Show simple item record

dc.creatorKalauzi, Aleksandar
dc.creatorVučković, Aleksandra
dc.creatorBojić, Tijana
dc.date.accessioned2018-07-12T08:21:28Z
dc.date.available2018-07-12T08:21:28Z
dc.date.issued2018
dc.identifier.issn0140-0118 (print)
dc.identifier.issn1741-0444 (electronic)
dc.identifier.urihttp://link.springer.com/10.1007/s11517-017-1746-3
dc.identifier.urihttp://vinar.vin.bg.ac.rs/handle/123456789/7746
dc.description.abstractA number of measures, stemming from nonlinear dynamics, exist to estimate complexity of biomedical objects. In most cases they are appropriate, but sometimes unconventional measures, more suited for specific objects, are needed to perform the task. In our present work, we propose three new complexity measures to quantify complexity of topographic closed loops of alpha carrier frequency phase potentials (CFPP) of healthy humans in wake and drowsy states. EEG of ten adult individuals was recorded in both states, using a 14-channel montage. For each subject and each state, a topographic loop (circular directed graph) was constructed according to CFPP values. Circular complexity measure was obtained by summing angles which directed graph edges (arrows) form with the topographic center. Longitudinal complexity was defined as the sum of all arrow lengths, while intersecting complexity was introduced by counting the number of intersections of graph edges. Wilcoxon's signed-ranks test was used on the sets of these three measures, as well as on fractal dimension values of some loop properties, to test differences between loops obtained in wake vs. drowsy. While fractal dimension values were not significantly different, longitudinal and intersecting complexities, as well as anticlockwise circularity, were significantly increased in drowsy.
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/173022/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/41028/RS//
dc.rightsrestrictedAccess
dc.sourceMedical & Biological Engineering & Computing
dc.subjectalpha activityen
dc.subjectphase potentialsen
dc.subjectwake and drowsyen
dc.subjectcircular graphsen
dc.subjectcomplexityen
dc.titleNew complexity measures reveal that topographic loops of human alpha phase potentials are more complex in drowsy than in wakeen
dc.typearticleen
dc.rights.licenseARR
dcterms.abstractКалаузи, Aлександар; Вучковић, Aлександра; Бојић, Тијана;
dc.rights.holder© 2017, International Federation for Medical and Biological Engineering
dc.citation.volume56
dc.citation.issue6
dc.citation.spage967
dc.citation.epage978
dc.identifier.wos000433045400004
dc.identifier.doi10.1007/s11517-017-1746-3
dc.identifier.pmid29110182
dc.type.versionpublishedVersion
dc.identifier.scopus2-s2.0-85033447202


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record