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The topology of higher‑order 
complexes associated with brain 
hubs in human connectomes
Miroslav Andjelković1,3, Bosiljka Tadić1,2* & Roderick Melnik4,5

Higher‑order connectivity in complex systems described by simplexes of different orders provides 
a geometry for simplex‑based dynamical variables and interactions. Simplicial complexes that 
constitute a functional geometry of the human connectome can be crucial for the brain complex 
dynamics. In this context, the best‑connected brain areas, designated as hub nodes, play a central 
role in supporting integrated brain function. Here, we study the structure of simplicial complexes 
attached to eight global hubs in the female and male connectomes and identify the core networks 
among the affected brain regions. These eight hubs (Putamen, Caudate, Hippocampus and 
Thalamus‑Proper in the left and right cerebral hemisphere) are the highest‑ranking according to their 
topological dimension, defined as the number of simplexes of all orders in which the node participates. 
Furthermore, we analyse the weight‑dependent heterogeneity of simplexes. We demonstrate 
changes in the structure of identified core networks and topological entropy when the threshold 
weight is gradually increased. These results highlight the role of higher‑order interactions in human 
brain networks and provide additional evidence for (dis)similarity between the female and male 
connectomes.

Recent advances in the science of complex systems aim for a better understanding of the higher-order connectiv-
ity as a possible basis for their emerging properties and complex functions. Beyond the framework of pairwise 
interactions, these connections described by simplexes of different sizes (triangles, tetrahedra and larger cliques) 
provide the geometry for higher-order interactions and simplex-related dynamical variables. One line of research 
consists of modelling and analysis of the structure of simplicial complexes in many complex systems, ranging 
from the human  connectome1 to quantum  physics2 and materials  science3,4. Meanwhile, considerable efforts 
aim at understanding the impact of geometry on the dynamics. In this context, the research has been done 
on modelling of the simplex-based synchronisation  processes5,6, on studying the related spectral properties of 
the underlying  networks7,8, as well as on the interpretation of the dynamics of the  brain9–11 and other complex 
dynamical  systems12.

Recently, mapping the brain imaging  data13,14 to networks involved different types of signals across spatial 
and temporal scales; consequently, a variety of structural and functional networks have been  obtained15–18. This 
network mapping enabled getting a new insight into the functional organisation of the  brain19,20, in particular, 
based on the standard and deep graph theoretic  methods21–23 and the algebraic topology of  graphs1,24. The type 
of network that we consider in this work is the whole-brain network human connectome; it is mapped from the 
diffusion tensor imaging data available from the human connectome  project25, see Methods. The network nodes 
are identified as the grey-matter anatomical brain regions, while the edges consist of the white-matter fibres 
between them. Beyond the pairwise connections, current research focuses on the higher organised patterns 
that may have emerged through the evolutionary optimisation of the relationship between brain structure and 
 function26. In this context, researchers described the “rich-club” organisation of important brain  regions27 and 
mesoscopic community structure corresponding to typical anatomical brain  modules28. Furthermore, above 
the level of the graph, the hierarchical architecture of these modules in the human connectome exhibits a rich 
structure of simplicial complexes and short cycles between them, as it was shown  in1. It has been  recognised28,29 
that every module has an autonomous function, which contributes to performing complex tasks of the brain. 
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Meanwhile, the integration of this distributed activity and transferring of information between different modules 
is performed by very central nodes (hubs) as many studies suggest, see a recent  review11 and references therein. 
Formally, hubs are identified as a group of four or five nodes in each brain hemisphere that appear as top-ranking 
according to the number of connections or another graph-centrality measure. Almost all formal criteria give the 
same set of nodes, which are anatomically located deep inside the brain, through which many neuronal pathways 
go. Recently, there has been an increased interest in the research of the hubs of the human connectome. The aim 
is to decipher their topological configuration and how they fulfil their complex dynamic functions. For example, 
it has been recognised that the brain hubs are mutually connected such that they make a so-called “rich club” 
 structure27. Moreover, their topological configuration develops over time from the prenatal to childhood and 
adult  brain30,31. The hubs also can play a crucial role in the appearance of diseases when their typical configura-
tion becomes  destroyed32. Within another branch of the research, based on the brain imaging data and network 
mapping, there is growing evidence of the sex-related differences in human  connectomes33–39. Considering the 
consensus female and male connectomes, better connectivity in the female connectome has been documented 
both by the deep-graph theory  measures23 and by the analysis of simplicial  complexes1.

In this work, we examine the organisation of simplicial complexes in the core networks consisting of hubs 
and all simplexes attached to them in the human connectomes. We assume that the higher-order connectiv-
ity between the brain hubs and other regions involved in these simplicial complexes through weighted edges 
may provide a clue of how the hubs perform their function. Another open question in this context concerns 
the potential differences between the female and male connectomes occurring at the level of core networks as 
compared to the whole brain. Based on our  work1, we use the consensus connectomes that we have generated at 
the Budapest connectome  server40,41. These are connectomes that are common for one hundred female subjects 
(F-connectome) and similarly for one hundred male subjects (M-connectome), see Methods. Accordingly, we 
determine the hubs as eight top-ranking nodes in the whole connectome, performing the ranking according 
to the number of simplexes of all orders in which the node participates. These are the Putamen, Caudate, Hip-
pocampus and Thalamus-Proper in the left and similarly in the right brain hemisphere; they also appear as hubs 
according to several other graph-theory measures. We then construct core networks around eight leading hubs in 
both female and male connectomes. We determine the simplicial complexes and the related topological entropy 
in these core structures. To highlight the weight-related heterogeneity of connections, the structure of these core 
networks is gradually altered by increasing the threshold weight above which the connections are considered 
as significant. We show that the connectivity up to the 6th order remains in both connectomes even at a high 
threshold. Meanwhile, the identity of edges and their weights appear to be different in the F- and M-connectomes.

Methods
Data description. We use the data for two consensus connectomes that we have generated  in1 at the Budapest 
connectome server 3.040,41 based on the diffusion MRI data from Human Connectome Project (HCP) for 500 
 individuals25. The server uses brain mapping tools for for parcellation, tractography, and graph  construction13,42,43 
to map the experimental data of each individual. Then the consensus connectome is determined as a set of edges 
that are common to a selected group of individuals. As described  in41, we can select the size of the group and 
the biological sex of individuals as well as several other parameters, e.g., the number of fibres launched in the 
tractography phase, resulting in a different outcome. Specifically, with the appropriate settings at the server, we 
determine the weighted whole-brain networks that are common for 100 female subjects, F-connectome, and 
similarly, M-connectome, which is common for 100 male subjects. Each connectome consists of N = 1015 nodes 
annotated as the anatomical brain regions, and weighted edges, whose weight is given by the number of fibres 
between the considered pair of brain regions normalised by the average fibre length. Here, we consider the larg-
est number 106 fibres tracked and set the minimum weight to four. The corresponding core networks Fc-network 
and Mc-network are defined as subgraphs of the F- and M-connectomes, respectively, containing the leading 
hubs and their first neighbour nodes as well as all edges between these nodes. Meanwhile, the hubs are deter-
mined according to the topological dimension criteria, as described below and in Results.

Topology analysis and definition of quantities. We apply the Bron–Kerbosch  algorithm44 to analyse 
the structure of simplicial complexes, i.e., clique complexes, in the core Fc- and Mc- connectomes. In this context, 
a simplex of order q is a full graph (clique) of q+ 1 vertices σq =

〈

i0, i1, i2, ..., iq
〉

 . Then a simplex σr of the order 
r < q which consists of r vertices of the simplex σq is a face of the simplex σq . Thus, the simplex σq contains faces 
of all orders from r = 0 (nodes), r = 1 (edges), r = 2 (triangles), r = 3 (tetrahedrons), and so on, up to the order 
r = q− 1 . A set of simplexes connected via shared faces of different orders makes a simplicial complex. The order 
of a simplicial complex is given by the order of the largest clique in this complex, and qmax is the largest order of 
all simplicial complexes. Having the adjacency matrix of the graph, with the algorithm, we build the incidence 
matrix � , which contain IDs of all simplexes and IDs of nodes that make each simplex. With this information at 
hand, we compute three structure  vectors45,46 to characterise the architecture of simplicial complexes:

• The first structure vector (FSV): Q = {Q0,Q1, . . .Qqmax−1,Qqmax } , where Qq is the number of q-connected 
components;

• The second structure vector (SSV): Ns = {n0, n1, . . . nqmax−1, nqmax } , where nq is the number of simplexes from 
the level q upwards;

• The third structure vector (TSV): the component Q̂q ≡ 1− Qq/nq quantifies the degree of connectedness 
among simplexes at the topology level q.
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Furthermore, we determine the topological dimension of nodes and topological entropy introduced  in47. The 
topological dimension dimQi of a node i is defined as the number of simplexes of all orders in which the cor-
responding vertex participates,

where Qi
q is determined directly from the � matrix by tracking the orders of all simplexes in which the node i 

has a nonzero entry. Then, with this information, the entropy of a topological level q defined as

is computed. Here, piq =
Qi
q

∑

i Q
i
q
 is the node’s occupation probability of the q-level, and the sum runs over all nodes. 

The normalisation factor Mq =
∑

i

(

1− δQi
q ,0

)

 is the number of vertices having a nonzero entry at the level q 
in the entire graph. Thus the topological entropy (2) measures the degree of cooperation among vertices resulting 
in a minimum at a given topology level. Meanwhile, towards the limits q → 0 and q → qmax , the occurrence of 
independent cliques results in a higher entropy at that level.

In addition, we compute the vector f =
{

f0, f1, . . . fqmax

}

 , which is  defined47 such that fq represents the number 
of simplexes and faces at the level q. Given that a free simplex of the size n > q has the corresponding combina-
torial number of faces of the order q, the component fq thus contains information about the actual number of 
shared faces between simplexes at the level q. In this way, with these algebraic-topology measures, we can identify 
all simplexes with the nodes (brain regions) that form them, as well as how these simplexes interconnect with 
each other through sharing specific groups of nodes.

Network structure and hyperbolicity. The underlying topological graph represents the 1-skeleton of 
the simplicial complex. Using the graph-theory  methods48, we determine the degree–degree correlations that are 
relevant to the observed “rich club behaviour” of the hubs in the global  connectome1,27,30,31. Precisely, for each 
node in the considered network, the average number of edges of its nearest neighbour nodes is plotted against 
the node’s degree. The following scaling form is expected

Here, the positive values of the exponent µ > 0 indicate the assortative correlations, while µ < 0 corresponds to 
a disassortative mixing, and µ = 0 suggests the absence of nodes correlations. We analyse the Fc- and Mc-graphs 
by considering the edges that remain after applying different weight thresholds. The weight distribution P(w) is 
determined for the entire core-networks, see Results.

Furthermore, the occurrence of hyperbolicity or negative curvature in the brain graph is a meas-
ure of the proximity of nodes (in the graph’s metric space) that facilitates the transmission of sig-
nals among different brain regions. We use the 4-point Gromov criterion for the hyperbolic  graphs49 
to determine the hyperbolicity parameter δmax of these graphs. Precisely, for each 4-tuple of nodes 
(A, B, C, D) in a δ-hyperbolic graph G, the ordered relation between the sums of shortest-path distances 
S ≡ d(A,B)+ d(C,D) ≤ M ≡ d(A,C)+ d(B,D) ≤ L ≡ d(A,D)+ d(B,C) implies that

It follows from the triangle inequality that the upper bound of (L −M)/2 is given by the minimal distance 
dmin ≡ min{d(A,B), d(C,D)} in the smallest sum S . Thus, by sampling a large number ( 109 ) 4-tuples of nodes 
in each graph, and plotting δ(A,B,C,D) against the corresponding minimal distance dmin , we obtain δ(G) as the 
upper bound of δmax = maxG{δ(A,B,C,D)}.

Results
Whole‑brain connectomes: identification of hubs from topological dimension. We consider 
two whole-brain networks, precisely, the F-connectome, which is common for 100 female subjects, and M-con-
nectome, consisting of the edges that are common to 100 male subjects; see Methods  and1 for more details. For 
illustration, the F-connectome is shown in the left panel of Fig. 1. Each connectome consists of 1015 nodes as 
anatomical brain regions (Fig. SI-1). These nodes are interconnected by a particular pattern of edges and organ-
ised in mesoscopic communities. For this work, we determine the global hubs in the F- and M-connectomes. 
These are eight top-ranking nodes according to the number of simplexes attached to a node. Based on our work 
 in1, we use the corresponding �-matrix for the F- and M-connectomes and identify simplexes of all orders in 
which a particular node i = 1, 2, . . . 1015 participates. The node’s topological dimension dimQi , defined by (1) is 
then computed. For both connectomes, the node’s ranking distribution by the decreasing topological dimension 
is shown in the middle right panel of Fig. 1. As the figure demonstrates, the eight top-ranking nodes (marked 
along the curve for the F-connectome) make a separate group compared to the rest of the curve. These nodes 
also appear among the first eight ranked topological hubs in the M-connectome, see Table 1.

For comparisons with other approaches, we also show that these nodes (with altered order) also appear as 
eight hubs ranked according to the node’s strength Si , defined as the sum of weights of all edges of the node i. 

(1)dimQi ≡

qmax
∑

q=0

Qi
q ,

(2)SQ(q) = −

∑

i p
i
q log p

i
q

logMq

(3)�k�i:nn ∼ k
µ
i .

(4)δ(A,B,C,D) ≡
L −M

2
≤ δ(G) .
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In this case, the ranking curves of the F- and M-connectomes virtually overlap, see the top right panel in Fig. 1. 
The lower right panel shows the 3-dimensional plot of the node’s topological dimension over different topol-
ogy levels q. In this plot, the high peaks corresponding to our hubs indicate what orders of simplexes mostly 
contribute to distinguishing the hubs from the rest of the surrounding nodes. Note that these eight nodes also 
appear as the leading hubs in several other sorting methods, for example, according to the node’s degree and 
centrality  measures27,31. For comparisons with other methods, we also show the names of nodes that rank from 
9 to 20 according to the topological dimension in the case of the F-connectome: 

rh.precentral_7, Right-Pallidum, rh.caudalmiddlefrontal_11,
lh.caudalmiddlefrontal_13,Brain-Stem, Left-Pallidum,
lh.precentral_21, lh.precentral_6,lh.superiorparietal_25,
rh.precentral_19, rh.precentral_15, rh.superiorparietal_13

 The nodes listed in the first two rows, except from theBrain Stem, also appear in this ranking range in the 
M-connectome.

Next, we consider a reduced network consisting of these hubs and the nodes directly attached to any one of 
the hubs, as well as the original edges between them in the F- and M-connectomes. The resulting core networks 

Figure 1.  (left) F-connectome, 1000K fibres, with labels as brain areas. (right, top) Ranking of the vertices 
according to the strength Si , top, and topological dimension dimQi , lower panel, where eight leading vertices 
are marked (they also visible as hubs in the network on the left). (right,bottom) The 3D plot of the topological 
dimension against the topology level q and the node’s index i for nodes in the F-core graph.

Table 1.  Names of eight leading hubs and their ranking order in the female (rank:F) and male (rank:M) 
connectomes.

rank:F Hub name rank:M

1 Left Putamen 1

2 Right Putamen 3

3 Left Caudate 2

4 Right Caudate 4

5 Left Thalamus-Propper 5

6 Left Hippocampus 7

7 Right Hippocampus 8

8 Right Thalamus-Propper 6
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termed Fc- and Mc-networks, respectively, are shown in Fig. 2. Note that, by definition, the topological dimen-
sion of the hubs is invariant to this network reduction.

Core networks associated with global hubs in the female and male connectomes. The 
extracted core Fc- and Mc-networks represent the part of the corresponding connectome in which the global 
hubs perform their function. Here, we explore in detail the structure of the core networks in the female and male 
connectomes. Furthermore, we analyse how the structure depends on the weights of the edges. The histogram 
of the weights is shown in Fig. 3a for both Fc- and Mc-networks. As Fig. 2 demonstrates, these core networks 
exhibit a similar community structure. Precisely, each community in the Fc- and similarly in Mc-connectome 
is a part of the global connectome community, cf. Fig. 1. This fact suggests that, in both connectomes, the core 
network reaches to all parts of the brain. Meanwhile, it contains a smaller number of nodes (517 nodes in the 
Fc- and 418 in the Mc-network, respectively), and a considerably smaller number of connections compared to 
the whole connectome. Thus, the node’s assortativity changes as compared to the whole network. As the inset 
to Fig. 3 shows, the hubs mix in line with other vertices in the core graphs, while they make a separate group 
when the whole connectomes are  considered1. This assortative dependence emphasises the robustness of core 
networks with respect to the hierarchical transmission of information among brain  regions50.

Figure 2.  Core networks attached to the eight hubs in the female Fc- (left) and male Mc-connectome (right) 
from the original full-connectomes data at NF = 106 fibres tracked and the weight threshold w0 = 4 . The 
relative size of nodes is proportional to the number of their connections in the core-networks; the node’s labels 
show the corresponding anatomical brain region, and colours indicate five topological communities.

Figure 3.  (a) Histogram of the weights of edges in the core Fc -and Mc-networks of the corresponding female 
and male connectomes, main panel; Inset: the assortativity plots of nodes in the core Fc- and Mc-networks for 
the weight threshold w0 = 4, 10, 40, and 100, respectively, indicated by dotted vertical lines in the main panel. 
(b) Distribution of distances P(d) against the shortest path distance d and (c) the hyperbolicity parameter δmax 
against the shortest distance dmin for the core Fc- and Mc-networks shown in Fig. 2, and these networks for two 
larger threshold weights, indicated in the legend.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17320  | https://doi.org/10.1038/s41598-020-74392-3

www.nature.com/scientificreports/

Topology of core networks depending on the weights of edges. Using the approaches described 
in Methods, we determine several algebraic-topology measures to characterise the structure of simplicial com-
plexes as well as the underlying topological graphs in the core Fc- and Mc-networks. These results are summa-
rised in Figs. 3 and 4. Apart from a different number of nodes and edges that comprise the Fc- and Mc-networks, 
we note that both of them are heterogeneous concerning the weight of edges, resulting in the broad log-normal 
distributions in Fig. 3a. Therefore, we obtain different structures when the edges over a given threshold weight, 
w0 , are considered. By gradually increasing the threshold w0 = 10 , 40, 100, we show how the network proper-
ties change. More precisely, by removing the edges below the threshold, the network’s diameter increases, and 
the distribution of the shortest-path distances change the shape. Eventually, a larger cycle can appear, resulting 
in the increased value of the hyperbolicity parameter, as shown in Fig. 3b,c. Meanwhile, the reduced networks 
preserve the assortative mixing among the nodes, see the inset to Fig. 3a. At the same time, the order of simplicial 
complexes gradually reduces from qmax = 12 , in the case of w0 = 10 , to qmax = 5 when edges over the threshold 
w0 = 100 are retained. The number of simplexes of the order q = 0, 1, 2 . . . qmax , given by the FSV, and the ways 
that they interconnect, the TSV, change the functional dependence of q, as shown in Fig. 4, while at the same 
time reducing the difference between the Fc- and Mc-structures, cf. Fig. 5. The number of simplexes and faces at 
the q-level, fq , and the topological entropy, SQ(q) , follow a similar tendency. Moreover, the topological entropy 
measure shows a pronounced minimum, indicating the geometrical forms through which the nodes mostly 
interconnect. For example, in the case of w0 = 100 , the minimum appears at q = 2 (triangles) in the Mc-, and 
q = 3 (tetrahedrons) in the Fc-networks, respectively. Figure 5 illustrates the remaining structures of the Fc- and 
Mc-networks when the weight threshold w0 = 40 is applied.

An edge-to-edge comparison between the core Fc- and Mc-networks with the threshold weight w0 = 40 , 
shown in Fig. 5, revealed 948 edges that appear in both of them. Besides, the core Mc-network has 204 unique 
edges that are not present in the Fc-network with this threshold value, while the Fc-network has 419 such 
edges that are not seen in the corresponding Mc-network. Moreover, the weight difference among the common 
edges varies, as shown in Fig. 6. For example, the pairs of nodes that make up 16 edges with a large difference 
|wM − wF| > 300 are listed in Table 2.

Discussion and conclusions
In line with the latest trends in complexity science, we have studied weighted higher-order structures in human 
connectomes based on the empirical data from the Human Connectome Project. Specifically, by extending the 
work  in1, we have analysed the structure of simplicial complexes in the core networks surrounding eight topo-
logical hubs. This analysis enabled us to identify brain regions participating in simplexes of different orders that 

Figure 4.  The first (FSV) and third (TSV) structure vectors, the number of simplexes and faces fq , and the 
topological entropy SQ(q) against the topology level q in the core Fc- and Mc-networks with the edges of weights 
above the threshold w0 = 10 , 40, 100.
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are attached to hubs as well as their hierarchical organisation, which manifests in sharing common subgraphs. 
In this context, we have also provided new evidence for (dis)similarity between female and male core graphs.

The hubs are accordingly determined as the top-ranking nodes with the highest topological dimension (the num-
ber of simplexes attached). Remarkably, they coincide with the hubs determined by several other graph-theoretic 
measures, representing the central brain regions known to enable complex communication between different 
parts of the  brain11. By parallel analysis of the female and male consensus connectomes, we have extracted the 
corresponding core segments, here termed the Fc- and Mc-networks, in which the brain hubs perform their 
function. Both in the Fc- and Mc-networks, except for the differences in the size and structure of simplicial 
complexes, simplexes attached to eight leading hubs reach to almost all parts of the brain. Besides, these core 
networks have a similar small hyperbolicity parameter in analogy to the complete connectomes studied  in1. At 
the graph level, corresponding to 1-skeleton of the simplicial complexes, the nodes in these core networks exhibit 
assortative mixing, consistent with the “rich-club” structure of hubs previously studied  in27.

Further, we have demonstrated that these core networks are heterogeneous concerning the weights of edges 
and they possess different weight-dependent organisations. Consequently, their structure simplifies with the 
increased weight threshold, eventually reducing at significant thresholds to the 6-clique structure. At the same 
time, by disregarding the edges below the imposed weight threshold, we determine changes in the structure of 
the underlying topological graph. It is readily manifested in the occurrence of larger distances among nodes 
and with them related subjacent graphs, e.g., longer cycles, that are compatible with an increased hyperbolicity 
parameter. Interestingly, these six nodes 

Figure 5.  Core networks with the weights of edges above w0 = 40 for the female (left) and male (right) 
connectomes. Labels of nodes indicate the affected brain regions.

Figure 6.  The weight difference wM − wF of the common edges, indexed from 1 to 948, in the Fc- and Mc-core 
networks in Fig. 5 with the edges weight over 40.
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Right_Thalamus_Proper,Right_Caudate,Right_Putamen,
Right_Pallidum, Right_Hippocampus, Right_Amygdala

 make up a remaining 6-clique structure in both female and male core networks. We have found another 6-clique 
in the female core network, i.e., 

rh.precentral_15, rh.precentral_7, Right_Thalamus_Proper,
Right_Caudate,Right_Putamen, Right_Pallidum

 including two additional nodes that belong to the precentral gyrus, part of the primary motor cortex. As men-
tioned above, these two nodes appear among the first twenty ranked nodes. The  study27 ranked high the “Right.
precentral” node in this region according to the strength among a total of 82 brain region. In both core networks, 
the identity of the affected brain regions, as well as the variation of the weights along the commonly present edges, 
illustrates further differences between the female and male connectomes at the level of hubs.

Our results revealed that the core networks surrounding the eight leading hubs in human connectomes extend 
to different parts of the brain by connecting them through weighted simplexes of different orders. In the context 
of higher-order interactions, these findings can contribute to better understanding the pattern of connections that 
enable the brain hubs to perform their role in the female and male connectomes. Besides, the revealed detailed 
structure of simplicial complexes and the identified brain regions that take part in them can facilitate the desired 
simplex-based dynamics modelling of the brain functions.

Data availability
All data used in this work are available from the Budapest reference connectome 3.0, https ://pitgr oup.org/conne 
ctome /.
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657 lh.precentral−4 1010 Left-Putamen 1796 993

661 lh.precentral−6 1010 Left-Putamen 618 1084

1008 Left-Thalamus-Pr. 1013 Left-Hippocampus 2481 2917

1009 Left-Caudate 1010 Left-Putamen 3174 2362

1009 Left-Caudate 1011 Left-Pallidum 3222 1805
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