions, as well as the absence of solutions above certain values of M .
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§6. Summary and conclusions

In summary, we have: 1) constructed a unitary, Lorentz and chirally invariant,
self-consistent variational approximation to the linear σ model; 2) solved the cou-
pled self-consistent equations of motion in this, the mean-field plus random-phase
approximation (MFA + RPA). The solutions to these equations also determine the
minimum of the “optimized perturbation theory” effective potential.; 3) shown that
the particle content of the mean-field plus random-phase approximation to the O(4)
linear sigma model is the same as in the Born approximation, at least for weak cou-
pling, i.e., there are three Goldstone bosons π and one σ state. 4) found that the
pions’ mass is unchanged, as a consequence of the validity of Dashen’s relation in
the MFA + RPA, whereas the σ mass and width can differ substantially from the
Born values, depending on the free parameters. 5) calculated the σ meson mass by
solving the nonperturbative Bethe-Salpeter equation. We found a second solution
for large values of mass and coupling, whose physical interpretation is yet unclear.

The mean-field or Gaussian method was initially fraught with problems when
applied to the linear σ model with spontaneously broken internal symmetry — the
Goldstone theorem did not seem to “work”. This problem was solved in Ref. 7): The
Goldstone boson found in the Gaussian approximation 7) turns out to be a composite
massless state, just as in the NJL model. Yet, there seemed to exist another massive
state with the quantum numbers of the pion. In fact, however, this is true only in
appearance: There is no pole in the propagator corresponding to this “particle”.
The MFA to the bosonic linear σ model is significantly different from the NJL one in
one regard: Whereas in the NJL model, the gap equation describes “dressing” of the
fermions and the BS equation describes mesons as bound states of dressed fermions,
in the linear σ model both the gap and the BS equations describe (two different)
“dressings” (first and second renormalizations) of mesons. Therefore, the results of
the intermediate (first) renormalization remain in the theory even after the second
renormalization and confuse the issues of the physical content. A more complicated
situation exists in the scalar sector. We have not yet written the last word on this
subject.

We hope to extend these calculations to physical applications for more realistic
Lagrangians in the future.
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