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Introduction: Cardiovascular (CV) disorders are steadily increasing, making them

the world’s most prevalent health issue. New research highlights the importance of

insulin-like growth factor 1 (IGF-1) for maintaining CV health

Methods:We searched PubMed and MEDLINE for English and non-English articles

with English abstracts published between 1957 (when the first report on IGF-1

identification was published) and 2022. The top search terms were: IGF-1,

cardiovascular disease, IGF-1 receptors, IGF-1 and microRNAs, therapeutic

interventions with IGF-1, IGF-1 and diabetes, IGF-1 and cardiovascular disease.

The search retrieved original peer-reviewed articles, which were further analyzed,

focusing on the role of IGF-1 in pathophysiological conditions. We specifically

focused on including the most recent findings published in the past five years.

Results: IGF-1, an anabolic growth factor, regulates cell division, proliferation, and

survival. In addition to its well-known growth-promoting and metabolic effects,

there is mounting evidence that IGF-1 plays a specialized role in the complex

activities that underpin CV function. IGF-1 promotes cardiac development and

improves cardiac output, stroke volume, contractility, and ejection fraction.

Furthermore, IGF-1 mediates many growth hormones (GH) actions. IGF-1

stimulates contractility and tissue remodeling in humans to improve heart

function after myocardial infarction. IGF-1 also improves the lipid profile, lowers

insulin levels, increases insulin sensitivity, and promotes glucose metabolism.

These findings point to the intriguing medicinal potential of IGF-1. Human

studies associate low serum levels of free or total IGF-1 with an increased risk of

CV and cerebrovascular illness. Extensive human trials are being conducted to

investigate the therapeutic efficacy and outcomes of IGF-1-related therapy.

Discussion: We anticipate the development of novel IGF-1-related therapy with

minimal side effects. This review discusses recent findings on the role of IGF-1 in

the cardiovascular (CVD) system, including both normal and pathological

conditions. We also discuss progress in therapeutic interventions aimed at

targeting the IGF axis and provide insights into the epigenetic regulation of IGF-1

mediated by microRNAs.
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1 Introduction

Cardiovascular diseases (CVDs) are the leading cause of morbidity

and mortality globally, accounting for 32% of all deaths (1). Coronary

artery disease (CAD) is the most common comorbidity, and severe

complications of this vascular pathology are heart attack, arrhythmias,

chronic nephropathy, and ischemic stroke (2, 3). Peripheral artery

disease (PAD), also characterized by atherosclerotic plaque formation,

manifests as lesions and pain in the lower extremities (4, 5). Other heart

and blood vessel disorders include deep vein thrombosis, pulmonary

embolism, and rheumatic and congenital heart disease (1, 6, 7). The

principal risk factors for CVDs are genetic predispositions, metabolic

syndrome (MetS), inadequate dietary and lifestyle habits, and physical

inactivity (8). Insulin resistance, diabetes mellitus (DM), dyslipidemia,

elevated blood pressure, and visceral and abdominal obesity represent

predisposing factors for the MetS occurrence, which strongly correlates

with cerebral and abdominal aneurysms, CAD, PAD, and stroke (9, 10).

Insulin-like growth factor-1 (IGF-1) is a polypeptide growth

factor with a structure comparable to insulin. IGF-1 is responsible

for cell differentiation, maturation, growth, and proliferation in

almost all body organs (11–13). Numerous reports advocate the

hypothesis that IGF-1 participates in the homeostasis of

cardiovascular (CV) physiology. In particular, IGF-1’s roles in the

CV system include maintaining cellular homeostasis by regulating

vascular vasoconstriction/vasodilatation, cardiac apoptosis and

autophagy, and inflammatory responses (14–21). Furthermore,

IGF-1 exerts significant anti-inflammatory and anti-oxidant effects

on the vasculature, decreasing atherosclerotic plaque burden (22). In

addition, IGF-1 possesses anti-atherogenic properties reflected in its

role in modulating endothelial junction protein levels and promoting

angiogenesis in endothelial cells (ECs) (23, 24). With the rising

prevalence of CVDs, IGF-1’s involvement in CV system functioning

is attracting substantial research interest. This review discusses recent

research on the roles of IGF-1 in physiological and pathological
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conditions such as CV and metabolic diseases. We review IGF-1’s

roles in atherosclerosis, CAD, PAD, hypertension, and diabetes.

Furthermore, we discuss progress in therapeutic interventions that

target the IGF axis and provide novel insights into the epigenetic

regulation of IGF-1 mediated by microRNAs (miRNAs).
2 IGF-1 system

Salmon and Daughaday (25) discovered IGF-1 in 1957 and

initially described it as a “sulfation factor” that stimulated the

incorporation of 35Sulfate by costal cartilage. In 1976 it was

renamed “insulin growth factor-1” by Rinderknecht and Humbel to

reflect its structural resemblance to proinsulin (26). IGF-1 contains 70

amino acids (AAs), has a molecular weight of 7.649 kDa and belongs

to a family of insulin-related single-chain peptides (27, 28). The IGF-1

coding gene is on chromosome 12 in humans (29). IGF-1 possesses

three disulfide bridges (between AAs 6 and 48; 18 and 61; 47 and 52)

and binds to both IGF-1 receptor (IGF-1R) (with a high affinity) and

insulin receptors (IR) (with a low-affinity) (30). IGF-1 is mainly

synthesized in the liver and exhibits endocrine, paracrine, and

autocrine activity (31). As the primary mediator of the anabolic and

mitogenic activity of growth hormone (GH), IGF-1 plays a significant

role in cellular physiology in childhood and adolescence (32, 33). The

primary IGF-1 role is its endocrine activity, but it can also be secreted

by tissues other than the liver, in which it acts locally and expresses a

paracrine function (12, 34–36). IGF-1 is a negative regulator of

pituitary GH production (Figure 1) (35). IGF-1R is present in

almost every cell in the organism, and it contains two alpha and

two beta subunits associated with disulfide bonds. Beta subunits have

tyrosine kinase domains, whose activation is mediated by the binding

of IGF-1 to alpha subunits, and it is associated with various signaling

pathways, including PI3K/Akt and Raf/MEK/ERK cascade (37, 38)

(Figure 2). The IGF-1R gene is positioned on chromosome 15q26 and
FIGURE 1

IGF-1 system and GH/IGF-1 axis regulation. Ghrelin and GHRH stimulate pituitary secretion of GH, while somatostatin inhibits it. GH stimulates IGF1
secretion in the liver, and IGF-1 exerts negative feedback and inhibits GH secretion. GH, growth hormone; GHRH, growth hormone-releasing hormone;
IGF-1, insulin-like growth factor-1; IGF-1R, insulin-like growth factor receptor-1; IGFBPs, insulin-like growth factor binding proteins; IR, insulin receptor;
VSMCs, vascular smooth muscle cells. Biorender.com was used to generate part of the Figure.
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has approximately 70% similarity with the IR gene (39, 40). In

addition to IGF-1R, insulin-like growth factor binding proteins

(IGFBPs) are required for IGF-1 bioavailability because they

interact with IGF-1 with the same affinity as IGF-1R (41, 42).

There are six IGFBPs types (containing approximately 200–300

AAs) that regulate IGF signaling and prolong its half-life, and they

bind more than 90% of IGF-1 present in circulation (about 1% of

IGF-1 in circulation are in a free-active form), simultaneously

blocking its binding to IR (42, 43). Among all known IGFBPs, the

most abundant is IGFBP-3, with a concentration of 100 nM/L in adult

serum, and represents an essential protein in the IGF pathway. The

IGF-1/IGFBP-3 ratio is used as a clinical predictor of metabolic

syndrome (MetS) (11, 44). It is assumed that IGFBPs could act in

either IGF-dependent or independent manner, and due to different

IGFBP expression profiles in various tissues, they are investigated as

diagnostic biomarkers and potential therapeutic agents for different

pathological disorders (45–47).
2.1 Roles of IGF-1, IGF-1R, and IGFBPs in
vascular smooth and endothelial cells

IGF-1 and IGF-1R are expressed by vascular smooth muscle cells

(VSMCs), endothelial cells (ECs), and macrophages (34), and

together with different IGFBPs, they are considered significant

regulators of atherosclerosis pathophysiology whose expression is

downregulated in atherosclerotic lesions (48–50). IGF-1 participates

in the proliferation and migration of VSMCs, and according to

numerous data, decreased IGF-1 and IGFBPs serum levels have

been associated with carotid atherosclerosis (51–53). In addition,

decreased circulating levels of IGF-1 and IGFBP3 have been

correlated with a greater incidence of ischemic heart and

cerebrovascular stroke (53, 54). In a recent case-control study with

more than 4000 participants, it was proposed that the IGF-1 signaling
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pathway contributes to the risk of stroke occurrence (55).

Atherosclerotic plaque stability and dimensions are partly regulated

by VSMCs, whose apoptosis and structural alterations influence

plaque rupture (56–58). Interestingly, one of the proposed IGF-1

mechanisms in the context of CVDs is the prevention of

atherosclerotic plaque instability through VSMCs phenotype

modulation and anti-apoptotic effects (59, 60). IGF-1 gene

expression in VSMCs is dependent on numerous factors, including

thrombin, tumour necrosis factor-alpha (TNFa), angiotensin II,

oxidized low-density lipoprotein (ox-LDL), and reactive oxidative

species (ROS) (61–66). As previously mentioned, IGF-1

bioavailability is controlled through six IGFBPs. For instance,

IGFBP4 is the principal IGFBP produced by VSMCs, and its

decreased expression in VSMCs may increase IGF-1 bioavailability

(67). IGFBP-1 affected SMC proliferation and was implicated in

regulating plaque stability (68). Furthermore, IGFBP2 enhances

endothelial cell chemotaxis (69), while IGFBP3 is related to

regenerative potential in cardiac atrial appendage stem cells (70).

Endothelial dysfunction is an important part of CVDs pathologies

and related comorbidities, such as atherosclerosis, hypertension,

diabetes, and obesity development and prognosis, as endothelium

manages vascular homeostasis (71). IGF-1R moderates EC function

through its impact on nitric oxide (NO) bioavailability since it can

form hybrid receptors with the insulin receptor (IR) and consequently

influence endothelial cell sensitivity to insulin (72). In the rat model of

acute renal failure, IGF-1 demonstrated NO-mediated ameliorative

action on renal function, possibly due to NO’s vasodilatation effects

(73). Also, IGF-1 manifests a protective property on endothelial

progenitor cells by preventing its dysfunction caused by oxLDLs via

eNOS/NO signaling pathway (74). In addition, one of the proposed

novel IGF-1 protective features regarding endothelial function is the

upregulation of endothelial junction protein levels (24).

According to the literature data, IGF-1 participates in the

regulation of peripheral resistance (75). This important growth
FIGURE 2

IGF-1 signaling pathways in CV system. ERK/MAPK and PI3K/Akt represent the main pathways involved in IGF-1 signal transduction. Activation of these
pathways confer multiple protective effects on the CV system, summarized in the diagram. IGFBPs, insulin-like growth factor binding proteins; IGF-1,
insulin-like growth factor-1; IGF-1R, insulin-like growth factor receptor-1; RAS, rat sarcoma protein; RAF, rapidly accelerated fibrosarcoma kinase; MEK,
mitogen-activated protein kinase kinase; ERK, extracellular signal-regulated kinase; IRS1, Insulin receptor substrate-1; PI3K, phosphatidylinositol-3 kinase;
Akt, serine/threonine kinase (protein kinase B); mTOR, mammalian target of rapamycin; NO, nitric oxide; VSMCs, vascular smooth muscle cells; eNOS,
endothelial nitric oxide synthase.
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factor contributes to pressure regulation since it increases blood flow

in rats through vasodilatation, and hypertension has been observed in

IGF-1 genetically deficient mice (76, 77). New findings suggest that

matrix metalloproteinases receptor cleavage has a notable role in the

ineffective IGF-1 signaling in hypertension and might be significant

for peripheral vascular resistance (19). Interestingly, manipulation of

IGF-1 levels in the peripheral circulation and its increased levels in the

brain could be used to recover early manifestations of cerebral artery

occlusion (78). Regarding human studies, IGF-1 infusion reduced

peripheral resistance in patients with chronic heart failure, suggesting

its acute impact on the CV system (79). Besides, IGF-1 serum and

plasma levels in humans are considered valuable biomarkers for CVD

development. For instance, low serum IGF-1 is linked to hypertension

and early CV complications in female patients with rheumatoid

arthritis (80), whereas elevated IGF-1 plasma levels are correlated

with a declined risk for hypertension incidence in non-diabetic

women patients (81).

IGF-1 has been linked to changes in cardiac structure. IGF-1, in

particular, stimulates collagen type I synthesis in VSMCs and its

extracellular accumulation (82). Moreover, IGF-1 could moderate the

myocardium structure since it inhibits apoptosis in hypoxic

cardiomyocytes (47). Despite this, there is no conclusive evidence

that IGF-1 can modify cardiomyocytes in healthy heart tissue in

addition to its observed overexpression (75, 83).
2.2 MiRNA-mediated regulation of IGF-1 and
IGF-1R expression

Several studies have reported miRNAs-mediated epigenetic

regulation of the expression and secretion of IGF-1 and its receptor,

IGF-1R. MiRNAs are small, single-stranded RNAs that post-

transcriptionally alter the expression of target genes (84, 85) and

typically exert their regulatory effects in a context-dependent manner

by binding to cis-elements located in the 3’ untranslated region

(3’UTR) of target protein-coding mRNAs. In some cases, miRNAs

may bind to 5’UTR or coding regions, affecting mRNA stability and

degradation (85, 86). The expression of as many as 1/3 of the genes in

the human genome is regulated by miRNAs. Several thousands of

miRNAs have been identified so far, representing one of the most

abundant gene expression regulators with a role in almost every

biological process in multicellular organisms (87, 88). A single

miRNA hypothetically may bind to more than a hundred target

mRNAs, and several miRNAs can cooperate to finely tune the

expression of the same transcript (89, 90).

So far, several miRNAs have been implicated in regulating IGF-1

expression and signaling (91). miR-320 was demonstrated to affect

IGF-1 expression and insulin sensitivity in adipocytes by modulating

the insulin signaling pathways (92). miR-126, whose levels are

significantly decreased in multiple tissues in type 2 diabetes mellitus

(T2DM), has also been reported to affect the expression of IGF-1 and

IGF-2 (93). MiR-133a stimulated IGF-1R expression by prolonging

the IGF-1R mRNA half-life. In atherosclerosis induced by

apolipoprotein-E deficiency, decreased miR-133a expression is

associated with lower IGF-1R levels and suppressive VSMC growth.

Administration of miR-133a precursor increased IGF-1R levels and
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promoted IGF-1-induced VSMC survival and growth (94). In

addition, a specific miRNA may exert multiple regulatory effects by

binding to several targets of metabolic signaling pathways, illustrated

by the example of let-7 that binds to 3’UTR regions of INSR, IRS-2,

and IGF-1R and regulates their expression (95). Also, in cardiac and

skeletal muscles, miR-1 controls the expression of both IGF-1 and

IGF-1R (96). miR-143-3p is significantly upregulated in the serum of

T2DM patients and various tissues of obese mice, such as skeletal

muscle, pancreas, and heart. miR-143-3p was reported to regulate the

IGF-2R receptor and may contribute to insulin resistance observed

during MetS (97).
3 Effects of IGF-1 in
physiological conditions

The classical view of IGF-1 as an essential growth factor is

expanded by findings of its significant metabolic effects whereby

IGF-1 stimulation of its receptor serves as a signal that notifies cells

about the availability of adequate nutrients, thus coordinating protein,

fat, and carbohydrate metabolism in various cell types. IGF-1

stimulates protein synthesis via the PI-3 kinase pathway in tissue

cell culture. IGF-1 receptor activation is followed by a cascade of

reactions starting with tyrosine kinase-mediated phosphorylation of

insulin receptor substrate-1 (IRS-1) (98). IRS-1 is an adaptor protein

that provides a binding site for PI-3 kinase, whose activation

stimulates Akt (Figure 2). Consequent TSC-2 suppression and

mTORC1 complex activation stimulates phosphorylation of p70S6

kinase and 4E-BP1 translational repressor. AMP kinase activated by

nutrient restriction modulates this process by phosphorylating serine

residue 794 on IRS-1, which prevents its activation and leads to the

inhibition of PI-3 kinase and IGF-1-stimulated protein synthesis (99).

IGF-1 also stimulates amino acid transport and protein synthesis in

skeletal muscle while inhibiting protein breakdown (100, 101). IGF-1

induces skeletal muscle hypertrophy by blocking the transcriptional

upregulation of the ubiquitin-ligases MuRF1 and MAFbx (also called

atrogin-1), which serve as key mediators of skeletal muscle atrophy

(101). This finding is supported by research demonstrating that

genetically altered mice expressing atrogin complex constitutively

show resistance to the anticatabolic effects of IGF-1 (101). Another

study reported that IGF-1 partially antagonizes the cytokines

activated in catabolic states that initiate muscle breakdown through

MURF1 and MAF box induction (102). IGF-1-mediated inhibition of

MAFbx upregulation by treatment reduces proteasome formation

and targeting of proteins for degradation, thus lowering the rate of

catabolism (103).

It has been proposed that IGF-1 may be a primary factor that

maintains protein synthesis during intervals between meals, whereas

insulin is a major factor that stimulates skeletal muscle anabolism

following meal ingestion (104). This is supported by findings that

IGF-1 treatment stimulates protein synthesis while having little effect

on proteolysis and catabolism in healthy volunteers (105). However,

IGF-1 can suppress proteolysis at high concentrations, even in

normally fed subjects. In contrast, insulin inhibits proteolysis in

muscle tissue at very low concentrations, and high concentrations

are required to stimulate protein synthesis.
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IGF-1’s ability to modulate insulin and GH actions allows it to

affect carbohydrate metabolism. Specifically, IGF-1 reduces serum

GH levels and affects insulin suppression of gluconeogenesis in the

liver. Furthermore, increasing free fatty acid uptake in muscle IGF-1

indirectly enhances hepatic insulin action (106). GH was found to

stimulate the PI-3 kinase p85 subunit synthesis (107), which leads to

the suppression of p110 subunit activity and results in decreased

insulin action (108). IGF-1 has been shown to stimulate glucose

transport into muscle via IGF-1 receptors or insulin/IGF-1 hybrid

receptors, and a high concentration of free IGF-1 has been shown to

suppress gluconeogenesis in mice directly (109–111). Deletion of the

insulin receptor in a mouse model showed decreased blood glucose

levels in response to IGF-1 (112), whereas in vivo reduction of serum

IGF-1 by 80% impaired glucose tolerance (113). Thus, IGF-1

enhances insulin sensitivity and decreases blood glucose, but its

primary effects are increasing fatty acid oxidation in muscle, leading

to the decreased hepatic free fatty acid influx and increased insulin

suppression of liver glucose output (104).

IGF-1’s role in stimulating the uptake and oxidation of free fatty

acid in skeletal muscle was confirmed by in vivo experiments with

transgenic mice overexpressing a dominant-negative IGF-1R in

skeletal muscle (MKR mice). These mice showed a significant

decrease in glucose uptake when stimulated with either insulin or

IGF-1, indicating a loss of function of both the IR and IGF-1R.

Furthermore, MKR mice were insulin-resistant, had high serum and

tissue lipid levels, and developed diabetes at a young age (114). In

another study, MKR mice were crossed with mice overexpressing a

fatty acid translocase, CD36, in skeletal muscle (115). Normalization

of the rate of fatty acid oxidation in skeletal muscle and

normalization of hyperinsulinemia, hyperglycemia, and significant

improvement in hepatic insulin sensitivity was observed in the

double-transgenic MKR/CD36 mice (115). These findings suggest

the central role of IGF-1 in skeletal muscle fatty acid transport. They

are also supported by the finding that long-term administration of

recombinant IGF-1 in humans with GH receptor deficiency is

associated with decreased fat mass, increased lipolysis, and a faster

rate of lipid oxidation (116).
4 Effects of IGF-1 in
pathophysiological conditions

It is extensively documented that IGF-1 exerts profound effects on

CV and metabolic disorders. IGF-1 modulates CV function by

stimulating angiogenesis (117, 118) and promoting anti-apoptotic

and anti-inflammatory actions (119, 120). Also, IGF-1 activates nitric

oxide synthase (NOS) via Akt-catalyzed phosphorylation, which

stimulates NO production in ECs and VSMCs, leading to improved

cardiac contractility (121). Furthermore, several studies suggest that

IGF-1 may indirectly affect the CV system by increasing insulin

sensitivity (113, 122–124). In the context of metabolic disorders, it has

been shown that IGF-1 ameliorates insulin sensitivity (123, 124).

Moreover, perturbed IGF-1 levels are associated with insulin

resistance, glucose intolerance, increased T2DM risk and

cardiovascular morbidity and mortality (125, 126). IGF-1

independently correlates with coronary microvascular impairment,
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suggesting the crucial role of this growth factor in the increased CV

risk associated with acromegaly (127). Also, a recent study reports

profoundly reduced serum/plasma IGF-1 levels in patients with

obstructive sleep apnea-hypopnea syndrome (OSAHS), a disease

with severe CV and metabolic consequences that result in increased

mortality of comorbid conditions such as coronary heart disease and

cardiac failure (128). The following sections summarize the major

findings concerning IGF-1 levels and pathophysiological conditions

such as atherosclerosis, CAD, PAD, stroke, hypertension,

and diabetes.
4.1 IGF-1 and CVD

The imbalance between pro- and anti-atherogenic factors results

in atherosclerosis development. Numerous cell types, including

inflammatory cells (macrophages), VSMs, and ECs, are directly or

indirectly involved in the pathogenesis of atherosclerosis. Their

byproducts promote endothelial dysfunction and accelerate the

atherosclerotic process (129–131). IGF-1, one of the byproducts,

exhibits pro- and anti-atherogenic properties (14). The risk of

atherosclerotic CV disease was lower in healthy persons with high

free IGF-1 levels in the blood (22, 132). Accordingly, the risk of

developing acute coronary syndrome has also been linked to low IGF-

1 levels (53, 133, 134). Lower IGF-1 concentrations in individuals

with acute myocardial infarction were linked to a higher incidence of

post-myocardial infarction consequences and a worse prognosis (133,

135). A study by Stavropoulou et al. showed that the serum IGF-1

levels in infarcted rats were initially decreased (24 h up to 1 week) and

remained unaltered during the late postinfarction period (4 to 8

weeks). Interestingly, this study reported significant upregulation of

IGF-1 expression in rat myocardium after coronary artery infarction.

The fact that an increase in serum IGF-1 levels did not accompany it

suggested that increased IGF-1 expression serves the needs of rat

myocardium locally, participating in the postinfarction repair

processes (136).

The preferred laboratory models for atherosclerotic diseases are

murine and pig models. Murine atherosclerotic models are primarily

used at the initial phase of pre-clinical research, as opposed to pig

models, which are reserved for later experimental stages (i.e. testing

the pharmacokinetics, pharmacodynamics and side-effects of

experimental anti-atherosclerotic drugs). Pigs were found to have

lipid profiles and atherosclerotic coronary artery involvement that

were very similar to humans (137).

The pre-clinical studies are mostly based on animal mechanical

injury models demonstrating a link between increased IGF-1 and

neointimal proliferation (138–141). IGF-1 inhibition inhibits

neointimal proliferation and could be clinically used to treat

restenosis after coronary artery angioplasty (142).

There has been little research into the role of IGF-1 in

hypercholesterolemic animal models of atherosclerosis with no

mechanical injury (143). In general, such animal models revealed

that low circulating IGF-1 levels are associated with more extensive

atherosclerosis (144), whereas high circulating IGF-1 levels are not

(9). Sukhanov et al. demonstrated that IGF-1 infusion reduced

atherosclerotic lesion extension (aortic root plaque area by 30%),
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vascular oxidative stress, inflammation, and atherosclerotic plaque

macrophage infiltration in a murine Apoe-/- model (145). Shai et al.

demonstrated that chronic IGF-1 overexpression in smooth muscle

cells (SMCs) did not increase overall plaque extensiveness and

exhibited features of stable plaques in Apoe-/- mice fed a Western

diet (146). Interestingly, IGF-1’s atheroprotective effects are largely

independent of SMCs (146). IGF-1R deficiency in Apoe-/- mice

macrophages increases atherosclerotic extensiveness and destabilizes

plaque stability by lowering SMCs and collagen content, according to

the pleiotropic effects of IGF-1 on various vascular wall cells (119).

IGF-1 signaling disruption determines macrophage activation into

the pro-inflammatory M1 phenotype and reduces lipid efflux,

promoting lipid accumulation in macrophages (119, 147). In

contrast, Snarski et al. demonstrated in a macrophage-specific IGF-

1 Apoe-/- mouse model that macrophage-derived IGF-1 inhibited the

expression of chemokine (C-X-C motif) ligand 12 (CXCL12), reduced

monocyte recruitment to plaques, and favoured macrophage

cholesterol efflux (60). Recombinant human IGF-1, given over 6

months at a dose FDA-approved for long-term treatment of growth

failure in children with severe primary IGF-1 deficiency, reduced

coronary artery atherosclerosis and promoted a stable plaque

phenotype in a pig model of familial hypercholesterolemia (FH)

(148). IGF-1 suppression of systemic inflammation and oxidative

stress provides such effects. In plaques, IGF-1 suppressed gene

expression of FOS/FOSB transcription factors, CXCL14, and matrix

metalloproteinase 9 (MMP9), according to a spatial transcriptomics

study (148).

The clinical indicator of atherosclerosis across the body and in the

brain is the common carotid artery intima-media thickness (CC-

IMT). Extensive research has shown a strong association between CC-

IMT and IGF-1 levels (52, 149–152). Intriguingly, Sirbu et al. (153)

proposed that elevated IGF-1 levels might promote plaque stability in

advanced atherosclerosis while stimulating smooth muscle

hyperplasia in early atherosclerosis. The same study reported that

the measure of insulin resistance, HOMA-IR, and total IGF-1 z-score,

is associated with increased CC-IMT (153). Also, a positive

correlation between CC-IMT and serum IGF-1/IGFBP-3 ratio was

reported (52, 150). Furthermore, a negative association of IGF-1 with

CC-IMT was observed only in patients with low vitamin D levels

(152) and was supported by findings of a comparative study of obese

individuals and healthy controls showing that IGF-1 protects against

CC-IMT when serum vitamin D levels are low (154). Recent findings

show that vitamin D3 treatment activates the IGF-1 promoter and

enhances IGF-1R signaling, accompanied by enhanced mesenchymal

stem cells-induced angiogenesis and increased vascularization in vitro

and in vivo (155).

The PRIME prospective cohort study investigating the

relationship between IGF-1 and CAD in 10,600 patients reported

that IGF-1 levels negatively correlated with age, markers of

inflammation, waist circumference, and tobacco consumption

(156). The study revealed that participants with the acute coronary

syndrome had significantly lower baseline IGF-1 levels, and those in

the highest quartile for IGF-1 levels had a 55% lower relative risk of

myocardial infarction (156). Several other studies confirmed a

relationship between elevated IGF-1 levels and a decreased

prevalence or incidence of CAD (156–158). Additionally, it was
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found that individuals with early-onset CAD had considerably

lower IGF-1 levels (157).

Increased IGF-1 levels protect against ischemic strokes, as

evidenced by the lower prevalence or incidence of ischemic stroke

(54, 159, 160). For instance, the lowest ischemic stroke incidence was

observed for the patients in the highest quartile of circulating IGF-1

(232 ± 41.04 ng/ml) according to a prospective study based on

observational data from 757 participants of the Framingham Study

(54). This correlation was especially pronounced in patients with

insulin resistance and subjects with the highest waist/hip ratio,

leading to the conclusion that low circulating IGF-1 levels may be

associated with an increased risk of ischemic stroke in obese and

diabetic patients due to higher insulin resistance (54).

Vasodilation and reduced vasoconstriction, anti-apoptotic and

pro-survival effects on cardiomyocytes and vascular bed cells, tissue

remodeling effects, and stimulation of cardiac development and

contractility represent positive effects of IGF-1 on the CV system

(Figure 2) (14). Even though the majority of research demonstrates a

clear correlation between low serum IGF-1 levels and an increased

risk of CV diseases (15, 123, 161), specific conflicting findings can be

ascribed to methodological problems in assessing total and free IGF-1

levels (161, 162). For instance, it was reported that the risk of CV

events such as acute coronary syndrome was reduced in the presence

of higher IGF-1 levels (156, 163). Furthermore, the fact that therapy

with IGF-1 or its analogues had a favorable effect on patients with

chronic CV diseases recognized the role of IGF-1 in the CV system

(164, 165). In line with that, Rotterdam and Framingham’s studies

revealed that IGF-1 levels are negatively linked with the incidence of

CV events (166, 167). Based on a dose-response analysis, every 45 mg/
mL increase in IGF-1 correlates with a 9% reduction in overall CV

events risk for both genders (163). In addition, a longitudinal study in

a large number of subjects prone to hypertension and CVD

demonstrated a protective association between IGF-1 and

hypertension, CV and all-cause mortality (168).

4.1.2 IGF-1 and PAD
At present, there is limited availability of data regarding the

potential association of IGF-1 with PAD (169). In a study by

Urbonaviciene et al., serum IGF-1 and IGFBP-2 levels were

measured in 440 patients with lower-extremity PAD, revealing an

increased risk of CVD mortality was associated with an increase of

100 mg/l of baseline IGFBP-2 value. Furthermore, the study concluded

that elevated IGFBP-2 levels in patients with PAD were

independently associated with long-term CVD mortality. However,

the addition of IGFBP-2 to a model containing conventional CVD

risk factors did not improve the risk prediction of CVD

mortality (169).

In another cross-sectional study, circulating IGF-1, IGFBP-3, and

labile acid subunit (ALS) essential for maintaining normal serum IGF-1

and IGFBP-3 concentrations (170), were measured in PAD patients

and healthy controls. In addition, IGF-1, C-reactive protein (CRP),

IGFBP-3, and ALS were measured in blood from the aorta and femoral

vein of the affected limb in a subset of patients subjected to peripheral

angiography. PAD patients had decreased levels of IGFBP-3, and

measurements in the affected limb revealed a negative correlation

between CRP and IGF-1 venous-arterial difference, whereas a positive
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correlation between CRP and IGFBP-3 venous-arterial difference was

observed. This study established a connection between systemic levels

of IGF axis components and the presence of PAD, suggesting that

inflammation of the affected limb in PAD patients affects the

transfemoral IGF-1 and IGFBP-3 concentrations (171).

4.1.3 IGF-1 and hypertension
IGF-1 mediates the regulation of blood pressure by stimulating

endothelial nitric oxide synthase (eNOS) activity and consequent nitric

oxide (NO) production in ECs that promotes vasodilatation and increases

blood flow (172–174). In rats and mice with genetic IGF-1 deficiency, an

elevated mean blood pressure is observed, affirming the IGF-1’s role in

blood flow and pressure regulation (76, 174, 175). Increased circulating

IGF-1 levels in hypertensive subjects were shown to promote adaptive

structural alterations such as ventricular hypertrophy and vascular

remodeling (176). In addition, a recent study reports an association

between plasma IGF-1 levels and intraventricular septal thickening

(177). The reduced vasodilation response to IGF-1 1 was reported in

hypertension (178, 179) which may exert a considerable effect in the

development of arterial hypertension. It has been suggested that increased

matrix metalloproteinase (MMPs) activity in hypertension results in the

proteolytic cleavageof the extracellular IGF-1Ra subunit and theobserved

lack of receptor sensitivity (19). Several studies support this notion by

showing that increased proteinase activity plays a vital role in organ

damage and the loss of cellular function in hypertension (180–183).

However, literature analysis of human studies shows conflicting

reports on the association between blood pressure regulation and

IGF-1 levels. For instance, several studies on a smaller number of

patients showed higher IGF-1 levels in hypertensive patients

compared to normotensive subjects (184–187), whereas several

cross-sectional studies indicated a neutral relationship between

blood pressure and IGF-1 (52, 134, 188–190). Nevertheless, several

more recent large cross-sectional studies reported a significant inverse

correlation between blood pressure and IGF-1 (123, 191–196). Also,

prospective studies confirm the inverse association of IGF-1 with

systolic blood pressure and significantly reduced risk for incident

hypertension in non-diabetic female subjects (81).

4.1.4 IGF-1, diabetes, and hyperinsulinemia
A link between decreased circulating IGF-1 and MetS

components, such as dyslipidemia and DM, has been observed (15,

161) but remains questionable due to conflicting findings in the

literature. It has been established that IGF-1 improves insulin

sensitivity (123, 124), and higher IGF-1 levels are associated with

fasting insulin levels and insulin resistance (197). The risk of

developing T2DM and CAD was discovered to be genetically

predisposed in people with elevated serum IGF-1 levels (197). More

specifically, persons with insulin levels above the median and high

levels of free IGF-1 have a higher chance of developing T2DM,

whereas those below the median have a lower risk (198).

On the other hand, one study found no link between IGF-1 levels

and T2DM (199). Additional longitudinal studies provided evidence

of a strong association between increased incidence of insulin

resistance and T2DM in subjects with either low or high IGF-1

serum levels (200, 201). The findings suggested that the association of

IR and T2DM with low IGF-1 levels is due to the insulin-like actions
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of IGF-1 that promote hypoglycemia and IGF-1 suppression of

growth hormone secretion, which causes insulin resistance (202, 203).
5 Therapeutic interventions that target
the IGF axis

Due to its central role in IGF signaling, the IGF-1R has been

studied as a target for therapeutic interventions using several

strategies that were developed for clinical studies, such as anti-IGF-

1R antibodies, IGF-1/2 neutralizing antibodies, nucleic acid-based

approaches, small molecule tyrosine kinase inhibitors (TKIs), and

IGF ligand TRAPs. Notably, most studies were performed in the

context of potential novel treatments for various cancers, and the

effects of such therapeutic approaches on cardiovascular and

metabolic diseases are still not sufficiently reported in the literature.

IGF-1R was the first tyrosine kinase targeted by a monoclonal

neutralizing antibody (alpha-IR-3) that blocked the receptor

binding domain (204). However, concerns about toxicity resulting

from potential INSR co-inhibition halted further clinical evaluation of

this approach (205). Nucleic acid-based approaches such as antisense

oligonucleotides (ASOs), small interfering RNAs (siRNAs), and

dominant-negative receptors successfully blocked IGF-1 signaling in

vitro and in vivo. ASO-mediated downregulation of IGF-1 or IGF-1R

showed promising inhibitory effects on the IGF axis in vivo (206, 207).

For instance, chronic intravenous administration of IGF-1R ASO in

spontaneously hypertensive rats (SHR) was employed to study the

effects of a functional deficit in IGF-1 signaling (208). IGF-1 ASO

administration decreased IGF-IR expression in conductance and

resistance blood vessels, reduced aortic IGF-1R density, and

angiotensin II type 1 receptor expression (208).

RNA interference (RNAi) technology based on the use of short (20–

25 bp) double-stranded siRNAs that recruit the RNA-induced silencing

complex (RISC) can be programmed to target virtually any nucleic acid

sequence. Typically, siRNAs post-transcriptionally silence target genes

via mRNA degradation, but they can also interact with the

transcriptional machinery to induce transcriptional repression and

may participate in epigenetic modifications (209, 210). Bohula et al.

designed an IGF-1R siRNAs that efficiently silenced the IGF1R gene

(211). However, the potential clinical use of such siRNA molecules

requires their stabilization and improved delivery to improve their

effectiveness upon in vivo administration (212).

Another molecular approach is based on the expression of the

dominant-negative IGF-1R receptor (dnIGF-1R), which makes a

complex with a wild-type half receptor and can bind a ligand but

lacks kinase activity, thus blocking the function of endogenous IGF-

1R. Since IGF-1R is a heterotetramer in which one ligand molecule

binds into a pocket formed by two IGF-1R a subunits (213, 214),

dnIGF-1R were constructed by expression of IGF-1R residues 1–950

that are present at the cell surface or residues 1–486 that encode

soluble receptor (215–217). Similarly, dominant negative IGF-1R

inhibition was achieved using an integrin binding-defective mutant

of IGF-1 (218). Further advancement in IGF-1 signaling inhibition

was achieved by the development of small molecule tyrosine kinase

inhibitors (TKIs) that block IGF-1R kinase activity (219). However,

these TKIs also inhibited INSR due to a high level of sequence
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homology between IGF-1R and INSR-A/B kinase domains (220–222)

which may lead to adverse effects such as hyperinsulinemia (223).

Also, the short half-life of TKIs may result in transient inhibition of

target receptors, and maintenance of an efficient dosing regimen is

associated with a risk of toxicity (224–226).

In the specific context of IGF-1-based therapeutic approaches for

the treatment of metabolic diseases, it should be mentioned that

recombinant human IGF-1 (rhIGF-1) has been studied as a potential

treatment for diabetes. There is evidence that rhIGF-1 administration

improved glycemic control but was associated with severe adverse

effects such as diabetic retinopathy aggravation (227). Although this

approach to diabetes treatment has been abandoned, IGFBP-1 and -2

have recently emerged as potential targets for insulin sensitivity

modulation and treating diabetes and obesity (202). Another

therapeutic approach with promising potential has been recently

proposed by Wang and colleagues, who reported that significant

elevation of IGF-1 levels could be achieved by combination treatment

with tadalafil (TAD) and hydroxychloroquine HCQ. TAD is a

phosphodiesterase 5 inhibitor that exerts cardioprotective effects

against ischemia/reperfusion (I/R) injury in diabetic mice, whereas

HCQ is an antimalarial and anti-inflammatory drug that reduces

hyperglycemia in diabetic patients. The observed increase in insulin

and IGF-1 levels upon TAD+HCQ treatment resulted in the

activation of the Akt/mTOR signaling pathway. As a result, it was

proposed that concurrent TAD and HCQ treatment could be a readily

available novel pharmacotherapeutic approach for protection against

myocardial I/R injury in T2DM (228).

Sodium-glucose transporter-2 inhibitors (SGLT-2is) and

glucagon-like peptide-1 receptor agonists (GLP-1RAs) exhibit

multiple metabolic and CV effects that have a positive impact on

diabetic state and metabolism in general, such as reduction of

hyperglycemia, fat mass and bone remodeling, natriuresis weight

loss, and anti-atherosclerosis (229). Increasing evidence indicates the

involvement of the IGF axis in pleiotropic responses elicited by SGLT-

2is and GLP-1RAs. For instance, GLP-1RAs stimulate pro-survival

responses in tissues where the IGF-1/IGF-1R plays an important role,

such as pancreatic b-cells and the heart. SGLT-2is effect on the IGF

axis is poorly documented, but it has been speculated that they

promote increased ketogenesis mediated by elevated circulating GH

levels (229). The association of SGLT-2is and GLP-1RAs with the IGF

axis represents an exciting novel pharmacological strategy for the

modulation of IGF-1 levels, which requires further validation for

potential application in the treatment of CVD and metabolic

diseases (229).
6 Conclusions

IGF-1 has numerous beneficial and protective effects on the CV

system, including anti-apoptotic and pro-survival effects on

cardiomyocytes and vascular bed cells, tissue remodeling effects,

cardiac development and contractility stimulation, vasodilation and

decreased vasoconstriction. Although the majority of available

research data demonstrate a correlation between low serum levels of

IGF-1 and an increased risk of CV diseases, conflicting findings can be

ascribed to methodological problems in assessing total and free IGF-1

levels and the lack of standardizationof the IGF-1 assaysused indifferent
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studies.Therefore, future efforts should focuson introducingmeasures to

standardizemethods for measurements of total and free serum IGF-1 to

facilitate the interpretation of correlations between IGF-1 and different

parameters of cardiovascular and metabolic diseases. The intriguing

possibility of targeting the IGF axis for treating cardiovascular and

metabolic disorders remains uncertain due to adverse effects observed

in pre-clinical and clinical studies. Recent findings regarding miRNAs-

mediated regulationof IGF-1 expressionopennewavenues fordesigning

anddevelopingnucleic acid-based therapeutic agents that canfinely tune

IGF-1 levels andconfer protective effects in cardiovascular andmetabolic

disease-associated conditions.
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13. Isenović E, Muniyappa R, Milivojević N, Rao Y, Sowers JR. Role of PI3-kinase in
isoproterenol and IGF-1 induced ecNOS activity. Biochem Biophys Res Commun (2001)
285(4):954–8. doi: 10.1006/bbrc.2001.5246

14. Obradovic M, Zafirovic S, Soskic S, Stanimirovic J, Trpkovic A, Jevremovic D, et al.
Effects of IGF-1 on the cardiovascular system. Curr Pharm Des (2019) 25(35):3715–25.
doi: 10.2174/1381612825666191106091507
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