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Levothyroxine (LT4) is used to treat frequently encountered endocrinopathies such as
thyroid diseases. It is regularly used in clinical (overt) hypothyroidism cases and subclinical
(latent) hypothyroidism cases in the last decade. Suppressive LT4 therapy is also part of
the medical regimen used to manage thyroid malignancies after a thyroidectomy. LT4
treatment possesses dual effects: substituting new-onset thyroid hormone deficiency and
suppressing the local and distant malignancy spreading in cancer. It is the practice to
administer LT4 in less-than-high suppressive doses for growth control of thyroid nodules
and goiter, even in patients with preserved thyroid function. Despite its approved safety for
clinical use, LT4 can sometimes induce side-effects, more often recorded with patients
under treatment with LT4 suppressive doses than in unintentionally LT4-overdosed
patients. Cardiac arrhythmias and the deterioration of osteoporosis are the most
frequently documented side-effects of LT4 therapy. It also lowers the threshold for the
onset or aggravation of cardiac arrhythmias for patients with pre-existing heart diseases.
To improve the quality of life in LT4-substituted patients, clinicians often prescribe higher
doses of LT4 to reach low normal TSH levels to achieve cellular euthyroidism. In such
circumstances, the risk of cardiac arrhythmias, particularly atrial fibrillation, increases, and
the combined use of LT4 and triiodothyronine further complicates such risk. This review
summarizes the relevant available data related to LT4 suppressive treatment and the
associated risk of cardiac arrhythmia.
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1 INTRODUCTION

Thyroidectomy is a surgical procedure, performed either as a
standard open surgery or as an alternative approach surgery,
such as minimally invasive video-assisted thyroidectomy
(MIVAT) or robot-assisted transaxillary thyroidectomy, aiming
to remove all or part of the thyroid gland (1). The procedure is
commonly used to treat a range of thyroid-related disorders,
including thyroid cancer, hyperthyroidism goiters, and thyroid
nodules that can be obstructive and cause swallowing or
breathing difficulties (2). The introduction of MIVAT
improved the treatment options for some thyroid conditions.
Despite superiority regarding patients’ satisfaction with faster
recovery and decreased complications associated with standard
open thyroidectomy (neck pain, voice problems, anxiety), it is
confirmed as a reliable procedure in only strictly indicated cases
(1). It is not suitable for patients with thyroiditis, large
multinodular goiters, locally invasive thyroid carcinoma, or the
presence of lateral neck compartment malignant lymph nodes. It
evolves as standard procedure in the carefully selected cases with
low- and intermediate-risk differentiated thyroid carcinoma
(3, 4).

The thyroid gland produces the iodine-containing thyroid
hormones, triiodothyronine (T3) and thyroxine (T4) in response
to thyroid stimulation hormone (TSH) and the peptide hormone
calcitonin, which is primarily regulated by serum calcium levels
(5, 6). Together, these hormones regulate a wide range of
metabolic and cardiovascular processes, including basal
metabolic rate, appetite, gut motility, nutrient absorption, rate
and strength of heart contractions, breathing, and oxygen
consumption (7). Thyroid hormones also play a developmental
role; they are essential for cell growth, while cells of the
developing brain are a major target for T3 and T4 (8).
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When the whole thyroid is extirpated, such gland surgery is
referred to as total thyroidectomy. Knowing that thyroid hormones
are essential for life, it is necessary to permanently replace the
resultant deficiency with thyroxine after total thyroidectomy.
Without replacement, a patient will develop signs and symptoms
of hypothyroidism. Standard treatment in such instances is the
long-term prescription of the synthetic thyroid hormone
levothyroxine (LT4, a manufactured form of T4). In cancer cases,
LT4 treatment after thyroidectomy can have the added advantage
of suppressing local and distant malignancies from spreading.
However, the LT4 dose must be carefully optimized to avoid
potential adverse effects such as weight loss, sweating, anxiety,
insomnia, osteoporosis (increased bone fracture risk), and an
increased heart rate. Thus, LT4 treatment in individuals that
have suffered a recent heart attack is cautiously recommended
(9). It is not surprising that some individuals experience
cardiovascular complications following LT4 treatment as thyroid
hormones regulate cardiac functioning. Indeed, increased thyroid
hormone levels are associated with an increased risk of developing
heart arrhythmias (10). Here we examine the relevant literature
related to LT4 treatment after thyroidectomy and the associated
risk of cardiac arrhythmias in such patients.
2 LEVOTHYROXINE (LT4): STRUCTURE,
BRIEF HISTORY, PHARMACOKINETICS,
PHARMACODYNAMICS, DOSING
REGIMENS

Levothyroxine is a synthetic version of the secreted thyroid
hormone thyroxine (T4) that completely mimics all physiologic
effects of T4 (Figure 1). LT4 is used as replacement therapy in
FIGURE 1 | Levothyroxin (LT4) therapy.
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primary-thyroidal, secondary-pituitary, and tertiary-hypothalamic
hypothyroidism (11, 12). Despite T4 being naturally present as a
racemicmixture of the levo and dextro forms, LT4 is produced as a
levo-isomer due to its greater physiological activity than the dextro
form (13, 14).

The use of LT4 as a standard monotherapy came to the fore in
the 1970s with evidence that T3 is predominantly produced by
peripheral deiodination of T4. In patients treated with LT4
alone, thyroid function becomes normalized (15–17). Before
that, combination therapy of synthetic LT4 and LT3 was the
standard hormone replacement therapy in hypothyroid patients
(18). Hypothyroidism treatment dates from the 6th century and
Chinese medicine, where animal thyroid was used for therapy (17,
19). The same approach was applied in Europe but later in the 19th

century (17, 19). In the 20th century, the discovery of thyroid
hormones accelerated progress towards developing the current
therapies (13, 17).

Adults with newly diagnosed hypothyroidism and without
other complications receive an initial dose of 1.6 µg/kg/day for a
few months. After dose modification, it is recommended to check
the TSH level every 6-8 weeks (11, 12). In adult hypothyroid
patients, hypothyroid patients with pre-existing heart diseases
or >65 years old, an initial dose of 25 µg/day of LT4 is given,
followed by an adjusted dose of 12.5 to 25 mcg every 4-6 weeks
(11, 12). In patients with severe hypothyroidism or myxedema
coma, the initial dose may be 200 to 400 µg administered via
nasogastric tube or intravenously, followed by a daily dose of
1.2 µg/kg/day. Older patients or patients with heart disease are
recommended to use lower doses (11, 12). It is recommended to
decrease the LT4 dose for elderly patients. Regarding suppressive
treatment for the control of thyroid nodule growth, the LT4 dose
is individually tailored to maintain TSH levels as low-normal or
at a partial suppressive level. In the high-risk patients following
thyroidectomy for well-differentiated thyroid cancer, the
estimated LT4 full suppressive dose is ≥2 µg/kg body weight
(11, 12, 20–23).

The level of thyroid-stimulating hormone (TSH) in serum is
used as an indicator of monitoring and adjusting the dose of LT4
therapy in hypothyroid patients, except in patients with secondary
or tertiaryhypothyroidism,where the level offree or totalT4 is used
as amarker for the success of the therapy (11, 12, 24). The standard
monitoring procedure requires determining TSH levels 6-8 weeks
after the initial treatment with LT4 (11, 12). After achieving the
correct dose of LT4, the level of TSH is monitored firstly at 4-6
months, and after that, every 12 months (11, 12).

LT4 toxicity is rare, but adverse effects due to inappropriate
dosage (over-or under-dose) can occur, especially in patients
with pre-existing comorbidities such as cardiovascular disease,
uncorrected adrenal insufficiency, and elderly patients (25).

Absorption of orally administered LT4 from the
gastrointestinal tract mainly occurs in the small intestine rather
than the stomach (26, 27). The absorbed LT4 varies from 60% to
80%, with the maximum concentration in circulation achieved 3
hours after administration in hypothyroid subjects and slightly
faster in euthyroid subjects, approximately 2 hours (28–30).
Several factors influence LT4 absorption, including deranged
Frontiers in Endocrinology | www.frontiersin.org 3
small intestine physiology (e.g. bowel resection reduced
absorption), fasting increased absorption, while different foods,
drugs, and supplements can also disturb LT4 absorption (30, 31).
All these factors indicate the need for permanent monitoring in
individual approaches in LT4 replacement (32). The half-life for
T4 is ~7.5 days in patients with primary hypothyroidism, with a
daily turnover rate of ~10% for T4 and 50–70% for T3 (33).
Contrary, in euthyroid subjects, the half-life for T4 is 6.2 days,
and a little faster turnover rate (34–36). In addition, the
estimated T3 half-life is 1.4 days in hypothyroid patients and
1.0 days for euthyroid individuals (34–36). The values reported
for T4 clearance are very close in hypothyroid subjects (approx.
0.04-0.06 l/h) and normal control individuals (0.05-0.06 l/h)
(33, 37).

The liver is the primary site of LT4 degradation (38, 39).
Although T4 is catabolized via several routes, the major pathway
of T4 catabolism is sequential deiodination in the presence of
deiodinase enzymes (38–40). The removal of iodine from carbon
5 of the outer ring of T4 converts it to T3, while removing iodine
from the inner ring of T4 leads to the formation of inactive
reverse T3 (rT3) (41, 42). T3 and rT3 originate from T4 at
an ~1:1 ratio, and about 80% of T3 in circulation stems from
peripheral T4 (43, 44). Subsequently, T3 can be converted to
both diiodothyronine (T2) and iodothyronine (T1), and rT3 to
both rT2 and rT1 (45, 46).
3 THYROID DISEASES AND CONDITIONS
ASSOCIATED WITH LT4 USE

Long-term use of levothyroxine (LT4) has been demonstrated to
be effective and safe. Initially, LT4 was used only in thyroxin (T4)
deficiency cases, but LT4 usage has evolved and includes
substitution and suppressive therapy (17). The aim of LT4
treatment differs according to the indication of use. In
hypothyroid subjects, the goal of LT4 substitution is to
establish a euthyroid rank of TSH while improving quality of
life. The goal of LT4 treatment in controlling nodule growth is a
low normal TSH level but avoiding LT4 overdose (47). After
surgical management of malignant disease, treatment goals are to
obtain suppressed levels of both TSH and thyroglobulin (48).
Lower doses of LT4 are necessary to achieve substitution goals in
elderly patients, while higher LT4 doses are required in patients
undergoing total thyroidectomy (49). Long-term use of LT4
substitution reduces the risk of bradycardia, which is often
associated with hypothyroidism (50). In patients with low-
normal or suppressed TSH levels, an increased risk of cardiac
arrhythmias, primarily atrial fibrillation (AF), is observed (10, 51,
52), as is an increased risk of osteoporosis (53, 54) and overall
mortality (55). However, Flynn et al. (52) showed that patients
with TSH levels between 0.04 to 0.4 mIU/ml did not experience
an increased risk of cardiovascular disease, arrhythmias, or
osteoporotic fractures (56).

The management with LT4 after MIVAT, either substitutive
or suppressive modality, depends on the pathology of the
partially or entirely extirpated thyroid gland. Each LT4
November 2021 | Volume 12 | Article 758043
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management modality must be individually tailored to the
patient. MIVAT treated benign diseases require standard LT4
substitution therapy, while malignant disease (i.e. differentiated
thyroid cancer) requires partial or complete TSH suppression
depending on assigned risk. In high-risk patients, a complete
suppressive LT4 regimen (TSH <0.1 mIU/ml) is recommended
opposite to a partial LT4 suppressive regimen in lower-risk
patients (TSH 0.1-0.4 mIU/ml) (48, 57).

In addition to hypothyroidism classification according to
clinical presentation (subclinical or latent and clinical or
overt), there is another classification based on the level of
lesion-induced thyroid dysfunction. Primary hypothyroidism is
the most frequently encountered in clinical practice (49).
Secondary (at pituitary level) hypothyroidism, tertiary (at
hypothalamus level) hypothyroidism, and thyroid hormone
resistance account for less than 1% of overall hypothyroidism.
They are mostly presented with symptoms and signs of mild
hypothyroidism and sometimes with local effects (i.e., symptoms
and signs of increased intracranial pressure). Besides the clinical
presentation of hypothyroidism, thyroid hormone resistance
syndromes can also present as mental health problems (49, 58, 59).
LT4-dose tapering is more complex in patients with secondary
and tertiary hypothyroidism as the fT4 levels, which is the basis
of how the quality of LT4 dosing is assessed, are less flexible
(49, 60). Whether iatrogenic or disease-induced, all forms of
hypothyroidism (subclinical or clinical) unequivocally accelerate
atherosclerosis processes, which can contribute to increased
cardiovascular morbidity and mortality (61–66).

The prevalence of overt hypothyroidism in the general
population is 0.3–3.7% in the USA (67) and 0.2–5.3% in
Europe (68) depending on the definition of hypothyroidism.
Hypothyroidism is more common in people over 65 years,
women, and Caucasians. Among these, the most common
cause of primary hypothyroidism in iodine-sufficient areas is
chronic autoimmune thyroiditis. Although thyroid anti-
peroxidase antibodies are of diagnostic significance, they also
present in about 11% of people with no thyroid disease (49, 69).
4 LT4 REPLACEMENT THERAPY IN
CARDIOVASCULAR PATIENTS

LT4 replacement therapy compensates for endogenous thyroxine
deficiency, whether the disease’s latent (subclinical) or
manifested (clinical) form or post-procedural hypothyroidism.
Excessive LT4 substitution in cardiovascular patients can have
serious side effects, such as AF and osteoporosis, especially in
postmenopausal women and elderly patients (49, 52). These
complications are frequently observed in Hashimoto’s
thyroiditis patients due to LT4 over-supplementation (54). In
cases of long-term TSH suppression, an increase in left
ventricular mass and consequent diastolic dysfunction may
occur, which further contributes to cardiovascular morbidity,
especially in those patients with already diagnosed
cardiovascular disease (70). A study by Petersen et al. (71),
suggested that the prevalence of ischemic heart disease in
Frontiers in Endocrinology | www.frontiersin.org 4
people over 65 years of age with suppressed TSH levels on LT4
substitution was increased relative to the general population.
Other studies suggest that atherosclerosis acceleration can occur
during subclinical hypothyroidism development (72, 73).

It is known that thyroid hormones, when present in excess,
affect the cardiovascular (CV) system by increasing heart rate,
myocardial contractility, left ventricular mass, and the
predisposition to supraventricular arrhythmias (74). Lipophilic
T3 binds to the thyroid hormone receptor (TR) upon entry into
the cardiomyocyte nucleus. Activation of TR results in
stimulating gene transcription of the heavy alpha chain of
myosin, calcium ATPase, Na/K-ATPase, beta 1 adrenergic
receptor, and atrial natriuretic peptide (75–77). Genomic and
non-genomic effects of thyroid hormones on cardiomyocytes
lead to increased myocardial contractility, which, among other
hemodynamic effects, results in increased heart rate, increased
circulating volume, left ventricular volume, ejection fraction, and
cardiac output (74).

Subclinical thyroidopathies can harm the cardiovascular
system and manifest as an increase in CV morbidity and
mortality by 20-80% (78, 79). Regardless of whether it is of
endogenous or exogenous origin, in subclinical hyperthyroidism
type 2 (TSH <0.1mIU/ml), the risk of AF presence is higher (HR
2.54 vs. 1.63) than in type 1 (TSH 0.1-0.4mIU/ml) (80, 81).
Subclinical hyperthyroidism is associated with an increased left
ventricular mass that increases ejection fraction (EF) and
diastolic dysfunction (80, 82, 83). Clinical hyperthyroidism is
associated with a 16% increased risk of major CV events
commonly manifested as worsening heart failure, including
high-output heart failure (84). It is noteworthy that an
increased supraventricular ectopic activity often accompanies
hyperthyroidism (85).
5 PATHOPHYSIOLOGY OF CARDIAC
RHYTHM DISORDERS

Abnormal Ca2+ handling within cardiomyocytes is central to
many types of arrhythmias. Arrhythmia-related contractions
begin with external Ca2+ entering the cell’s cytosol through the
L-type calcium channels to signal the sarcoplasmic reticulum to
release more Ca2+ via ryanodine receptor channels (RyRs) -
specifically the RyR2 isoform (86, 87). RyRs facilitate
downstream calcium-dependent processes throughout the cell,
e.g., actin-myosin contraction (88, 89). Inositol 1,4,5-
trisphosphate receptor (IP3R) also responds to cellular cues to
release Ca2+ from the SR (90). Ca2+ release from the SR initiates
contraction in cardiac myocytes, but removing Ca2+ from the
cytosol following systole is equally vital. In diastole, sarco/
endoplasmic reticulum calcium ATPase translocates cytosolic
Ca2+ back into the SR. Diastole is a sensitive time window for Ca2+

clearance, and improper Ca2+ clearance can have significant
arrhythmogenic consequences (87). Mutations or covalent
modifications of RyR channels can cause Ca2+ leakage across the
SR membrane during diastole, promoting arrhythmias (91, 92).
Our recent work shows that Zn2+ regulates the open probability of
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RyR2 in a manner that regulates beat-to-beat contractions in
cardiomyocytes (93). This finding suggests that aberrant
intracel lular zinc homeostas is could contr ibute to
arrhythmogenic events. Premature Ca2+ flux from the SR results
in untimely depolar izat ion events known as ear ly
afterdepolarizations (EADs) and delayed afterdepolarizations
(DADs) (87). Ventricular arrhythmias can be caused by
abnormal Ca2+ handling, electrolyte imbalance, and/or
myocardial scarring (94). Physical barriers can also promote
arrhythmia (e.g., fibrotic tissue) developing from ischemia and
subsequent scarring (95, 96). Although myocardial scarring is the
common feature in fatal ventricular arrhythmias, metabolic
abnormalities may also play a significant role.
5.1 Cardiac Arrhythmias Associated
With Thyroid Hormones
Cardiac arrhythmias are defined as irregular heartbeats and
range in severity. They are generally defined by the affected
region of the heart and the type of defect: supraventricular
arrhythmias (brady- and tachyarrhythmias including atrial
premature complexes) and ventricular arrhythmias. AF is one
of the most common types of chronic arrhythmia, recognized in
an electrocardiogram as an irregular P–R interval and a missing
P wave. AF occurs more frequently in obese people and is the
most common arrhythmia associated with abnormal thyroid
hormone levels (97). It is a highly prevalent arrhythmia
promoting heart failure, embolic stroke, and death (98).
Frontiers in Endocrinology | www.frontiersin.org 5
Even short, subclinical episodes of AF are associated with an
increased risk of stroke (99). Paroxysmal and sustained or
permanent forms of AF confer a significant clinical burden
and worsens the patient’s quality of life. AF is the most
common cardiac complication of hyperthyroidism and
LT4-induced thyrotoxicosis (97, 100) (Figure 2). Sinus
tachycardia and atrial flutter are also commonly associated
with hyperthyroidism (101). AF in thyrotoxicosis is associated
with significant mortality and morbidity resulting from embolic
events (97). The risk factors for AF in patients with
hyperthyroidism are similar to those in the general population.
They include age, male sex, and a history of ischemic, congestive,
or valvular heart diseases (102).

AF occurs in up to 15% of patients with hyperthyroidism
(103), compared with 4% in the general population (104). AF is
more common in men and patients with T3 toxicosis (97). Also,
subclinical hyperthyroidism is associated with an almost 3-fold
increase in the risk of developing AF (103). Once initiated, AF
alters the electrical and structural properties of the atria in a
manner that affects its maintenance, increasing the risk of
recurrence and can alter the response to antiarrhythmic drugs
(97, 105). In addition, AF increases the risk of cerebrovascular
stroke, peripheral embolization, and overall mortality (106–108).
About 13-15% of individuals with newly developed AF have
biochemical hyperthyroidism (103). The risk factors of
developing AF in hyperthyroid individuals are age, pre-existing
ischemic or valvular heart disease, or heart failure (85). Analysis
of Framingham study results, related to the frequency of AF
FIGURE 2 | Thyroid dysfunction and the risk of cardiac arrhythmias.
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during a ten-year follow-up of patients >60 years, showed that
AF occurred in 28% of those with subclinical hyperthyroidism, as
opposed to 11% euthyroid patients. Furthermore, decreased TSH
values, even with normal serum thyroid hormone values, were
associated with a 3-fold increase in the frequency of AF (103).
Heering et al. (Rotterdam study) showed a higher incidence of
AF and sudden cardiac death in people >55 years with low
normal TSH values and high normal FT4 levels (109). Studies
using Mendeleev’s randomization to demonstrate an association
between thyroid dysfunction and cardiovascular disease also
reported an association between hyperthyroidism and AF
(110, 111).
5.1.1 LT4 Therapy and Cardiac Arrhythmias
Effects of T3 such as acceleration of cardiac depolarization and
repolarization, the shortening of the action potential duration,
and the refractory period of the atrial myocardium and AV node
are not observed in mono-LT4 therapy. Namely, the production
of T3 in patients on LT4 substitution, primarily after
thyroidectomy, is related to the peripheral deiodination of T4.
Antithyroid therapy and beta-blockers affect heart rate control,
even conversion to normal sinus rhythm in about 60% of
patients (85, 112, 113). The most important factor influencing
the conversion of AF to sinus rhythm in hyperthyroidism is the
duration of AF (114). In cases where AF lasts for more than a
year in the elderly and is resistant to antithyroid and beta-blocker
therapy, AF is often associated with ischemic heart disease (115).
In the cases where LT4 use (exogenous hyperthyroidism) induces
TSH suppression, incidences of CV and arrhythmic events are
increased compared to the general population (52). AF,
provoked either by endogenous or exogenous hyperthyroidism,
results in a significant increase in overall morbidity and
mortality, mainly caused by the consequences of systemic
embolism (97). Compared to euthyroid subjects, patients with
suppressed TSH have increased sympathetic autonomic activity
and decreased parasympathetic tone, resulting in increased heart
rate variability and prolonged QT interval (116). The mentioned
changes in the CV system in patients with subclinical or clinical
hyperthyroidism may result in an increased frequency of cardiac
arrhythmias, primarily AF (106), and a higher frequency of
systolic and diastolic left ventricular dysfunction (74, 117).

In addition to AF, in patients on LT4 suppressive
therapy, sinus tachycardia and shortening of the PR interval
are often detected electrocardiographically as manifestations
of accelerated atrioventricular conduction (118–120).
The prolonged P wave is most often seen as a manifestation of
impaired interatrial conduction, while a delay in intraventricular
conduction often results in a right bundle branch block (121).
Ventricular arrhythmias in patients on LT4 suppressive
therapy are rare, and their presence should always arouse
suspicion of pre-existing heart disease. It should be noted that
the incidence of ventricular fibrillation (VF) attributed solely to
the thyroid status imbalance is less frequent in humans
compared to experimental animals, which are prone to both
AF and VF in response to an excess of thyroid hormones (TH)
(101, 122, 123).
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Epidemiological studies have shown higher cardiovascular
and all-cause mortality in patients with endogenous and
exogenous hyperthyroidism than in the general population (55,
124, 125). Also, a study by Klein-Hesselink et al. reports 3.3 times
higher mortality due to CV in patients with differentiated thyroid
cancer (DTC). In comparison, mortality from all causes was 4.4
times higher than in the general population, regardless of age,
gender, and cardiovascular risk factors. Furthermore, each 10-
fold decrease in TSH levels increased the risk of cardiovascular
death by 3-fold (126). A study by Suha et al. showed similar
results, demonstrating a higher incidence of coronary heart
disease (CVD) and cerebrovascular insult (CVI) in patients
diagnosed with DTC, with the risk of CVD and CVI being
directly proportional to the dose of LT4 administered (127).

Although the use of suppressive doses of LT4 can lead to a
significant reduction in TN volume and diffuse atoxic goiter, the
potential side effects of this therapy on the CV system and bone
metabolism, especially in people over 60 years and
postmenopausal women, are limiting factors for the routine
use of this therapeutic approach (48). However, using
supraphysiological LT4 doses in younger patients to suppress
TSH levels reduces TN volume in one out of six patients without
significant comorbidity (128).

5.1.2 LT4 Combined With T3 Therapy
and Cardiac Arrhythmias
The combined use of LT4 and LT3 has multiplied over the last
decade. The impression is that such increases in use are rarely
observed in the group of patients that strictly require
combination therapy, but mainly result from patients wishing
to have experience with its use or pharmaceutical companies’
pressure that favors its use in patients unsatisfied with LT4
treatment alone. The rationale for using T4 and T3
combination therapy is that defects in deiodinase enzymes that
convert thyroxine to triiodothyronine could lead to persistent
symptoms in patients despite being biochemically well-regulated
on LT4 monotherapy (129). A lack of more extensive studies
pointed out LT3+LT4 positive effects on patients’ wellbeing and
the increase in the previously insufficient functional capacity of
peripheral tissues. The real benefit of the LT3+LT4 combination
could be expected in a relatively small number of hypothyroid
patients. ETA suggests the LT3+LT4 combination as an
experimental 3-month trial observed by an experienced
endocrinologist in LT4 well-compliant patients persistently
presented with hypothyroidism-associated complaints, despite
normal TSH levels. If there is no improvement in LT3+LT4
treated patients after 3 months of use, it should be discontinued
(130). LT3+LT4 combination is not recommended in patients
with cardiac arrhythmias, as increased free T3 could act pro-
arrythmically in prone patients (130, 131).

Additionally, Regalbuto et al. did not show any advantage of
combined LT3+LT4 over LT4 monotherapy suppression in
totally thyroidectomized patients for thyroid cancer regarding
improved wellbeing and peripheral tissue response. Even
though thyroid function tests suggested subclinical
hyperthyroidism, the clinical syndrome of LT3 and LT4 excess
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was not registered (132). Similarly, Tariq et al. did not find any
additional risk for atrial fibrillation and cardiovascular disease in
patients on combined LT3+LT4 therapy (133).
6 CARDIAC ELECTRICAL REMODELING
ASSOCIATED WITH HYPERTHYROIDISM
AND LT4 TREATMENT

Electrophysiological studies reveal that TH modifies f-channel
conductance in sinoatrial cells, which changes the diastolic
depolarization rate (134–136). This finding suggests a direct
effect on myocardial membrane-related electrogenesis.
Moreover, it provides the potential mechanism behind bradycardia
and sinus tachycardia’s association with hyperthyroidism.

Cardiac arrhythmia classification assumes disturbance of
rhythm results from abnormal 1) impulse initiation and/or
2) intercellular impulse propagation (137). The abnormal
impulse initiation is associated with abnormal automaticity
and/or a triggered activity (induced by EAD or DAD). On the
other hand, abnormal intercellular impulse propagation refers to
a block of conduction and re-entry. Re-entry occurs when the
propagating impulse persists due to continuous activity, after
normal activation of the heart, instead of dying out, that re-
excites the heart after the refractory period has ended (138).

TH effects on the development of AF and VF are more
complex than chronotropic effects. There are several potential
mechanisms by which TH can trigger arrhythmicity in the heart.
Such effects are likely exerted through the same mechanisms as
hyperthyroidism. One such mechanism is its direct involvement
in controlling the transcription of genes encoding ion channels
and other proteins involved in signal transduction. For example,
TH regulates mRNA transcription of voltage-activated K+

channel genes, including those encoding Kv4.3, Kv.4.2 (which
contribute to the transient outward potassium current) and
Kv1.4, Kv1.5, and Kv1.2 (which contribute to the ultra-rapid
delayed rectifier potassium current) (139–143), and about nine
ion channel a- and b-subunits (144). Hyperthyroidism was
found to up-regulate the expression of Kv1.5 mRNA,
particularly in the atrium of the heart (145). Sunagawa et al.
demonstrated decreased L-type Ca2+ channel expression in the
atria and Kv1.2 and Kv1.4 in both atrial and ventricular tissue in
LT4-treated rats (136). Interestingly, despite this decrease in
L-type Ca2+ channel expression, the L-type Ca2+ current
increased (146–148), most likely due to the TH-induced
transcriptional regulation of myocardial Ca2+ cycling proteins.

TH has the potential to influence Ca2+ levels in
cardiomyocytes through multiple mechanisms, including
regulating the expression of sarcoplasmic reticulum Ca2+-
ATPase (SERCA2) and RyR2 [Ca2+ cycling proteins; (149)],
and down-regulating Na+/Ca2+ exchanger and phospholamban
(150–153). Increased Ca2+ influx and efflux rates also
characterize hyperthyroidism in ventricular cells (154) most
likely due to altered activation of sarcolemmal Ca2+ channels
and SERCA2 activity (148, 155). There are also rapid non-
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genomic TH responses that modulate the activity of Ca2+

cycling proteins and have consequent effects on intracellular
Ca2+ currents (147, 148, 150, 156). It is expected that LT4 therapy
can induce aberrant Ca2+ homeostasis through altered Ca2+

handling similar to hyperthyroidism/TH activity.
Another mechanism by which clinical use of LT4 may trigger

arrhythmia is the modulation of cardiac connexins. Connexin-43
(Cx43) is expressed in the ventricles and atria of the heart and is
responsible for gap junction formation and thus the transmission
of electrical signals between cells. TH receptors bind to the Cx43
promoter, indicating that TH can modify the expression of Cx43
mRNA synthesis (157). For example, it has been shown that
Cx43 protein levels increase in TH-treated neonatal cultured
cardiomyocytes (158). Also, in the atria and ventricles of
hyperthyroid rats, phosphorylation of Cx43 isoforms is
reduced, compared to untreated controls (159, 160). This is
interesting as VF (159) and AF (101) susceptibility increases in
T3-treated rats when myocardial Cx43 phosphorylation
decreases. Also, TH-treated rat liver epithelial cells stimulate gap
junctional communication and Cx43 mRNA expression (161).
7 CONCLUSIONS

Patients who have undergone thyroidectomy exhibit
compromised production of thyroid hormones, which warrant
hormone replacement therapy to avoid developing
hypothyroidism. To date, the standard treatment in such
instances is a long-term LT4 treatment regimen. LT4 treatment
after thyroidectomy to treat cancer has the added advantage of
suppressing the local and distant malignancy from spreading.
However, each patient’s LT4 dose must be optimized to avoid
potential side effects such as weight loss, sweating, anxiety,
insomnia, osteoporosis (increased bone fracture risk), and an
increased heart rate. Thus, LT4 treatment is not recommended in
recent heart attack patients.

Nonetheless, patients with no known CV issues can
experience CV complications following LT4 treatment, which
is not surprising given the role of TH in regulating cardiac
functioning. It is associated with an increased risk of developing
heart arrhythmias, primarily AF, as well as osteoporosis.
Although, studies do show that LT4 treated patients with TSH
levels from 0.04 to 0.4 mIU/ml had not experienced an increased
risk of cardiovascular disease, arrhythmias, or osteoporotic
fracture. Also, LT4 doses in younger patients to suppress TSH
levels reduce TN volume in one out of six patients without
significant comorbidities. Nevertheless, suppressive LT4 doses
can lead to potential side effects of this therapy on the CV system
and bone metabolism, especially in people over 60 years and
postmenopausal women. Thus, there are limiting factors for the
routine use of this therapeutic approach, but improving the
approach to individualized medicine in the at-risk population
(implementing less excessive LT4 treatment regimens and
monitoring more LT4 arrhythmia triggers) may reduce cardiac
arrhythmia risk and mortality.
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