Show simple item record

dc.creatorCvijović, Đurđe
dc.date.accessioned2018-03-01T20:00:46Z
dc.date.available2018-03-01T20:00:46Z
dc.date.issued2007
dc.identifier.issn1364-5021 (print)
dc.identifier.urihttp://vinar.vin.bg.ac.rs/handle/123456789/3155
dc.description.abstractMaximon has recently given an excellent summary of the properties of the Euler dilogarithm function and the frequently used generalizations of the dilogarithm, the most important among them being the polylogarithm function Li-s(z). The polylogarithm function appears in several fields of mathematics and in many physical problems. We, by making use of elementary arguments, deduce several new integral representations of the polylogarithm Li-s(z) for any complex z for which vertical bar z vertical bar LT 1. Two are valid for all complex s, whenever Re s GT 1. The other two involve the Bernoulli polynomials and are valid in the important special case where the parameter s is a positive integer. Our earlier established results on the integral representations for the Riemann zeta function zeta(2n+1), n is an element of N, follow directly as corollaries of these representations.en
dc.rightsopenAccessen
dc.sourceProceedings of the Royal Society. A: Mathematical, Physical and Engineering Sciencesen
dc.subjectpolylogarithmsen
dc.subjectintegral representationen
dc.subjectRiemanns zeta functionen
dc.subjectBernoulli polynomialsen
dc.titleNew integral representations of the polylogarithm functionen
dc.typearticleen
dcterms.abstractЦвијовић Ђурђе;
dc.citation.volume463
dc.citation.issue2080
dc.citation.spage897
dc.citation.epage905
dc.identifier.wos000244255800001
dc.identifier.doi10.1098/rspa.2006.1794
dc.citation.rankM21
dc.identifier.scopus2-s2.0-36349034660


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record