Show simple item record

dc.creatorStosic, BD
dc.creatorStosic, T
dc.creatorFittipaldi, IP
dc.creatorVeerman, J.J.P.
dc.date.accessioned2018-03-01T18:20:33Z
dc.date.available2018-03-01T18:20:33Z
dc.date.issued1997
dc.identifier.issn0305-4470 (print)
dc.identifier.urihttp://vinar.vin.bg.ac.rs/handle/123456789/2071
dc.description.abstractWe find the analytical expression for the residual entropy of the square Ising model with nearest-neighbour antiferromagnetic coupling J, in the maximum critical field H-c = 4J, in terms of the Fibonacci matrix, which itself represents a self-similar, fractal object. The result coincides with the existing numerical data. By considering regular self-similar fractal objects rather than seemingly random transfer matrices, this approach opens the possibility of finding the corresponding solutions in more complicated cases, such as the antiferromagnets with longer than nearest-neighbour interactions and the three-dimensional antiferromagnets, as well as the possibility of unification of results pertinent to different lattices in two and three dimensions.en
dc.rightsrestrictedAccessen
dc.sourceJournal of Physics. A: Mathematical and Generalen
dc.titleResidual entropy of the square Ising antiferromagnet in the maximum critical field: The Fibonacci matrixen
dc.typecontributionToPeriodicalen
dcterms.abstractСтосиц, БД; Стосиц, Т; Фиттипалди, ИП; Веерман, ЈЈП;
dc.citation.volume30
dc.citation.issue10
dc.citation.spageL331
dc.citation.epageL337
dc.identifier.wosA1997XC27300006
dc.identifier.doi10.1088/0305-4470/30/10/006
dc.identifier.scopus2-s2.0-0031582362


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record