Show simple item record

dc.creatorValidžić, Ivana Lj.
dc.creatorAbazović, Nadica
dc.creatorMitrić, Miodrag
dc.identifier.issn1598-9623 (print)
dc.description.abstractWe report the organic synthesis and growth of antimony sulfide (Sb2S3) amorphous nanospheres to nanowires via a simple, colloidal synthetic method. Amorphous Sb2S3 nanospheres self-assembly in wires formation was dispersed in isopropyl alcohol. With increased heating time, Sb2S3 nanospheres grew into Sb2S3 nanowires, probably involving both mechanisms of Ostwald-ripening and spherical nanoparticle self-organization through oriented-attachment of individual nanoparticles. Also, the as-synthesized Sb2S3 nanowires with different heating times (0, 5 and 10 min.) from the moment of appearance of the Sb2S3 precipitate were analyzed. The observed nanowires become longer with increased heating time and are around 100 nm in diameter and 10-20 mu m in length. UV-Vis absorption spectroscopy reveals that the optical band-gap energy of the Sb2S3 nanowires is independent of the heating times and is found to be similar to 1.5-1.6 eV. The optical band-gap energy found for amorphous Sb2S3 nanospheres was also similar to 1.5 eV. The structure of Sb2S3 samples was refined down to R-factors of 10.82, 11.76 and 12.08%. The refinement showed that Sb2S3 powder belongs to the orthorhombic type with space group Pbnm (no. 62) and that Sb2S3 nanowires grow along the [010] direction.en
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45020/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172056/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45005/RS//
dc.sourceMetals and Materials Internationalen
dc.subjectchemical synthesisen
dc.subjectoptical propertiesen
dc.subjectX-ray diffractionen
dc.subjectscanning electron microscopy (SEM)en
dc.titleGrowth of Sb2S3 nanowires synthesized by colloidal process and self-assembly of amorphous spherical Sb2S3 nanoparticles in wires formationen
dcterms.abstractМитрић Миодраг; Aбазовић, Надица; Младеновић Ивана;

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record