
Metallurgical and Materials Engineering 

Association of Metallurgical Engineers of Serbia AMES 

Research paper 

https://doi.org/10.30544/567 

DATA ANALYTICS APPROACH TO PREDICT THE HARDNESS OF 

COPPER MATRIX COMPOSITES 

Somesh Kr. Bhattacharya 1, Ryoji Sahara1, Dušan Božić2, Jovana Ružić2, 

1 Research Center for Structural Materials, National Institute for Materials Science,  

1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan 
2 Department of Materials, "VINČA" Institute of Nuclear Sciences - National Institute of 

thе Republic of Serbia, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia 

 

Received 25.09.2020 

Accepted 22.10.2020 

 

Abstract 
Copper matrix composite materials have exhibited a high potential in 

applications where excellent conductivity and mechanical properties are required. In 

this study, the machine learning models have been applied to predict the hardness of the 

copper matrix composite materials (CuMCs) produced via the powder metallurgy 

technique. Six different machine learning regression models were employed. The 

observed CuMCs were reinforced with two different volume fractions (2 vol.% and 

7vol.%) of ZrB2 particles. Based on experimental work, we extracted the independent 

variables (features) like the milling time (MT, Hours), dislocation density (DD, 𝑚−2), 

average particle size (PS, μm), density (𝜌, 𝑔/𝑐𝑚3) and yield stress (𝜎, MPa) while the 

Vickers hardness (MPa) was used as the dependent variable. Feature selection was 

performed by calculation the Pearson correlation coefficient (PCC) between the 

independent and dependent variables. The predictive accuracy higher than 80% was 

achieved for Cu-7vol.% ZrB2 and lower for the Cu-2vol.% ZrB2.  

 

Keywords: Copper Matrix Composites; Hardness; Machine Learning; 

Regression Model. 

Introduction 
The excellent electrical conductivity and mechanical properties of copper matrix 

composites (CuMCs) and copper alloys [1, 2, 3] make them desirable materials in 

several industries viz. automotive, aerospace, military, nuclear, electronic. The main 

potential of these materials lies in reaching the favorable relationship between 

improving the mechanical properties and preserving high conductivity. It is well known 

that the lower content of alloying elements in the copper matrix supports higher thermal 

                                                 
Corresponding author: Jovana Ružić, jovana.ruzic@gmail.com 

https://doi.org/10.30544/567
mailto:jovana.ruzic@gmail.com


358 Metall. Mater. Eng. Vol 26 (4) 2020 p. 357-364 

 
and electrical conductivity. The most commonly used reinforcements [4, 5] for the 

copper matrix are metals (Ti, Mg, Co, Ni, etc.) or ceramic particles SiC and Al2O3, 

while in recent years, particles such as ZrB2, TiO2, TiB2, TiC, B4C, etc., are used. Since 

the properties of the CuMCs and copper alloys strongly depend on the nature, amount, 

and distribution of the reinforcements, great attention is given to the selection of the 

manufacturing techniques for their production. Ingot and powder metallurgy are both 

used for the production of the Cu-based materials, where powder metallurgy is more 

suitable when in situ formation of the reinforcing particles is needed [6, 7, 8, 9, 10]. 

Although, the most recent study [11] of the copper matrix particulate-reinforced 

composite material, where ZrB2 ceramics is used as reinforcement, produced by ingot 

metallurgy show that as-cast Cu-ZrB2 composites can reach the improvement in 

hardness up to 140 Vickers Hardness (HV) similar to the results obtained by powder 

metallurgy [12]. According to the facts mentioned above, the copper-based materials' 

investigation attracts both researchers and engineers from different fields due to their 

wide application and fast industry growth. 

In the powder metallurgy technique, the properties of alloys and metal matrix 

composites (MMCs) depend mainly on the milling time. Thus, it is highly desirable to 

have a rapid and accurate prediction of the hardness via the structure-property 

correlation of these MMCs. The physics-based models (e.g., density functional theory 

and phase field simulations) can promote understanding at a given length scale. Still, 

they are often limited to low order model systems due to computational complexity and 

lack of input parameters to represent realistic higher-order systems. An efficient way to 

achieve the mechanical properties' prediction is the data-driven methodology that 

involves applying statistical learning tools to analyze correlations between hardness and 

features of the MMCs. The machine learning (ML) approach can reduce the 

experimental cost and time while predicting materials' target properties [13, 14, 15, 16]. 

In the present study, we made an attempt to apply ML approach to predict the 

hardness of the CuMCs. To predict the materials' hardness, six different regression 

models were employed: random forest regression, gradient boosting regression, support 

vector regression, k-Nearest neighbors regression, linear regression, and kernel ridge 

regression. The predictive accuracy of the applied models was discussed. 

Methodology 

Experimental work 

The Cu-ZrB2 alloy was produced using the powder metallurgy technique, where 

Cu, Zr, and B were used as starting powders. Mechanical alloying was performed in the 

attritor mill. The in situ formation of ZrB2 particles inside the Cu matrix was achieved 

during hot-pressing at 950oC. The amount of reinforcing ZrB2 particles was set as 

2vol.% and 7vol.% in the Cu matrix. Morphological analyses of the mechanically 

alloyed (MA) powder mixtures were done by particle sizer and scanning electron 

microscopy (SEM). Microstructural characterization of the MA powder mixtures and 

hot-pressed samples were characterized by X-ray powder diffraction (XRD) and SEM. 

The detailed production procedure of Cu-ZrB2 composites and characterization methods 

applied have been described in previous studies [12, 17, 18]. 
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Machine learning models 

The primary requirement to build a statistical learning model for any material is 

to have a dataset containing the material descriptors or features, X. These descriptors 

represent the fundamental material properties. The basic task of the machine learning 

(ML) models if to map these features to a specific (target) property, Y (hardness in this 

case), that is 𝒀 = 𝒇𝑿. Thus, the two important elements of the machine learning 

approach are the empirical model, 𝑓, and features, 𝑿. The ML model must be trained 

and cross-validated using the training dataset, which includes the measured targeted 

property. The trained model is then applied to an unseen dataset in order to predict the 

target property. From the experiments, milling time (MT, Hours), dislocation density 

(DD, 𝑚−2), average particle size (PS,  𝜇𝑚) , density (𝜌, 
𝑔𝑚

𝑐𝑚3) and yield stress (𝜎 , MPa) 

as our descriptors, 𝑿, were selected. It is well known that the final mechanical 

properties of any material strongly depend on its process parameters. As powder 

metallurgy is a time-consuming process, the establishment of such correlations through 

experiments takes time measured in months and very often in years. Hence, the ML 

models were used to support and accelerate research in this field. In this study, two 

datasets for two different CuMCs are used: (i) Cu-7vol.% ZrB2 and (ii) Cu-2vol.% ZrB2. 

Datasets consist of only sixteen observations (data points) for Cu-7vol.% ZrB2 and 

twelve for Cu-2vol.% ZrB2. As described later, a special fitting method has been applied 

to improve the machine learning model performance and achieved a reasonable 

predictive model. In both cases, the datasets are found to be small compering to 

literature. On the other hand, the presented results show that these small datasets are 

enough to understand the trend for these mechanically alloyed CuMCs powders 

considered in the present study. 

To predict the hardness of both materials, Cu-7vol.% ZrB2 and Cu-2vol.% ZrB2, 

different ML models were used: random forest (RF) regression [19], gradient boosting 

(GB) regression [20], support vector (SV) regression [21], k-Nearest neighbors (KNN) 

regression [22], linear regression (LR) [23] and kernel ridge (KR) regression [24] as 

implemented in the Python-based open-source data analytics toolkit, scikit-learn [25]. 

RF and GB regression models are ensemble learning methods where multiple decision 

trees are constructed. SV regression is considered a nonparametric technique as it relies 

on kernel functions. The linear regression models the relationship between the input and 

output variables using a linear predictor function and fits to minimize the residual sum 

of squares between observed data and predicted data. Kernel ridge regression estimates 

the conditional expectation of a random variable to find a non-linear relationship 

between a pair of random variables. Using the kernel method, it simplifies the product 

of the inner products in a high dimensional space and learns a linear model in the 

implicit feature space induced by the kernel and the dataset. k-Nearest neighbors 

regression model uses a nonparametric method and outputs the average number of given 

data points, the k nearest neighbors. Due to the availability of the small dataset, Leave 

One Out (LOO) - cross validation (CV) was performed [26]. The training of ML models 

with CV avoids the errors due the bias and variance. Finally, the hyperparameters for 

the ML models were optimized during the training process. For model performances, 

the coefficient of determination, 𝑅2 , was calculated [27]. It is important to note that for 

both these CuMCs, the ML models were trained separately with their respective 

datasets. 
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Results and discussion 

A strong influence of the milling parameters on the morphological and 

mechanical properties of alloys and MMCs has been reported in many studies. The 

duration of the milling process is essential in providing uniform distribution of the 

reinforcing particles in the metal matrix. During milling in the Attritor mill, the powder 

mixture is exposed to high energy collisions such as ball-particle-ball and wall-particle-

ball. Those collisions initiate changes in lattice parameters, shape, and size, as well as 

the hardness of the particles. Finding the suitable milling parameters for each alloy or 

composite material is a time-consuming process. According to all mentioned-above, and 

considering relations between process parameters and changes in powder properties, the 

input parameters for ML models were selected.    

In this study, first, all the features were subjected to the correlation filter to 

remove those who are uncorrelated by calculating the Pearson correlation coefficient 

(PCC). The Pearson correlation is the measure of the linear correlation between the 

predictors, 𝑿, and target, 𝒀. The Pearson correlation maps for both the CuMCs are 

shown in Fig. 1. For both the MCs, we observed the yield stress and density to have the 

strongest correlation with hardness, followed by dislocation density. In the case of Cu-

2vol.% ZrB2 composite (see Fig. 1(a)), milling time, and particle size were found to 

have a negative correlation. While the milling time was found to have a negligible 

correlation with hardness, the particle size was found to have a weak negative 

correlation. The particle size was found to have the lowest correlation coefficient in the 

case of Cu-7vol.% ZrB2 composite. Importantly, all the features were found to have a 

positive correlation coefficient for Cu-7vol.% ZrB2 composite. All the features were 

found to have positive correlation coefficients for Cu-7vol.% ZrB2 composite. It should 

be noted that all the features of Cu-7%.vol ZrB2 composite are used for fitting the ML 

models but in the case of Cu-2vol. % ZrB2 composite, the feature "milling time" was 

dropped.  

 

Fig. 1. The Pearson correlation maps for the features and the target for (a) Cu-2vol.% 

ZrB2, and (b) Cu-7vol.% ZrB2. The color tone depicts the significance of the 

correlation. 
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Next, the ML models were trained using LOO-CV, and the coefficient of 

determination (𝑅2) was calculated to evaluate the model performance. The coefficient 

of determination (𝑅2) which is calculated as  

𝑅2 = 1 − 
∑ (𝑦𝑖−�̂�𝑖)𝑛

𝑖=1

∑ (𝑦𝑖− �̅�𝑛
𝑖=1 )

   1 

where 𝑦𝑖 is the true value, �̂�𝑖 is the predicted value and �̅� is the mean of 𝑦𝑖 . The 

𝑅2 the value lies between 0 and 1, with 1 signifying excellent fits.  

 

The considered value range is the one experimentally obtained. Experimental 

results showed that hardness increases up to 160 of Vickers hardness (maximum 

achieved at 25 hours of mechanical alloying) then decreases with increasing time of 

mechanical alloying. Vickers hardness values below 60 were not taken into 

consideration since pure copper shows Vickers hardness values higher than 60. In Table 

1, the 𝑅2 for Cu-7vol.% ZrB2 composite are summarized. In this case, the random forest 

and kernel ridge regressor models exhibited the highest accuracy (92%) followed by 

gradient boosting regressor (88%) while the nearest neighbor regressor has the lowest 

accuracy of 79%. It is evident that all the models were able to achieve an accuracy of 

80% or even higher. For the two best performing ML models, random forest and kernel 

ridge, the true and predicted values of hardness for the Cu-7vol.% ZrB2 composite were 

plotted, as shown in Fig. 2.  

Table 1. The coefficient of determination (𝑅2) and mean absolute error (MAE) values 

obtained for the various ML methods applied to the Cu-7vol.%  ZrB2 composite are 

listed below. 

ML 

models 
RF KR GB SV LR KNN 

𝑅2 0.92 0.92 0.88 0.84 0.83 0.79 

 

Fig. 2. The plots for the true values of Vickers hardness (experiment) and the predicted 

values of hardness using the two best performing ML models for Cu-7vol.% ZrB2 
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composite are plotted. The broken red line depicts the case where the true and predicted 

values exactly match. 

The 𝑅2 values obtained for the different ML models applied to Cu-2vol.% ZrB2 

composite are shown in Table 2. For gradient boosting, an accuracy of 79% was 

achieved while for the support vector regressor and for kernel ridge regressor an 

accuracy of 74% was reached. Overall, all the ML models have lower accuracy in the 

case of Cu-2vol.% ZrB2 compared to Cu-7vol.% ZrB2 composite. It can be assumed that 

more data, leading to a larger dataset, is necessary to make a better predictive model for 

the hardness of Cu-2vol.% ZrB2 composite. In Fig. 3., the true and predicted values of 

hardness for the Cu-2vol.% ZrB2 composite for the gradient boosting and random forest 

models are plotted. Overall, all the ML models have lower accuracy in the case of Cu-

2vol.% ZrB2 compared to Cu-7vol.% ZrB2 composite. An increase in the size of the 

data set will definitely increase the predictive power of the ML model for the hardness 

of Cu-ZrB2 composite system. 

Table 2. The coefficient of determination (𝑅2) and mean absolute error (MAE) values 

obtained for the various ML methods applied to the Cu-2vol.% ZrB2 composite are 

listed below. 

ML models SV KR LR GB RF KNN 

𝑅2   0.79 0.74 0.68 0.62 59 0.50 

Fig. 3. The plots for the true values of Vickers hardness (experiment) and the predicted 

values of hardness using the two best performing ML models for Cu-2vol.% ZrB2 

composite. The broken red line depicts the case where the true and predicted values 

exactly match. 

Conclusion 
In summary, a regression model was built to predict the hardness of CuMCs 

prepared by the powdered milling method. For Cu-7vol.% ZrB2 composite, an accuracy 

of 80% or higher was achieved. On the other hand, the ML models for Cu-2 vol.% ZrB2 

composite have a predictive accuracy lower than 79%. To improve the accuracy of the 

ML models, additional data points must be included in the training dataset. A similar 

strategy can be extended to other matrix composites prepared by the mechanical 

alloying method and powder metallurgy technique. 
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