Show simple item record

dc.creatorTomic, S
dc.creatorMilanović, Vitomir B.
dc.creatorIkonic, Z
dc.identifier.issn1012-0394 (print)
dc.description.abstractA systematic procedure is proposed for the optimized design of semiconductor quantum well structures that provide maximal values of the resonant optical rectification coefficient. It relies on employing supersymmetric quantum mechanics to vary a starting potential in the isospectral manner, via the Variation of a single scalar parameter, in search of the largest available value of the appropriate product of matrix elements (difference of permanent moment times, the transition dipole moment squared, in this instance). An example the design of the structure matched for the optical rectification of 10.6 mu m (CO2 laser) radiation is presented that starts from the truncated parabolic potential and delivers the rectification coefficient in excess of the best value reported in literature. The possibility of realization of optimized structures is also discussed.en
dc.sourceSolid State Phenomenaen
dc.subjectnonlinear opticsen
dc.subjectsemiconductor quantum wellsen
dc.titleOptimization of nonlinear optical rectification in parabolic quantum wells using supersymmetric quantum mechanicsen
dcterms.abstractТомиц, С; Милановиц, В; Икониц, З;

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record