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ABSTRACT

We consider the scaling of the Schrödinger equation in order to explicitly compute the energy density levels for a
specific class of potentials. The resulting eigenvalues spectrum is compared to the heavy quarks mesons spectroscopy,
showing a fair agreement with experimental data for the J/ψ and, for the heavier case Υ, an excellent agreement with
the experimental data.
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DETERMINATION OF THE POTENTIAL ENERGY FROM
THE PERIOD OF OSCILLATION

In this paper we will consider the Schrödinger equation with
a class of power law potential

H =
p2

2m
+ Axγ = −~2

(
d
dx

)2

+ Axγ , (1)

(A is a constant) whose energy eigenvalues will be compared to
the ones of heavy quark mesons. Consider the energy conservation
equation

E =
mẋ2

2
+ V(x)

and solve for ẋ:

ẋ =

√2(E − V(x))
m

 .
In order to obtain the period of motion we solve for dt/dx:∫ T (E)

0
dt = T (E) = 4

(m
2

)1/2 ∫ x(E)

0

1
√

E − V(x)
dx =

2(2m)1/2
∫ E

V(0)=0

(dx/dV)
√

E − V
dV , (2)

here x = x(V) is the inverse function of the potential and we as-
sume for simplicity that V(0) = 0. In order to write explicitly this
integral, divide the equation by

√
α − E where α is a parameter

such that
0 ≤ V ≤ E ≤ α

and integrate first over the energy
∫ α

0 dE swapping integration or-
der (Landau & Lifshitz, 1960): ∫ α

0

T (E)
√
α − E

dE =

2(2m)1/2
∫ α

0
dV(dx/dV)

∫ α

V
dE[(E − V)(α − E)]−1/2 . (3)

Last integral of eq. (3) in dE yields:∫ α

V
dE[(E − V)(α − E)]−1/2 = −2 arcsin(−1) = π

for a final result of
2π(2m)1/2x(α) .

Replacing α with V we obtain an expression for the shape of the
potential in terms of the period

x(V) =
1

2π(2m)1/2

∫ V

0

T (E)
√

V − E
dE .

For example, if the period T is independent of energy, then

x(V) = C
∫ V

0

1
√

V − E
dE = 2C

√
V

where C is a constant. Inverting the above relation we recover the
usual harmonic oscillator

V(x) = Ax2

SEMICLASSICAL APPROACH TO QUANTUM ENERGY
DENSITY LEVELS

A similar method achieves results in semiclassical approxi-
mation WKB of a symmetric monotonic potential in one dimen-
sion. Starting from the Bohr–Sommerfeld quantisation condition

1
2π

∮
pdx =

(
n +

1
2

)
~ , for n = 0, 1, 2, . . . (4)

noticing that
∮

pdx = 2
∫ b

a pdx, where a and b are the turning
points which solve the equation E − V(x) = 0, and working with
the units where ~ = 1 one has∫ x0

0
dx[2m(En − V(x))]1/2 =

(
n +

1
2

)
π (5)
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x0 being the classical inversion point V(x0) = E, V(0) = 0, and
differentiating both sides with respect to n we have

1
2

∫ x0

0

[
2m

E − V

]1/2 (
∂E
∂n

)
dx = π ,

that could be rewritten as∫ E

V(0)=0
dV(dx/dV)

[
2m

E − V

]1/2

=
2π

∂E/∂n

which in form is quite similar to eq. (2), and we will proceed as
before. Inserting a term

∫ α

0 dE(α − E)−1/2 and interchanging the
order of integration we find∫ α

0
dV(dx/dV)

∫ α

V

1
(α − E)1/2(E − V)1/2 dE =

2π
∫ α

0

1
[2m(α − E)]1/2(∂E/∂n)

dE . (6)

The integral in dE on lhs has already been encountered in (3) and
its value is π. Upon renaming α→ V we are left with the result

x(V) = 2
∫ V

0

1
[2m(V − E)]1/2(∂E/∂n)

dE =

2
∫ V

0

(∂n/∂E)
[2m(V − E)]1/2 dE (7)

where (∂n/∂E) is the density of eigenvalues function.
Consider for instance a constant level density, i.e. where

(∂E/∂n) is constant. Then the above integral furnishes us with the
result

x(V) = A′
√

V

where A’ is some constant. Inverting the relation we obtain the
harmonic oscillator as expected

V(x) = Ax2 .

SOME NOTABLE RESULTS

The results obtained so far are valid in one dimensional
quantum mechanics, therefore they also hold for symmetric cen-
tral potentials for the radial part. We should recall some notable
results for integrable systems.

Coulombic potential

V(x) = −
A
x

En = −
R
n2 implies n(E) ∼ E−1/2

Harmonic oscillator

V(x) = Ax2

En =

(
n +

1
2

)
~ω implies n(E) ∼ E

Infinite square well

V(x) = 0 if 0 < x < L, else +∞

En = Cn2 implies n(E) ∼ E1/2

General results

Those potentials have been listed for energy E ordered as increas-
ing function of n.

With the knowledge of density function and main equa-
tion (7) we could infer some general results. First, with the change
of variable

ξ =
E
V

and considering the Jacobian, we are left with

x(V) = C
√

V
∫ 1

0
dξ(1 − ξ)−1/2

[
∂n(ξV)
∂E

]
(8)

C being a constant. Now when the density function has some ho-
mogenity properties one could infer some actual results. With the
power law Ansatz

∂n(E)
∂E

∼ Ea

that is
n(E) ∼ Ea+1

and inverting the relation one obtains

E(n) ∼ n( 1
a+1 ) ,

∂E(n)
∂n

∼ n(− a
a+1 )

for a , −1, from eq. (8) we obtain

x(V) = CV (a+ 1
2 )

∫ 1

0
dξ(1 − ξ)−1/2ξa = CV (a+ 1

2 )β

(
1
2
, a + 1

)
, (9)

which leads to
x(V) ∼ V(a+ 1

2 ) (10)

and inverting the equation we obtain the potential as a function of
x

V(x) ∼ x( 2
2a+1 ) . (11)

Being a semiclassic approximation, the larger n the better agree-
ment with the exact result is obtained.

A few examples

• For a linear potential:

V(x) ∼ x implies a =
1
2

n(E) ∼ E(3/2) ;
∂n(E)
∂E

∼ E(1/2) ; E(n) ∼ n(2/3) .

• For an anharmonic potential:

V(x) ∼ x4 implies a = −
1
4
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n(E) ∼ E(3/4) ;
∂n(E)
∂E

∼ E(−1/4) ; E(n) ∼ n(4/3) .

• For E ∼ 1/n:

E(n) ∼
1
n

implies a = −2

V(x) ∼ x(−2/3)

n(E) ∼ E(−1) ;
∂n(E)
∂E

∼ E(−2) ; E(n) ∼ n(−1)

less singular in the origin than the Coulombic case 1/x.
• Suppose we search a potential for which the energy density in-
creases slightly with the energy, (that is indistinguishable from a
logarithm) i.e.

∂n(E)
∂E

∼ Eε

where ε > 0 is small (the analog case with slight decrease is ob-
tained for ε < 0). Then we obtain

V(x) ∼ x( 2
1+2ε ) ≈ x2(1−2ε)

n(E) ∼ E(1+ε) ;
∂n(E)
∂E

∼ Eε ; E(n) ∼ n( 1
1+ε ) ≈ n(1−ε) .

• Observe that for the case of an infinite square well where E ∼ n2

the power law potential resulting from (11) has a singularity.
In table 1. we present the scaling results obtained for some

power law potentials.

Table 1. Scaling for different potentials, ranging from anharmonic
x4 to Coulombic potential 1/x.

Potential E(n) ∼ n1/(a+1) ∂E/∂n a
x4 n(4/3) n(1/3) -1/4
x2 n1 const 0
x1 n(2/3) n(−1/3) +1/2
x−1 n(−2) n(−3) −3/2

BEYOND LEADING ORDER

The quantisation condition met in (4) is only the first or-
der approximation of the whole WKB procedure. To summarize
the method, consider the eigenvalues problem of the Schrödinger
equation

~2y′′(x) = 2m[V(x) − E]y(x) = −p2(x)y(x) (12)

with the wavefunctions y(x) obeying the boundary conditions
y(±∞) = 0. For the WKB procedure we will consider ~ as an
expansion parameter, eventually letting its value to ~→ 1 (Bender
et al., 1977). The series expansion for the wavefunction is given
by

y(x) = exp

1
~

+∞∑
k=0

~kS k(x)

 , (13)

plugging back (13) in (12) and comparing the coefficients of the
same power of ~ one obtains the equation

S ′0(x) = [−p2(x)]1/2 (14)

together with the recursive relation valid for any order of S k(x):

2S ′0S ′k +

k−1∑
j=1

S ′jS
′
j−k + S ′′k−1 = 0 , for k ≥ 0 . (15)

The first computed terms up to O(~3) are given by

S ′1 = −
1
2

p′

p
= −

1
2

(ln p)′ , (16)

S ′2 = −
i

8p3

[
2pp(2) + 3(p′)2

]
, (17)

S ′3 =
1

16p6

[
2p3 p(4) − 16p2 p′p(3) − 10p2(p(2))2+

67p(p′)2 p(2) − 45(p′)4
]
. (18)

Once solved for S ′k(x) one obtains a generalization of the for-
mulæ (4),(5) to all orders of WKB expansion:

1
2i

∮ +∞∑
k=0

S k(x)′dx = nπ . (19)

For the energy eigenvalues of the power law potential (1) one
obtains the following result (Parisi G. in: Chudnovsky & Chud-
novsky, 2006) in the limit n→ +∞

En = n2γ/(γ+2)
[
C0 +

C1

n2 + O

(
1
n4

)]
, (20)

where C0, C1 are constants. Observe that the first term coincides
with the results obtained in Section (Some Notable Results).

RELATION TO HEAVY MESONS

In order to verify the results obtained so far, we will make
use of a comparison to the values of some heavy meson states. It
is well known that (Fabiano, 1998) heavy mesons, i.e. qq states
can be well described by an effective radial potential V(r) in a
Schrödinger equation

Hψ =

[
−
∇2

2µ
+ V(r)

]
ψ = Eψ , (21)

µ being the reduced mass of the state, mimicking the QCD phe-
nomenology, incorporating short distance behaviour, that is ap-
proaching a Coulombic potential for r → 0 , and long distance
behaviour, approaching a linear nonperturbative term due to QCD
confinement for large values of r. The heavier the meson, the
closer the qq pair orbits together, and is better described by a semi-
classical picture. Moreover, the relativistic effects are less relevant
in those heavier cases (Fabiano, 2001).

The mass of an nS quark bound state is given by the expres-
sion (Fabiano, 1998)

M(n) = 2m + E(n) (22)

M(n) being the mass of the n level bound state, m the quark mass
and E(n) the binding energy of the state. We will make use of the
results obtained in Section (Some Notable Results) for a power
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law potential and make a fit to J/ψ and Υ nS states and their exci-
tations as a function of n = 1 . . . 4, with data provided in (Particle
Data Group et al., 2020; Barnes, 2006). The power law potential
will average between the two behaviours depicted above, for small
and large values of the quark–antiquark distance r, providing a
kind of “effective potential”. Our aim is not to introduce another
power law potential (see (Fabiano, 1998) and references therein
for a partial list), but rather to verify the validity of the WKB pro-
cedure and its accuracy within the approximation order considered
and when n is not going to infinity.

Beginning with J/ψ state we have the following results for
the mass of its excited levels nS as a function of the quantum num-
ber n, together with the first order approximation fit obtained for a
power law potential presented in fig. 1.

Figure 1. J/ψ nS states mass and fit of a power law potential as
a function of n, for first (Fit) and second order energy spectrum
(Fit2)

The resulting energy scaling and potential from the J/ψ fit
is given by

E(n) ∼ n0.413 yields V(r) ∼ r0.520 . (23)

The other fit parameters from equations (20) and (22) are m =

0.706, γ = 0.520, C0 = 1.690.
Comparing the results obtained for the J/ψ excited states in

fig. 1. we can see that the second order approximation gives a more
accurate fit than the first order one, as expected. The second order
approximation curve is even closer to the experimental values, al-
most passing through all data points. The resulting energy scaling
and potential from the J/ψ fit with a second order approximation
is given by

E(n) ∼ n1.398 yields V(r) ∼ r4.643 , (24)

which is rather different from the previous results of the first or-
der, showing that to achieve a better accuracy for the J/ψ states
effective potential some relativistic effects should be considered

as well. The other fit parameters are m = 2.058, γ = 4.643, C0 =

0.113, C1 = −1.130. Because of its relatively low mass the J/ψ
state is not completely a “nonrelativistic state” (Fabiano, 1998,
2001) as discussed above.

Concerning the semiclassical approximation, as there are
four experimental points, it is not possible to proceed further in
the approximation order of (20) as there would be more variables
than data points, leaving some of them with arbitrary values, lead-
ing to multiple (maybe infinitely many) solutions that fit the data
equally well, that is a so called “underdetermined” problem. An-
other remark is that as the fit for equation (22) is not given by a
polynomial function, even if there are an equal number of vari-
ables and points, there is no guarantee that the fit will pass exactly
though all those points.

For the Υ state and its nS excitations, and the fit for a power
law potential we obtain the results shown in fig. 2.

Figure 2. Υ nS states mass and fit of a power law potential as
a function of n, for first (Fit) and second order energy spectrum
(Fit2)

The resulting energy scaling and effective potential from the
Υ fit at first order approximation is given by

E(n) ∼ n0.011 yields V(r) ∼ r0.011 . (25)

The other fit parameters from equations (20) and (22) are m =

−33.448, γ = 0.011, C0 = 76.359.
The comparison of the Υ excited states in fig. 2. shows a

different scenario with respect to the J/ψ one of fig. 1.: the re-
sult of first order approximation is already a very good one, as it
completely overlaps with the experimental points. The second or-
der approximation is virtually indistinguishable from the first one.
The resulting energy scaling and potential from the Υ fit with a
second order approximation is given by

E(n) ∼ n0.017 yields V(r) ∼ r0.017 , (26)

which is quite close to the one obtained by the first order ap-
proximation. The other fit parameters are m = −18.159, γ =
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0.017, C0 = 45.807, C1 = −0.028. Therefore, the Υ states ac-
tually behave like “nonrelativistic semiclassical states”, providing
with an excellent agreement with the energy levels and a good ap-
proximation for the purely power law potential.

Figure 3. Derivative of J/ψ nS energy levels with respect to n and
fit of a power law potential as a function of n, for first (Fit) and
second order energy spectrum (Fit2)

We therefore evince from figs 1. and 2. that there is a good
agreement with the J/ψ data and an excellent agreement with the
Υ states, and the latter behaves, as expected because much heav-
ier, more like a nonrelativistic semiclassical system. The lower ex-
ponent of the power law potential in the latter case is also to be
expected, as could be seen in table 1.

Figure 4. Derivative of Υ nS energy levels with respect to n and
fit of a power law potential as a function of n, for first (Fit) and
second order energy spectrum (Fit2)

Then we consider the derivative of the density of states
∂E/∂n. The data for nS excited states of J/ψ and Υ can not provide
us with a proper derivative, but rather with a discrete approxima-

tion of energy differences divided by unitary step, ∆n = 1. This
should suffice for our analysis, where we compare the results ob-
tained from the experimental data to the fitted curve of eq. (22)
once taken the derivative with respect to n.

Starting from the J/ψ excitations from fig. 3. one could ob-
serve that, even if the two fits do not meet the experimental points
(as expected because they are not proper derivatives) they both re-
produce the behaviour of the points as a function of n, with the
second order approximation being closer to the data.

For the Υ case the same reasoning of the J/ψ case is valid.
This time however there is almost not difference between first and
second order approximation as expected, and the agreement with
the experimental points is also better fig. 4.

CONCLUSIONS

We have considered the behaviour of the energy spectrum
of a Schrödinger equation with a particular class of potential. The
results for the energy levels have been obtained with the aid of the
WKB technique. The spectrum has been compared to the heavy
meson nS states of J/ψ and Υ providing, at least for the energy
levels, respectively a very good and an excellent agreement with
data, even though the quantum number n does not tend to infin-
ity and is not very high either. We have checked the validity of the
WKB results used even when not employing a high approximation
order. Those results prove once more the validity and the accuracy
of the Schrödinger equation approach for a phenomenological de-
scription of some QCD phenomena.
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