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Abstract

The kicked rotor is one of the basic models in connection with chaos and quantum chaos. A possible

application of an attosecond pulse train as a kicking field in the kicked rotor is theoretically examined

for the first time. This version of the kicked rotor is denoted as an atto-kicked rotor. It seems to be the

most realistic version of the kicked rotor because it takes into account the real form of the kicking field as

it appears in the experiments. The atto-kicked rotor is investigated from the classical and the quantum

aspects. In the classical case, a new map instead of the Chirikov standard map is proposed. It may be

useful in appropriate experiments with the classical chaos. In the quantum case, the atto-kicked rotor

gives satisfactory results. Phenomena such as dynamical localization and quantum resonances appear in

the undisturbed form. It may be also used for examining the influence of the quantum effects on classical

chaos and diffusion.
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I. Introduction

Periodically driven systems, classical and quantum, usually represented by the kicked rotor (KR) have

been extensively studied in the recent past in connection with chaos and quantum chaos, see for example

[ 1 , 2 , 3 , 4 ]. One of the main discoveries obtained on the basis of this very popular model for quantum

chaos is that the quantum effects tend to suppress the classical chaos and diffusion by a mechanism

that is similar to the Anderson localization in disordered solids [ 5 ]. For large kicks strengths the

effects of quantum resonance and dynamical localization (non-resonant effect) are established. Further

investigations are expanded towards real systems such as, for example, hydrogen atom in a microwave field

[ 6 ]. Theoretical examinations also include electron spin influence in the framework of the appropriate

quantum KR model [ 7 , 8 , 9 , 10 ]. One reason that the KR is an especially interesting problem is that it

can be realized experimentally. Such experimental research exists in our time, too. Raizen and coworkers

[ 11 ] used a system of ultracold atoms interacting with a pulsed standing light wave in the experiment.

Thus, the first realization of the quantum KR known as atom-optics KR was achieved. That system has

become the standard setup for observing the effects of quantum resonance and dynamical localization.

Further, the quasi periodic quantum KR as a version of atom-optics KR is experimentally realized [12].

In particular, the effects of phase noise i.e. the influence of sinusoidal phase modulation on both the

resonant and non-resonant dynamics of the quantum KR was examined theoretically and experimentally

in the Auckland group [ 13 ]. Special interest in the quantum KR exists in molecular physics. Rotation

of diatomic molecules is the most basic version of quantum rotors. Therefore, interaction of diatomic

molecules with a periodic sequence of ultrashort laser pulses i.e. laser induced molecular rotation and

alignment are in the focus of research. In this way the problem of a KR is revisited in order to find new

mechanisms for laser control of molecular rotational wave packets. The effects of quantum resonance and

dynamical localization are registered experimentally [ 14, 15 ]. The appropriate theoretical investigations

based on KR follow these experiments [ 16 ].

High-order harmonic generation (HHG) refers to the problem of generating high-frequency pulses from

low-frequency one. In general, harmonic generation is a feature of driven nonlinear systems. Specially,

when a very intense laser pulse is focused on an atomic gas, strong nonlinear laser-atom interactions

can lead to the generation of very high harmonics of the optical frequency of the pulse [ 17 , 18 ]. It

is an extreme form of nonlinear frequency conversion and only odd harmonics of the incident radiation

frequency are emitted. The most significant manifestation of this behavior is existence of a plateau in

the harmonics spectrum in which harmonics up to the characteristic cutoff have fairly uniform intensity.

Thus, HHG has recently become a base for attosecond pulses production [ 19 , 20 , 21 ].

HHG is a highly nonlinear phenomenon and it can be understood on the basis of the three-step model

[ 22 , 23 ]. In the first step, the ionization of an atom by a strong, linearly polarized laser field occurs.

During the second step, thus released free electron is accelerated away from the ion core. When the

laser electric field changes its sign the electron returns and collides with the core. In the last step, the

ionized electron can recombine with its parent ion. This results in a high-order harmonic emission. It is
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a generally accepted and proven model for HHG in atomic gases.

However, this is not necessarily the only way for HHG. In Ref.[ 24 ] a special type of confinement is

suggested for simulating the interaction of an atom with the surrounding ones in a high pressure hydrogen

atomic gas. Then, in addition to the laser pulse, the kicking electric field i.e. the impulsive train, is added

at the moments when the ionization probability is at a maximum. Thus, the electron kinetic energy is

drastically increased, and as a consequence of the dynamic Stark shifts in the energy spectrum, an unusual

electron recombination can happen. As a result of such recombination, a very high order of harmonics

appears. Further, in [ 25 ] the interaction of the kicking laser electric field with a single electron cylindrical

quantum dot without and in the presence of an external magnetic field is considered. It is shown that

the kicking field generates harmonics of a very high-order. This is based on the fact that during the kick

the electron energy is increased and it is associated with the pronounced quantum-confined Stark effect

in the energy spectrum. The occurrence of these harmonics is a consequence of the electron transition

to the inner shells. In addition, application of the kicking field for example, in the solid state physics is

considered in Ref.[ 26 ]. We note that the problem of underlying classical dynamic, chaotic and regular,

and its influence on HHG is investigated in Ref.[27]. Considerations are first from the quantum and then

from the classical aspect.

It should be pointed out that there are two goals for the attosecond pulse synthesis from HHG. One

is the generation of isolated attosecond pulse utilizing HHG with a few-cycle driving pulse.This implies

a continuous harmonic spectrum in and over the cutoff frequency. In this case the emission of cutoff

harmonics is temporarily confined into one single burst. The other goal is the formation of attosecond

pulse train (APT) from the broad plateau spectrum. It has been experimentally demonstrated that a

train of pulses as short as a few hundred attoseconds is obtained when several odd harmonics of an

intense, infrared, linearly polarized laser field are combined in a phase-locked manner [28]. The short

duration of the individual pulses in the train and their periodicity make the APT convenient for kicking

field.

Here, we examine theoretically realization of KR with APT. The experimental applications, specially

in molecular physics are kept in mind. The organization of the rest of the paper is as follows. In Sec.II

the APT is given. In Sec.III classical KR and in Sec.IV quantum KR are analyzed. The conclusions are

given in Sec.V .

II. APT

APT is proposed theoretically in Ref.[ 29 ]. It is based on experimentally obtained HHG by the

interaction of a strong laser field with angular frequency ω=0.057 a.u. (| e |= me = ~ = 1) with a

gaseous sample. Then, harmonics from the plateau spectrum are almost phase-locked. By superpos-

ing sets of high harmonics, it is possible to produce APT. Such an electric field can be approximated
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(monochromatic limit) as

Eh(t) =
E0

h

σ̄(t)

2k1+1
∑

q=2k0+1

sin(qωt− qϕ) , (2.1)

where E0
h is the amplitude of the field and σ̄(t) is the train temporal envelope, which will be taken

as σ̄=1 [ 30 ]. In (2.1)

ϕ = ωtd , (2.2)

where td is the time delay. Note that such a train has a time delay with respect to the driven field.

For ϕ=0 this is an idealized train. Here, we will always assume ϕ=0.75π. In Eq.(2.1) the sum is

over five odd harmonics 11-19 and 2k0 + 1 and 2k1 + 1 are the minimal and the maximal harmonics

order, respectively. From Ref.[ 29 ] the APT peak intensity is 1013 W
cm2 . It should be emphasized that

physically Eh(t) corresponds to an infinitely long train of pulses suitable for KR considerations.

It can be also approximately assumed that Eh(t) is periodic function with period T0 = π
ω

= T
2 ,

where T is the period of driven field, see Fig.1. This is in agreement with [ 31 ]. The duration of the

individual pulses in the train is ε̄ ∼ 400 attoseconds.

III. Classical KR

A simple KR model is proposed in Ref.[ 8 ]. The model is suitable for physical performance of KR.

An electron in the impenetrable ring with radius r located in the x0y plane simulates the rotor while the

kicking electric field is along x axis. Such a KR model can be treated in the classical and in the quantum

ways. In the classical case the time-dependent Hamiltonian is

H =
p2

2I
+ k̄ cos θ ·∆(t) , (3.1)

where p = mer
2θ̇ is the angular momentum, θ is angle with respect to the x axis, I = mer

2 is the

moment of inertia and parameter k̄ =| e | Ēr , where Ē is the amplitude of the kicking electric field.

∆(t) in (3.1) is given as

∆(t) =
∞
∑

n=−∞

δ(
t

T0
− n) . (3.2)

This model is referred to as δ-KR . It is the standard model in most of KR considerations. In the limit

of arbitrary short pulses, the pulse function is usually replaced by Dirac delta function δ(t) . However,

we emphasized that in Ref.[ 16 ] Gaussian pulses are used. This case will be also considered

∆(t) =
1

σ
√
2π

∞
∑

n=−∞

e−

(

t
T0

−n

)2

2σ2 , (3.3)
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where σ is a measure for the pulse duration. It will be denoted as the σ-KR model.

Definitely APT from (2.1) implies

∆(t) =







































∑2k1+1
q=2k0+1 sin(tqωT0 − qωt0 − qϕ) , n− ε̄

2T0
6 t 6 n+ ε̄

2T0

n ∈ (−∞,+∞)

0 , otherwise

(3.4)

The noise-oscillations between pulses are here neglected. Thus, it will be the atto-KR . It may be the

most realistic version of KR since it also takes into account the oscillations within the pulse as they

appear in the experiments.

Rotational dynamics of the δ-KR is examined with the Chirikov standard map [ 4 , 32 ]. This is one

of the most important maps in the conservative chaos theory. It is used, besides other applications, to

estimate the onset of chaos in the δ-KR . The map is given by the following set of equations

Pn+1 − Pn = Ksin θn (3.5)

θn+1 − θn = Pn+1 (3.6)

where P and K are dimensionless angular momentum and control parameter, respectively. Eqs. (3.5) and

(3.6) are derived from the Hamiltonian (3.1) assuming (3.2). Due to the periodicity of sin θn in (3.5)

the dynamics is usually considered on a torus (by taking θ, P mod 2π). The map has been thoroughly

examined and it is just enough to note that the spread of chaos is associated with increased values of

parameter K .

In [ 16 ] the authors refer to the Cryan et al [ 33 ] experiment where a laser pulse train was used to

induce a strong nitrogen alignment. Pulses of 50 fs 800 nm at 1 kHz repetition rate were applied. The

authors further call for an experimental application in laser-kicked molecules and observing phenomena

of quantum δ-KR . For such a pulse train ε̄
T0

is as a small parameter and the classically considered

problem essentially on the basis of σ-KR is reduced to the Chirikov standard map. In general, a pulse

train is not necessary as previous, for example APT in (2.1) where ε̄
T0

is not a small parameter. Then

the possibility of applying σ-KR in this approach, that is approximate APT pulses with Gaussian ones,

may also be considered. We emphasize that in this case σ-KR can only in an approximation be brought

down to the Chirikov standard map.

The situation is something different for atto-KR . Here, the limit ε̄
T0

→ 0 is not considered at all as

unrealistic, see Sec.II . The ratio of ε̄
T0

is not a small parameter and definitely, the atto-KR can not be

reduced to the Chirikov standard map. Therefore, an alternative and approximate map is proposed here

Pn+1 − Pn = K̄Fn sin θn (3.7)

θn+1 − θn = SPn+1 (3.8)
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where K̄ is a new control parameter,

S =
T0 − ε̄

T0
, (3.9)

and

Fn =
2

π

2k1+1
∑

q=2k0+1

1

q
sin(nqωT0 − qωt0 − qϕ) sin

ε̄

2
qω . (3.10)

The map is tested for the corresponding values of parameter K̄ assuming θ, P on a torus, Figs. 2-5.

The spread of chaos is clearly shown with increased values of parameter K̄ . In particular, it is well

known that the classical δ-KR assuming the fully developed chaos shows a diffusive growth of energy i.e.

the average kinetic energy (or rotational energy) is given as

< En >∼ 1

4
K2n . (3.11)

In order to check our map reliability we have calculated kinetic energy for K̄= 500 . The result is shown

in Fig.6. Linear growth on average is clearly visible but it is of course different from (3.11).

Map (3.7)-(3.8) may be useful for experiments with classical chaos and possible application of APT .
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IV. Quantum KR

The Hamiltonian for quantum KR can be written

H =
τ

2
p2 + k cos θ ·∆(t) , (4.1)

where τ and k are dimensionless parameters. In this form (4.1) is derived from (3.1). It is also assumed

in {θ} representation for operator p2 = − ∂2

∂θ2 . Due to periodicity in time

H(t) = H(t+ 1) . (4.2)

Then, the problem is reduced to solve time-dependent Schrödinger equation

i
∂Ψ

∂t
= HΨ , (4.3)

where Ψ ≡ Ψ(θ, t) . Supposing quantum δ-KR and (3.2), the solution for one period is

Ψ−(θ, t+ 1) = UΨ−(θ, t) = e−
τ

2
p2

e−ik cos θΨ−(θ, t) , (4.4)

where U is the evolution operator.The first factor on the right in (4.4) describes the evolution of the rotor

between the kicks, and the second factor describes the effect of the kick. From now on Ψ− and Ψ+ denote

the state of the system at time just before and just after the kick, respectively. Since the Hamiltonian is

periodic in time quasienergy Ω is introduced and the wave function must be in the Bloch-Floquet form

Ψ−

Ω(θ, t) = e−iΩtu−

Ω(θ, t) , (4.5)

where is

u−

Ω(θ, t) = u−

Ω(θ, t+ 1) , (4.6)

and

u−

Ω(θ, t) =
1√
2π

N
∑

m=−N

u−

meimθ , (4.7)

with

u−

m ≡ u−

mΩ(t) = u−

mΩ(t+ 1) . (4.8)

It is also known that

[ I , U ] = 0 , (4.9)

where I is parity operator. Thus, Ψ−

Ω(θ, t) ( and Ψ+
Ω(θ, t) ) states in (4.5) can be either even or odd.

For example, from a physical point of view for the model mentioned at the beginning of Sec.III the parity

operator is : I = Rx ( rotation by π , about the x axis ) or I = Sy ( reflection in the plane normal to

~iy ) .
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For quantum σ-KR the evolution operator instead of the one in (4.4) is

U = e−i τ

2

(

1− ε̄

T0

)

p2

e−i τ

2
ε̄

T0
p2

−ik cos θ , (4.10)

where is

e−i τ

2
ε̄

T0
p2

−ik cos θ = e−ik cos θ−i τ

2
ε̄

T0
p2

(4.11)

and unitarity is conserved. Here, ε̄
T0

will not be treated as a small parameter. This is an important

assumption for the eventual application of σ-KR in the APT approach. We introduce shorter notation

for the operators

A =
τ

2

ε̄

T0
p2 and B = k cos θ .

Those are non-commuting operators and the second factor in (4.10) in the form e−i(A+B) is the main

problem. It now describes the kick effect.Then, the following relation holds

e−i(A+B) =
[

e−i( A

M
+ B

M
)
]M

, (4.12)

where M → ∞ . Further, we can apply the Trotter product formula [ 34 ]

e−i( A

M
+ B

M
) = e−i A

M e−i B

M +O(
1

M2
) , (4.13)

where is

O(
1

M2
) ∼ e−i A

M e−i B

M

M2

τ

4

ε̄

T0
k(cos θ + i2 sin θ · p) (4.14)

in the operator form, where p = −i ∂
∂θ

is the angular momentum. In particular, the appropriate matrix

elements are now calculated

< m | e−i(A+B) | s >=

N
∑

l1=−N

N
∑

l2=−N

· · ·
N
∑

lM−1=−N

< m | e−i A

M e−i B

M +O(
1

M2
) | l1 >

< l1 | e−i A

M e−i B

M +O(
1

M2
) | l2 >

·
·
·

< lM−1 | e−i A

M e−i B

M +O(
1

M2
) | s >=

=

N
∑

l1=−N

N
∑

l2=−N

· · ·
N
∑

lM−1=−N

< m | e−i A

M e−i B

M | l1 >

< l1 | e−i A

M e−i B

M | l2 >
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·
·
·

< lM−1 | e−i A

M e−i B

M | s > +

+ M(2N + 1)O(
1

M2
) . (4.15)

From (4.15) it follows

< m | e−i(A+B) | s >=

= im−s

N
∑

l1=−N

N
∑

l2=−N

· · ·
N
∑

lM−1=−N

e−i τ

2
ε̄

T0

m
2+l

2
1
+···+l

2
M−1

M ·

· Jl1−m(
k

M
)Jl2−l1(

k

M
) · · · Js−lM−1

(
k

M
) + (2N + 1)O(

1

M
) , (4.16)

where J are Bessel functions of the first kind. For a great values of M , k
M

in J is very small

and we have (2N + 1) ∼ 1 in (4.16) .

Further simplification for matrix elements can be obtained by analysis

N
∑

l1=−N

N
∑

l2=−N

· · ·
N
∑

lM−1=−N

e−i τ

2
ε̄

T0

m
2+l

2
1
+···l

2
M−1

M ·

· Jl1−m(
k

M
)Jl2−l1(

k

M
) · · · Js−lM−1

(
k

M
) (4.17)

in (4.16) for k → 0 when Js−m(k) → δs,m . Then,

Jl1−m(
k

M
)Jl2−l1(

k

M
) · · · Js−lM−1

(
k

M
) = δl1,mδl2,l1 · · · δs,lM−1

= δs,m (4.18)

and

m2 + l21 + · · ·+ l2M−1

M
= s2 . (4.19)

Thus, it is proved in the limit k → 0 that the expression in (4.17) can be reduced to the form which

exists in δ-KR

e−i τ

2
ε̄

T0
s2Js−m(k) . (4.20)

Then, the main problem seems solved

< m | e−i(A+B) | s >=< m | e−iAe−iB | s > +O(
1

M
) , (4.21)

where M → ∞ . Finally, after the appropriate calculation the well known quantum δ-KR eigenvalue

problem approximately appears with respect to the estimated accuracy in (4.21). It means that the
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quantum σ-KR is also suitable to simulate the quantum δ-KR in the case when ε̄
T0

is not a small

parameter.

Further, the evolution operator for the quantum atto-KR in (4.4) is

U = e−i τ

2

(

1− ε̄

T0

)

p2

e−i τ

2
ε̄

T0
p2+iS̄k cos θ , (4.22)

where

S̄ =
T

πT0

2k1+1
∑

q=2k0+1

1

q
sin(qωt0 + qϕ) sin

ε̄

2
qω = 0.012682468 . (4.23)

In the same way as before the quantum δ-KR eigenvalue problem is obtained with the same accuracy as

previously

N
∑

l=−N

[

im−lJm−l(k̃)e
−i τ

2
l2 − e−iΩδml

]

u+
l ≃ 0 , (4.24)

where k̃ = S̄k . It is an important result. All phenomena of the quantum δ-KR persist in the atto case,

too, and the only change is k → k̃ .

We note that the quantum δ-KR eigenvalue problem can be also considered by using sets of symmetry

adapted basis functions, particularly for even and particularly for odd states. Thus, for example, for odd

states the appropriate eigenvalue problem is

N
∑

l=1

(

Ūml − e−iΩδml

)

v−l ≃ 0 , (4.25)

where are

Ūml =< m | U | l > − < m | U | −l > (4.26)

and

v−l =
√
2u−

l . (4.27)

By solving (4.24) for large k̃ quantum δ-KR phenomena can be seen. When τ
4π is an irrational

number, dynamical localization appears. It is an exponential localization in angular momentum space

similar to the Anderson localization in disordered solid [ 5 ]. The example is shown in Fig.7 . The

exponential drop is clearly visible. In addition, in Fig.8 another example obtained by solving (4.25) is

given. For values τ
4π = p

q
the quantum resonances appear. In Fig.9 such an example is presented.

Next, we consider influence of noise-oscillations between pulses in quantum atto-KR. Therefore, we

assume approximate periodicity in the noise-oscillations with period T0 (see Fig.1) so that (4.2) is still

valid. As a final result eigenvalue problem (4.24) again appears. The only change is in parameter k̃ .

It is now k̃ = (Ḡ+ S̄)k , where is Ḡ= 0.062966421. This means that periodic noise-oscillations do not

disturb the phenomena of quantum δ-KR.
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The classical δ-KR assuming a fully developed chaos shows a linear growth of kinetic energy (3.11).

It is also well known that the quantum effects tend to suppress this diffusion due to the mechanism

of dynamical localization. This is first demonstrated at δ-KR. Here, we will examine it on the basis of

quantum the atto-KR . Thus, we suppose the wave packet initially located at 0 site in angular momentum

space. We further follow its time evolution assuming (4.22). Noise-oscillations are not taken into account

here. Fig.10 shows scaled kinetic energy of the wave packet calculated up to t=2000 compared with the

appropriate results from quantum δ-KR . A full agreement is obtained. Suppression of classical diffusion

with increasing time is present in both cases. It must be emphasized on the basis of δ-KR calculations

that only for t=1 the classical and the quantum approaches give the same result. From now, for t > 1

the suppression of diffusion begins more and more. Here, we obtain at t=1 for the energy

E1 ≃ k̃2

4

assuming τ=1 . This is approximately the same result as for the classical particle obtained with the

Chirikov standard map. In this way, the Chirikov standard map nevertheless appears in the quantum

version of atto-KR . In addition, in Fig.11 the wave packet is shown in angular momentum space after

t=2000 iterations. Namely, the absolute value of

Ψ−

m(t) = e−Ωtu−

m(t) (4.29)

is shown. It is clear that the wave packet still exists on 0 site with finite probability.
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V. Conclusions

The well known and researched δ-KR is an ideal version. Pulses of truly infinitesimal duration are

unachievable experimentally. Thus, an approximate form of δ function is assumed. So, it has been

first noted that such a version called σ-KR is quite suitable to simulate δ-KR in the limit ε̄
T0

→ 0 .

It has already applications in molecular physics by using femtosecond laser pulses [ 36 ]. Then, σ-KR

possibilities are analyzed in the here important case when ε̄
T0

is not a small parameter. A possible

approximation of the APT pulses with Gaussians may be useful. After that, the APT is investigated for

the first time, with respect to the application in KR. We emphasize again that ε̄
T0

in APT is surely not a

small parameter. Thus, this version of KR is denoted as atto-KR . It seems to be the most realistic version

of the KR since it takes into account the oscillations within the pulse as they appear in the experiments.

The atto-KR is examined from both the classical and the quantum aspects. Classically, the atto-KR

cannot be reduced to the Chirikov standard map. Therefore, a new map has been proposed. It may be

useful for the experiments with classical chaos and possible applied APT. In particular, quantum atto-KR

gives satisfactory results. Phenomena such as dynamical localization and quantum resonances appear

undisturbed and they are insensitive to the periodic noise-oscillations between the pulses. Quantum

atto-KR is also suitable for examining how the quantum effects tend to suppress the classical chaos and

diffusion.

We emphasize that in Ref.[ 37 ] the atom-optics quantum KR is considered on the basis of the so-called

ǫ-classical standard map. The approximation used in that paper is the same as the ones mentioned in

Sec.III for σ-KR and atto-KR in the case when ε̄
T0

is not a small parameter. Thus, it is further shown

that ǫ-classical treatment can be successfully applied to describe the dynamics of QR ratchets so far

studied using purely quantum methods. It can also be an indication of the validity of the approximations

distinguished in Sec.III . Nevertheless, in Ref.[ 38 ] kicks in the form of square pulse of duration ε̄ are

applied to investigate quantum resonant dynamics in finite-temperature driven gas. It should be pointed

out that in that case the quantum δ-KR eigenvalue problem the same as in (4.24), appears. The difference

is only in the parameter k̃ , it is there k̃ = ε̄
T0
k . Then, it is important to note that this approach was

adequately used in Monte Carlo simulations for investigating quantum resonances.

Moreover, it seems that the most important application of the quantum atto-KR can be in molecular

physics for rotational excitations of diatomic molecules. Here, we give a simplified consideration of this

problem from the aspect of atto application.

Diatomic molecules are often considered in the simple approximation as rigid rotors assuming a fixed

bound length. Then, knowing equilibrium distance rα of the two nuclei in molecule and rotational part

of energy spectrum Eα
r for given state α , rotational period of molecule can be calculated based on

the known expression for angular kinetic energy of classical rigid rotor as

Tr = πrα

√

2µ

Eα
r

, (5.1)
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where µ is the reduced mass of the nuclei. Thus, must be

ε̄ ≪ Tr , (5.2)

assuming ”kick” in the impulsive molecular alignment. Here, it should be emphasized that in the advanced

approach with femtosecond laser pulses [ 39 ] a typical ratio Tr

ε̄
∼ 200 is estimated in that case therefore.

Thus, supposing that the same relationship applies in the atto case too, the corresponding rating for Tr

can be Tr ∼ 0.08 ps . This further implies the choice of molecules and the corresponding states α .

In addition, we believe that many atto kicks during the so determined Tr may in general improve the

creation of an ensemble of aligned molecules
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Figure captions

Fig.1

Electric field Eh(t− t0)/E
0
h corresponding to APT , where t is given in attoseconds.

Fig.2

Map given by (3.7) and (3.8) is shown for the value of parameter K̄ = 50 .

Fig.3

Map given by (3.7) and (3.8) is shown for the value of parameter K̄ = 100 .

Fig.4

Map given by (3.7) and (3.8) is shown for the value of parameter K̄ = 150 .

Fig.5

Map given by (3.7) and (3.8) is shown for the value of parameter K̄ = 500 .

Fig.6

Scaled (dividing by 100) rotational energy for K̄= 500 , where n is dimensionless time .

Fig.7

Dynamical localization in angular momentum space for τ=1 k̃=30 .

Results ln(mod( u+
m)) as a function of m for the appropriate even state

are obtained by solving (4.24) . The estimated localization length is ∼ 150

assuming pseudo-random transfer matrix approach or ∼ 11 as in Ref.[ 5 ] .

Fig.8

Dynamical localization in angular momentum space for τ=1 k̃=30 .

Results ln(mod( v−m)) as a function of m for the appropriate odd state

are obtained by solving (4.25) .
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Fig.9

Quantum resonance in angular momentum space for τ = 2π k̃=30 .

Fig.10

Scaled (dividing by 100) kinetic energy in time, corresponding

a.) red quantum δ-KR , k =30

b.) black quantum atto-KR , k̃ =30

for τ= 1 .

Fig.11

mod( Ψ−

m(t) ) in angular momentum space for t=6000
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