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ABSTRACT
Introduction: The importance of biomarkers for pharmaceutical drug development and clinical
diagnostics is more significant than ever in the current shift toward personalized medicine.
Biomarkers have taken a central position either as companion markers to support drug develop-
ment and patient selection, or as indicators aiming to detect the earliest perturbations indicative
of disease, minimizing therapeutic intervention or even enabling disease reversal. Protein bio-
markers are of particular interest given their central role in biochemical pathways. Hence,
capabilities to analyze multiple protein biomarkers in one assay are highly interesting for biome-
dical research.
Areas covered: We here review multiple methods that are suitable for robust, high throughput,
standardized, and affordable analysis of protein biomarkers in a multiplex format. We describe innova-
tive developments in immunoassays, the vanguard of methods in clinical laboratories, and mass
spectrometry, increasingly implemented for protein biomarker analysis. Moreover, emerging techniques
are discussed with potentially improved protein capture, separation, and detection that will further
boost multiplex analyses.
Expert commentary: The development of clinically applied multiplex protein biomarker assays is
essential as multi-protein signatures provide more comprehensive information about biological systems
than single biomarkers, leading to improved insights in mechanisms of disease, diagnostics, and the
effect of personalized medicine.
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1. Introduction

Proteins are important mediators and actors in biology. Through
their multiple functional roles as enzymes, cellular signaling
components, neurotransmitters, cofactors or structural compo-
nents, proteins affect the metabolic state and activity of cells,
tissues, and organisms. Over the last century, proteins have been
extensively studied, particularly their level of expression, modifi-
cation, and interaction, as well as the dynamics involved. This
understanding has been used to select proteins as potential drug
targets and biomarkers to drive development of innovative ther-
apeutic drugs. More recently, differences in protein biology asso-
ciated with different pathologies, in some cases in combination
with genetic variations, have been used to drive personalized
medicine, whereby individually optimized therapies are based
on these molecular changes [1].

Personalizedmedicine is from its conception driven by biomar-
kers that provide a comprehensive view of a specific human
biological system. These biomarkers include different types of
molecules (proteins, DNA, RNA, metabolites), cellular and tissue
morphologies, and functional read-outs [2]. One of the first clinical
demonstrators of biomarker-driven patient stratification toward
higher clinical success was the combination of trastuzumab with
the HER-2/neu immunohistochemistry assay [3], followed by other
successes in oncology and beyond. As a consequence of increas-
ing biological understanding, researchers have a rapidly growing
need to measure multiple functional biomarkers, preferably in
a simultaneous way. This review focuses on analytical methods
that allow multiplex quantification of proteins and can potentially
be used to quantify protein biomarkers in the clinic.

The overall workflow for multiplex protein analysis is in several
aspects similar to singleplex protein analysis: 1) define the context
of use, 2) select the proteins to be studied, 3) develop sample
preparation methods that fit the measurement of the selected

proteins, 4) develop analytical methods to measure the selected
protein parameters, 5) develop data analysis methods to interpret
the data in a biological context. However, in multiplex protein
analysis inter-protein effects can complicate assay development
and application. In addition, the need for stringent quality control
of assay reagents to avoid research irreproducibility [4] is increased
when multiple proteins are targeted in one assay. For that reason,
researchers need to carefully select the analytical platform for
multiplex protein tests.

Recently, researchers including us urged for the need to
define best biomarker practice guidelines to bridge translational
innovation gaps and improve the field of biomarker research and
development [5,6]. We subsequently formed the pan-European
COST CliniMARK consortium with academic and industrial bio-
marker scientists to define best biomarker practices. Among the
items addressed, there was a strong focus on translational pro-
tein biomarker assays. In fact, despite the widespread knowledge
of singleplex protein analyses, there is still limited information on
the variousmethods and platforms available for clinical multiplex
protein testing. Furthermore, regulatory guidelines for multiplex
protein diagnostic tests are emerging but still have to find their
way to research and health-care communities.

Here, we compare several techniques for multiplex analysis
of proteins and include a pragmatic head-to-head comparison
of multiplex analytical approaches. We focus on soluble (or
solubilized) proteins using assay platforms with clinical poten-
tial. Immunoassay and mass spectrometry-MS methods are
reviewed as the predominant platforms, and emerging meth-
ods with potential for further development into clinical appli-
cation are also presented. In addition to analytical qualities,
pre-analytical aspects are also essential in biomarker research.
In this review, pre-analytical aspects are only considered in
relation to a few specific analytical approaches. More general
and comprehensive information about the importance of pre-
analytical techniques is described elsewhere [7].

2. Sample selection and preparation

Validation of protein biomarkers requires the use of a robust
assay to analyze hundreds, if not thousands of samples, stan-
dards, and calibrators. Since the final goal is the implementation
of the test in the clinic, it has to be highly reproducible, capable
of standardization, scalable for automation and high throughput,
and implementable for users of diverse skills. Hence, moving into
the validation phase is not only about confirming a good or
excellent biomarker response in relation to disease, but also
about demonstrating the potential to translate the procedures
to open-access platforms and multi-user interfaces. Sample pre-
paration should be simple, preferably comprising a few steps to
minimize experimental variations and analytically validated.
Appropriate internal and external controls should be included
to enable quality assessment when comparing batch-to-batch
analyses over time. With this in mind, we provide a guide to the
preferable sample sources and preparation methods for biomar-
ker validation studies (Figure 2, 3).

Selection of the sample type is critical. Whereas solid tissues are
ideal for biomarker discovery since they are the source of biochem-
ical alterations, they fall short in the validation stage. Solid tissues
are inherently complex comprisingmultiple cell types, presence of

Article highlights

● High-throughput methods to validate proteins of choice by multiplex
methods in a robust, time-efficient, and cost-effective manner are in
place to further drive protein biomarker research and implementa-
tion in the clinic.

● Clinical immunoassays are established as a robust platform for multi-
plex protein analyses. Recent improvements in protein binding,
detection, and miniaturisation have yielded robust assays to semi-
quantitate a large number of preselected protein biomarkers in
integrated assay panels. Particular attention has to be given to the
characterization of protein binders as this drives assay specificity,
selectivity, sensitivity, and throughput.

● Mass spectrometry has the unique capability to detect proteins and
their post-translational modifications in an unbiased manner, redu-
cing the necessity of selective protein binders. New developments in
PRM, DIA, SWATH, FAIMS, and IMS will further improve the resolution
and throughput of protein analytics. An elaborate understanding and
solution of ion suppression will be found to increase the protein
sensitivity.

● Alternative technologies in immunoassay based on optical label-free
technologies will mature to a sensitive, multiplex, and label-free
detection of biomarkers.

● The concomitant experimental development of nanotechnology-enabled
resonator-based biosensors, site-directed bio-functionalization techni-
ques, multi-spectral analytical approaches, and single-molecule protein
sequencingwill open promising perspectives for high-throughput protein
clinical detection systems.
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blood and can vary substantially from patient to patient. Physical
(homogenization, cryo-pulverization, extrusion, and sonication),
chemical (detergents, chaotropic salts), and/or enzymatic (matrix
proteases) treatment steps are required to extract proteins from
solid tissues creating a source of experimental variation. Hence,
quantitative interpretation of protein expression in solid tissues is
challenging and impractical for longitudinal studies. Newly emer-
ging strategies to isolate and clonally grow specific primary cells as
organoids to simulate tissuemicroenvironments is gaining traction
in understanding themolecular processes of disease for individual
patients and lends itself ideally for proteomics analysis [8]. Due to
the relatively small size of these primary cells, similar extraction
methods to those used for cell line cultures can be employed. As
yet, organoids are not commonly used for biomarker validation
but rather to select therapeutic agents.

Consequently, within the current regimen of acquiring clinical
samples, which is aligned to immunoassay-based and mass
spectrometry strategies, validation translates to more accessible
sources such as biofluids. There are more than 30 biofluids, the
most common being blood, cerebral spinal fluid (CSF), urine,
saliva, tears, sweat, ear wax, interstitial fluid, and amniotic fluid.
Biofluids or liquid biopsies require fewer preparation steps and
are suitable for longitudinal collection from patients as part of
continuous surveillance. They can also be a source of extracellu-
lar vesicles (e.g. exosomes) which contain molecular (protein,
lipids, nucleic acids) information regarding specific diseases.
Hence, liquid biopsies although surrogate for solid tissues, are
more advantageous in the majority of validation studies.

Standardized procedures for collecting liquid biopsies are critical
for immunoassay and proteomics analyses and data interpretation.
Implementation of a collection protocol requires clear understand-
ing between the clinician (e.g. consenting, patient reassurance),
patient/volunteer (e.g. willingness to participate, fasting) and ana-
lyst (e.g. sample traceability, standard operating procedures).
Where possible this should be within a controlled environment
(e.g. storage for sample stability), even for readily collectible fluids
such as saliva or urine. In addition, accurate, anonymized clinico-
pathological and patient personal data are essential to determine
biomarker response related to the studied disease. A further con-
sideration is the implementation of these procedures across differ-
ent collection locations, whether these are hospitals, community
centers, or at home. Even within the same type of settings, such as
phlebotomy suites, understanding the variables (for example, dif-
ferent practitioners, different makes of storage vessel, transfer time
from patient to storage location) are important variables, the toler-
ances of which need to be measurable and acceptable for
a biomarker assay to viable. Ultimately, anonymized patient
records, not only clinical data but also relevant personal data, are
essential to enable interpretation of biomarker levels proportionate
to disease specificity and not to unrelated confounding factors.

3. Immunoassays

3.1. ELISA

Enzyme-linked Immunosorbent Assay (ELISA) is a quantitative
analytical method that measures antigen–antibody reaction
via a color/light/fluorescent signal obtained by using an
enzyme-linked conjugate and an enzyme substrate. This

allows the measurement of the concentration of molecules
in biological fluids or biological systems [9]. The technology
was originally developed in 1971 as a follow-up on radioactiv-
ity-based assays [10]. It is a widely used method for research
and clinical diagnostic purposes in different disciplines such as
immunology, cancer, infectious diseases, and inflammation. It
is a sensitive and specific test that produces rapid high-
throughput results, with the advantage that it does not
require complex equipment or radioactive labels.

ELISA assays can be found in different formats (Figure 1(a)). The
most commonly used ‘sandwich’ ELISA format requires two anti-
bodies specific for different epitopes of the antigen; a capture anti-
body and a detection antibody. The antigen-antibody complex can
be visualized via color change, chemiluminescence, or fluorescent
signals using an enzyme-linked conjugate (e.g. HRP – Horse Radish
Peroxidase) and an appropriate substrate (e.g. TMB – 3,3ʹ,5,5ʹ-
tetramethylbenzidine). In some cases, the visualization is based
on a labeled secondary antibody being specifically bound to
a primary detecting antibody [11]. The sandwich format offers
higher sensitivity (pg/mL up to μg/mL) and specificity than direct
and indirect ELISAs (using just one antibody) and enables the
widespread use in preclinical and clinical laboratories. In addition,
competitive ELISA [12] and in-cell ELISA (quantification of a target
protein in cultured cells with a primary antibody; Figure 1(b)) [13]
are techniques based on the same principle but with specific
applications and throughput. The ELISPOT (Enzyme-linked
Immunospot Assay) is a highly sensitive and quantitative sandwich
immunoassay for measurement of proteins secreted by plated cells
attached to supportive matrixes [14] (Figure 1(c)).

Although the ELISA is regarded as a singleplex assay for-
mat, the method can be made suitable for multiplex protein
analysis. Monoclonal, polyclonal, or recombinant antibodies
with a defined specificity, sensitivity, and stability can be
combined in one test to allow binding of multiple proteins.
In addition, the use of different fluorochromes to detect dif-
ferent antibodies enables multiple parallel read-outs, visualiz-
ing multiple proteins simultaneously [15]. These multiple
readouts are combined in novel immunoassay formats in
which different capture antibodies are immobilized on sepa-
rate particles such as magnetic beads. Protein-specific fluores-
cence or streptavidin-labeled detection antibodies bind to the
specific capture antibody-antigen complexes on a bead, after
which each bead-antibody-antigen complex is analyzed by
flow cytometry, yielding a multiplex analysis of up to 500
analytes per microwell (Figure 1(d)).

The ELISA principle can also be applied for single-cell pro-
tein secretome analyses using single-cell barcode chips cap-
turing a panel of 32 pre-specified proteins from a single cell in
each microchamber. The cells of interest may be stimulated
and sorted before loading the cells on a chip. Chips are
analyzed using Isoplex machinery, which contains automated
cellular imaging and includes a complete ELISA workflow. The
software provides information on the secreted proteins across
different categories: homeostatic, proliferative, inflammatory,
chemotactic, regulatory, and immune effector functions and
provides a polyfunctionality strength index [16] (Table 1).
Other commercially available methods for multiplex protein
detection are reviewed below and summarized in Table 1.
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3.2. Chemiluminescence

Chemiluminescence detection is more sensitive than chromo-
genic technology to quantify multiple proteins. Spot-specific
chemiluminescence detection by a charge-coupled device
(CCD) camera is a plate-based multiplexing mini-array detection
approach for high-throughput analysis of proteins. In this

multiplex system, antibodies are spotted in a 96-well plate, and
well-plate surfaces can be chemically modified to bind proteins.
The samples are added to the wells and the target proteins
captured by the antibody array. In the next step, biotinylated
antibodies, specifically binding to the captured proteins, are
added. Streptavidin-HRP conjugate and a chemiluminescent
substrate are finally incorporated. A catalyzed oxidation of the

Figure 1. (a) – represents different ELISA formats and configurations. The resulting immune-complex is detected through an enzymatic reaction to produce a color,
chemiluminescent, or fluorescent signal. (b) – represents ‘in cell ELISA’ for detection of intracellular analytes. (c) – represents ELISpot for detection of analytes
secreted by cells. (d) – represents different strategies for immunoassay multiplexing. The bead-based approach relies on analyte-specific color-coding of fluorescent
capture beads, while the label-based approach relies on the use of analyte-specific labels attached to the detection antibodies. The spot-based approach relies on
physically separated analyte-specific spots.

Figure 2. Representation of common MS-based proteomics approaches, i.e. targeted proteomics or data-dependent proteomics. In both bottom-up strategies,
peptide detection is applied for protein identification or quantification. Generally, proteins are enriched, mainly by precipitation, and further denatured, reduced,
alkylated, and digested chemically or enzymatically into peptides. After separating the peptides by liquid chromatography (LC) or capillary electrophoresis (CE), the
ionization process converts the peptides into gas-phase ions, which enables the mass spectrometer to separate the ionized peptides based on their m/z ratios.
Targeted proteomics (SRM/MRM/PRM) allows absolute quantification of selected proteins if stable isotope standards are included in the analysis. In classical label?
free data-dependent acquisition (DDA) proteomics or ‘shotgun’ proteomics, peptide ions are specifically selected for fragmentation based on their detection
intensity in precursor ion scans collecting MS/MS spectra for as many peptides as possible, which are identified against a proteomics database.
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substrate generates chemiluminescence at each spot with the
captured targeted proteins, which is measured by imaging the
entire plate using a compatible CCD camera technology. For the
determination of each analyte concentration corresponding pro-
tein standards are applied [26,27]. Commercially available planar-
based multiplex ELISA kits, requiring chemiluminescent detec-
tion for quantification of inflammatory markers in serum, plasma,
urine, cell, and tissue lysate fromdifferent sources have also been
produced [28]. Additionally, chemiluminescence-based single
molecular analysis arrays are produced enabling performance
of up to a 12-plex assay in a well [26]. (Table 1 and Figure 1).

Sensitivity of detection is further increased by electroche-
miluminescence (ECL) in which the substances are brought to
a higher excitation level via an electron transfer reaction. The
electron transitions from a high excitation state to a much
lower energy state are accompanied by light emission, and the
emitted light can be detected, which enables ultra-sensitive
analysis [29]. Despite that for many years this phenomenon
was considered to be a part of fundamental research without
an apparent practical application, ECL detection is now used
to develop commercial devices to determine several clinically
relevant analytes, including protein biomarkers and antibodies
(Figure 4). An exhaustive overview of ECL bioapplications can
be found in [30–32]. Commercial platforms, such as those of
Mesoscale Discovery, exploit ECL as their method of detection
[33]. Also, the possibilities of using ECL for point-of-care test-
ing [34], microfluidics and paper-based technologies [35] or
the combination of ECL with bipolar electrodes [36] have been
evaluated at experimental level.

3.3. Lateral flow immunoassays

Lateral flow immunoassays (LFA) are successful systems in
Point of care (POC) testing and used for both qualitative and
quantitative monitoring in resource-limited or non-laboratory
settings, for example in emergency settings [37]. LFA uses
similar principles as ELISA, in which the capture antibody is

immobilized to form a test line on a solid phase strip, e.g.
nitrocellulose membrane, instead of a plastic well. The detec-
tion antibody is conjugated to a colorful particle or fluorescent
label and this conjugate is allowed to freely react with the
target analyte on the strip, when the sample is applied. As
capillary action transfers the sample components through the
test strip, the complex of the target analyte and detection
antibody label-conjugate is halted at the test line by the
capture antibody. The presence and/or concentration of the
analyte in the sample can be determined by the intensity of
the label at the test line [38,39]. Limited multiplexing of LFA
can be achieved by incorporating multiple test lines for differ-
ent analytes on the same strip or by creating an assembly of
several strips around a common sample application pad.
Several commercial LFAs have been used in the clinical
world for biomarkers such as alpha-fetoprotein (AFP), carci-
noma embryonic antigen (CEA), prostate-specific antigen
(PSA), virus detection [40] and fecal occult blood (FOB). Both
to automate and integrate LFAs with medical analyses, smart-
phone sensing has gained interest in the last decade [41,42]
leading to the development of different POC systems for
various diseases. Smartphone sensing technology measures
colorimetric or fluorescence-based signals with an appropriate
software or an app using colored molecules or fluorophores,
respectively [43,44]. Thus, a term ‘mobile health (mHealth)’
which refers to the data sharing between patients and physi-
cians emerges, including the use of websites and/or applica-
tions to specify and/or monitor a particular health condition
[45]. The aim of mHealth is to achieve better personalized
healthcare with providing an immediate resource for clinical
decision by doctors and pharmacists [46].

3.4. DNA-based protein detection

Partly based on the immunoassay principle other platforms have
emerged whereby protein binding by antibodies is combined
with DNA-based detection using the advantages of signal

Figure 3. Decision matrix for the biomarker validation workflow using MS-based proteomics (font size defined by the number of papers found using keyword
searches [biomarker + validation or verification + protein ± clinical + specific term, e.g. tissue or top-down] in Pubmed). The red-circled keyword is ‘organoid,’
a newly emerging 3D primary cell-based sample proving valuable in personalized biomarker validation, but representing only 0.036% of the ‘sample type’ papers at
the current time.
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amplification. In so-called proximity extension assays (PEA), a pair
of antigen-specific antibodies are conjugated with complimen-
tary oligonucleotides that produce a PCR target sequence when
both antibodies bind to target protein in close proximity. After
amplification, the DNA barcode is quantified by standard micro-
fluidic qPCR using specialized equipment. The advantage of this
approach is that it limits cross-reactivity as only matched DNA
reporter pairs will be amplified. This allows high specificity and
a higher degree ofmultiplexing in comparison to othermultiplex
assays (most of them limited to maximum of 10-plex assays). The
PEA has been used to analyze a number of potential diagnostic
or prognostic biomarkers in areas such as cancer and inflamma-
tion research [47]. Commercial PEAs facilitate multiplex assays
enabling simultaneous detection of 92 analytes (in total >1100
pre-selected analytes are experimentally available) in only 1 µL of
sample [47] (Table 1).

4. Mass spectrometry

Mass spectrometry is a powerful technique for detailed mole-
cular characterization of biomolecules, including proteins,
metabolites, lipids, and carbohydrates. Rather than just detec-
tion, mass spectrometry can reveal unique chemical fragments
of such biomolecules, including post-translational protein
modifications and specific metabolic isoforms of specific bio-
chemical interactions [48,49].

Mass spectrometry (MS) is well suited for detection of
proteins and proteoforms. Yet, because it also detects many
other analytes, a thorough sample clean-up of clinical samples
is required to remove contaminating salts and endogenous
non-protein biological components. Furthermore, the huge
dynamic range of proteins present in biological samples is
a challenge for mass spectrometry analysis. For cultured cells
and liquid biopsies such as urine and saliva, this difference is
only 6–9 orders of magnitude whereas in plasma and tissue
samples the dynamic range can be greater than 12, with

serum albumin representing over 50% of the protein content.
To overcome this, either abundant proteins are removed or
target biomarkers enriched to enhance their detection [50]. In
the former approach, samples (typically plasma or serum) are
immunodepleted on columns that capture albumin, endogen-
ous immunoglobulins, transferrin, fibrinogen, and apolipopro-
teins [51]. Proteins of interest do not bind to the columns and
are recovered in the flow-through. In the latter case, protein
enrichment may be carried out by subcellular fractionation
using ultracentrifugation [52] or affinity chromatography
with activity-based chemical probes to isolate specific protein
classes based on structure and/or function (e.g. glycosylation,
ubiquitination, kinases, phosphoproteins, metalloproteins)
[53,54]. Immunoprecipitation, immunocapture, and capture
by anti-peptide antibodies (SISCAPA) and mass spectrometric
immunoassay (MSIA) are alternative methods dedicated to the
enrichment of specific peptide or protein targets as these
techniques provide the highest selectivity and sensitivity for
low-abundant proteins [55,56] (Table 2). Precise and absolute
quantification can be reached by the inclusion of stable iso-
tope standards. Most ideally heavy labeled endogenous pro-
teins are used for absolute and relative quantification of
proteins of interest. However, for practical and financial rea-
sons this is in many cases impossible, a second best solution is
recombinant heavy labeled protein. This gives an identical
concentration of the enzymatic generated peptides of the
protein, although the folding and possible modifications pre-
sent in the endogeneous protein are absent in the recombi-
nant protein. A third and most commonly used option is the
use of heavy labeled peptides. Because these peptides of one
protein are chemically synthesized separately, differences can
occur because of inaccuracies in determining the amount of
peptide synthesized, different suppression of ions in the mass
spectrometer cannot be corrected accurately for differences in
behavior among the heavy labeled peptides and variances in
recovery of the separate peptides from stock solutions can

Figure 4. Labeled- and label-free strategies for electrochemical sensing of protein biomarkers. Various bio- or biomimetic recognition elements ensure the selective
binding of the target protein, followed by the transduction of the binding event into a measurable electrochemical signal (MIP – molecularly imprinted polymer;
FET – field-effect transistor).
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occur. Despite the shortcomings of stable isotope labeled
peptides, it is the most practical solution to perform the
quantification of proteins with mass spectrometry. All these
steps mentioned above are designed to assist identification of
the protein of interest by proteomics-based mass spectrome-
try, but may increase sample preparation complexity and
hence experimental variation.

Once the appropriate protein sample has been prepared,
mass spectrometry can be employed to analyze intact proteins
(‘top-down’ proteomics) or as peptides following proteolysis
(‘bottom-up’ proteomics). In ‘top down’ proteomics, proteins
are analyses as intact molecules rather than as smaller peptide
fragments [83]. Analytical coverage of an intact protein still
provides a strong challenge, although mass spectrometers
capable of ‘top-down’ proteomics (MALDI MS with in-source
decay, Orbitrap-MSn, UHR-QToF MS, Fourier transform mass
spectrometry-MSn) are able to analyze an increasing number
of intact proteins in one run [84]. Consequently, enrichment
and affinity methods as described above play an essential role
prior to intact protein analysis by MS. Although it circumvents
the need for protease digesting proteins to peptides, ‘top
down’ proteomics still has to be improved for broader appli-
cations in biomarker discovery and validation, and only limited
examples of clinical applications are published [85] (Figure 3
and Table 2).

‘Bottom-up’ proteomics is the mainstay of biomarker
research. However, sample processing methods in the transla-
tion from discovery to validation have a substantial impact on
reproducibility, particularly when considering analysis of multi-
ple experiments [86]. Whichever biological sources and extrac-
tion methods are used for validation studies, protein samples are
likely to require clean-up (removal of detergents and other
endogenous biomolecules) and necessitate concentration (e.g.
urine) prior to proteolytic digestion [87]. Irrespective of the
method used (protein precipitation with organic solvents/acids,
dialysis, C1 or C4 reverse-phase cartridges, size exclusion chroma-
tography and molecular weight cutoff spin columns), all addi-
tional steps risk lowering biomarker yield and increase potential
for experimental variation. So far, most of these methods have
not been universally standardized, validated, and automated for
clinical use (Figures 2 and 3).

4.1. Mass spectrometry for biomarker validation –
targeted proteomics (SRM, MRM, and PRM)

Targeted proteomics experiments are classically performed
using triple quadrupole mass spectrometers in selected reac-
tion monitoring (SRM) or multiple reaction monitoring (MRM)
modes [88,89] (Table 2). SRM/MRM approaches have been
widely applied for small molecule analysis and only recently
emerged as a powerful analytical tool that can be used in
‘bottom-up’ proteomics, due to its wide dynamic range, rela-
tive and absolute quantification, and multiplexing capability.
For each target protein, signature (or proteotypic) peptides are
monitored using highly selective Liquid chromatography (LC)-
MS/MS analysis. Particularly, the first and third quadrupoles
(Q1 and Q3) of the instrument work as mass filters (typically
with a window of ± 1 Da), successively selecting a series of
signature peptide ions (Q1) and their corresponding

fragments (Q3). Each precursor ion and its fragment ions are
called transitions. The intermediate quadrupole (Q2) serves as
a collision cell. Due to their multiplexing and scheduling cap-
abilities (adjustment of transition monitoring at specific LC
elution times), SRM experiments are especially adapted to
large-scale evaluation studies of protein biomarker candidates
[90]. Parallel reaction monitoring (PRM) is a similar acquisition
mode specific to Orbitrap-type mass spectrometers. In this
case peptide ions of interest are selected in a quadrupole in
the same way as for triple quadrupole mass spectrometers,
but then fragmentation occurs in a linear ion trap before re-
routing all targeted product ions to the high-resolution
Orbitrap simultaneously rather than sequentially. This enables
higher sensitivity and more accurate quantification of the
product ions.

In targeted proteomics experiments absolute quantification
of candidate biomarkers is generally obtained using labeled
peptide standards incorporating 15 N and/or 13 C isotopes [91].
These stable isotope labeled (SIL) (also referred as AQUA pep-
tides) standards exhibit identical chemical and physical prop-
erties to the unlabeled target protein or its surrogate peptides,
but they can be distinguished by their mass difference.
According to the isotope dilution principle, SRM/MRM/PRM-
based quantification can be performed at the peptide level by
comparing transition signals from the isotope-labeled and the
unlabeled version of a given proteotypic peptide. Different
types of internal standards can be used, such as SIL peptides
[92], winged SIL peptides [93], SIL peptide concatemers
(QconCAT) [94], SIL protein fragments (QPrEST) [95] or full-
length SIL proteins (PSAQ or absolute SILAC) [96,97]. Several
comparative studies have shown that the quantification per-
formance of targeted proteomics assays can be greatly influ-
enced by the type and quality of the chosen standard
[96,98,99]. In this context, the proteomics community has
prepared specific recommendations to ensure the develop-
ment of reliable and reproducible targeted proteomics assays,
in a ‘fit-for-purpose’ approach [100,101]. Importantly, to pro-
mote the use of targeted proteomics assays, the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) has launched
an Assay Portal to serve as an open-source repository of well-
characterized targeted proteomic assays [102].

4.2. Data-dependent analysis (DDA) and
data-independent analysis (DIA)

Historically most ‘bottom-up’ MS approaches use commercially
available mass spectrometers (ion traps, Q-TOFs, IMS-TOF MS,
Orbitraps, FT-MS, LC-MALDI MS/MS) for Data-Dependent
Acquisition (DDA) compilation of proteomics data, particularly
for discovery-based strategies. In the DDA strategy, as peptides
pass through an LC column and enter the mass spectrometer, the
instrument scans all ions but then chooses a subset of those,
typically the most abundant ones (MS1 spectra), as precursor
ions for further fragmentation usually by Collision-Induced
Dissociation (CID). The fragmented ions obtained are then
acquired to generate MS/MS data (MS2 spectra), which is used
to identify peptides by reconstructing the peptide’s amino acid
sequence by database searching. Clinical applications of DDA
workflows have proven to be robust and easy to implement in
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the clinical setting [103,104]. Nonetheless, DDA strategy presents
some disadvantages such as the speed of data acquisition, relative
low reproducibility compared to immunoassay, absence of impor-
tant information due to the low-abundant peptides that may not
be available for fragmentation and lack of standardization of the
quantitative strategy.

To overcome these limitations, a Data-Independent
Acquisition (DIA) strategy was developed by Smith group
[105] and later refined by the Aebersold’s group in 2012
utilizing triple-TOF mass spectrometers, in which all theoretical
spectra within sequential mass windows (known as SWATH-
MS) are acquired [106–108]. A similar acquisition approach is
possible on Orbitrap mass spectrometers, called WiSIM DIA
[109] and on ion-mobility (IMS) mass spectrometers (MSE)
[110,111]. The idea behind DIA is to record all MS2 spectra
from all precursor ions that fall in a specified mass-to-charge
ratio (m/z) range, in a systematic and unbiased manner, lead-
ing to the entire set of peptide precursors of a sample.
SWATH-MS technique is particularly innovative for discovery
purposes due to its proposed data extraction strategy as it
combines faster DIA with targeted data extraction. In each
SWATH-MS measurement, data acquisition relies on consecu-
tive and established m/z ranges of precursor ions that are
isolated in order to be subjected to fragmentation. Through
a rapid and recursive scan of these sequential m/z windows,
the total precursor ion m/z range of previously digested pro-
teins is covered and fragmentation spectra of precursor ions
are obtained.

The DIA data obtained constitutes a complete digital map
where ionized ions and specific peptides can be identified
and/or quantified by applying targeted data extraction against
a previously identified peptide list (also called library). These
reference spectral libraries should contain all prior known
information regarding peptide components of proteins in
a study (e.g. retention time, precursor m/z or MS2 spectra) in
order to be extracted from the DIA data. The peptide MS2
assay libraries can be generated locally through DDA analysis,
obtained from community data repositories or even
a combination of both. Thus, using an in-house generated
library or combining it with a publicly accessible one, the
overall information should ideally have high degree of protein
coverage. The major repository of the peptide library assay
[112], covering ~51% of human proteome (>10,000 proteins) is
accessible to the scientific community for SWATH-MS analysis
in human samples. Other public libraries have been made
available by SWATH atlas (www.swathatlas.org). However, at
this point, it seems conceptual that a locally generated in-
house library is favored as it can be used for several SWATH-
MS measurements, with the same LC conditions used to elute
the unknown samples. This allows the retention times of
eluted peptides to be within a similar range of those in the
library. The quality and coverage of the library are of crucial
importance for SWATH methodology performance. There are
several detailed protocols [113,114] that have been success-
fully used to build a high-quality library for targeted analysis of
SWATH-MS data, supported by DIA analysis software tools. An
in-house library spectrum can be expanded at any time just
with the addition of more information from DDA acquisition.

To build more robust libraries, several sample processing stra-
tegies can be applied to reduce proteome complexity before
LC-MS analysis, such as protein or peptide fractionation, PTMs
or protein-specific enrichment, and depletion of most abun-
dant proteins [114]. Thus, it must be taken into consideration
that these procedures increase substantially the sample pro-
cessing which may compromise analytical reproducibility.

DIA methodologies take advantage of high reproducibility
and sensitivity of well-known target methods such as SRM,
MRM, and PRM, with the increased proteome coverage nor-
mally seen in DDA analysis. In addition to its versatility and
due to its capacity of fragmentation of the entire sample, the
SWATH-MS technique is useful in characterization and/or
quantification of low abundance proteins within a proteome,
such as PTMs or other proteins that DDA (through shotgun
analysis) approach cannot reach. Furthermore, SWATH-MS is
a label-free methodology which is important for biomarker
discovery but has yet to make an impact on clinical applica-
tions. Despite all of the advances achieved in the last years,
DIA still has limitations in sensitivity as a tool for routine
clinical diagnosis [107]. The definition of the best operating
procedures, the standardization of protocols for sample pre-
paration and acquisition between laboratories, as well as the
need for appropriate and inexpensive internal standards will
possibly globalize the method but the application of DIA
strategies in clinic or large-scale studies is not reached yet at
this stage. Currently, efforts have been made in order to
achieve these goals and this will contribute to the increase
of both databases repositories (spectral libraries and digital
maps) (Table 2).

5. Alternative and other emerging technologies

5.1. Alternative protein binders

An impressive number of antibodies (monoclonal, polyclonal)
have been produced and are commercially available for bind-
ing specific proteins in biomarker assays. However, through
post-translational modification such as truncation, phosphor-
ylation, acetylation, glycosylation, many proteoforms can be
produced from a single gene product [115]. In the case where
a higher specificity for a particular proteoform is needed in
a biomarker assay, specific affinity matrices are required and
can be too time-consuming, inefficient, or impossible to gen-
erate the right antibodies for each candidate biomarker to be
validated. To that end, alternative binders have become avail-
able to replace or supplement antibodies. Firstly, affimers are
small and stable recombinant proteins that are based on
a stable protein scaffold, derived from the cysteine protease
inhibitor family of cystatins. They contain two variable binding
loops of nine amino acids each, which can be replaced with
alternative randomized sequences to generate affimer libraries
of ~1010 clones. These can be screened for affimers with
specific properties such as high specificity and/or low dissocia-
tion rate [116]. Of interest, affimers are heat and pH-stable,
expanding their application as protein affinity matrices in
assays. Secondly, aptamers are small molecules that can be
synthetically generated using combinatorial chemistry, thus
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generating libraries that can be screened for protein-specific
binding. Interestingly, aptamers are bound by proteins
through a conformational binding pocket, resembling drug
target and distinguishing from the binding of surface epitopes
by antibodies and affimers. SomaLogic developed aptamer-
based multiplex biomarker assays, measuring more than 1,300
protein analytes in a small volume of biological matrices in
a single run. The detection technology uses Slow Off-rate
Modified aptamers with dual nature for high protein affinity,
with defined three-dimensional structure and unique nucleo-
tide sequence which is recognizable by specific DNA hybridi-
zation probes [117,118]. Thirdly, less specific affinity matrices
were developed to enrich specific protein classes based on
their physical-chemical properties, such as lectins that have
a higher affinity for glycosylated proteins [119]. However, in
most cases, an additional high resolution of specific detection
method is needed which could be provided by mass
spectrometry.

5.2. Alternative protein separation

Capillary electrophoresis (CE) is a collective term representing
a number of electrokinetic separation techniques performed in
narrow bore capillaries or microchips. Capillary zone electro-
phoresis (CZE) is widely used for the separation of charged
species based on differences in their charge density. CE offers
an outstanding separation efficiency for peptides and small
proteins, being complementary with liquid chromatographic
(LC) separations, both in ‘top-down’ and ‘bottom-up’ proteo-
mics. Interfacing CE to MS has matured into a robust clinical
investigational tool in several disease areas [120], offering fast
separations with good analytical sensitivities in protein bio-
marker analysis [121]. The most popular interface of CZE-MS
coupling is via electrospray ionization (ESI). Both sheath-flow
and sheath-less interface designs are employed. To circumvent
significant sheath liquid-mediated sample dilution and the
limited sample loading capacity of CE, tapered emitters oper-
ating in the nanospray regime not only support lower flow
rates of the sheath liquid, but also contribute to better deso-
lvation, enhanced sensitivity, and better salt tolerance [122].
Miniaturization to a single microchip (MCE) with the use of an
electrophoretic step prior to biomarker detection may lead to
an attractive clinical diagnostic tool [123].

5.3. Multi-omics analysis platforms

Optimally, to obtain an in-depth view of biological systems DNA,
RNA, proteins and metabolites can be analyzed in one assay.
Recently, electrochemical-based biosensors have been devel-
oped in which a specific biorecognition element (e.g. antibody,
nucleotide strand, or aptamer) bind their biomarker target with
high specificity and are combined with sensitive read-out mod-
ules [124]. Such biosensors represent an ongoing developing
field for fast monitoring and assessment of clinically relevant
biomarkers usually from biological fluids. Varying working prin-
ciples have been put into practice, from platforms containing
antibodies or aptamers immobilized on nano-materials for elec-
trochemical biointerfaces [125] to magneto-immunosensors
[126] and to formulate multiplexed nanoscale biosensors

systems [127] (Figure 4). As a commercial platform, nanostring
developed fluorescent molecular barcodes linked to a specific
binder in combinations that are custom-made or pre-designed
for particular biomarkers. Following binding to their target, mole-
cular barcode probes are detected digitally through microscopic
imaging, thus detecting and counting up to 800 hundred unique
biomarkers. Of particular interest, by mixing the binders, differ-
ent moieties of biomarkers can be detected in one sample,
including DNA, RNA, and proteins [128].

5.4. Photonic and plasmonic resonating structure arrays

During the last decade a significant improvement of the analy-
tical performances of POC detection devices was enabled
through the development of photonic and plasmonic resonating
structure arrays. In a generic way, this signal-to-noise amplifica-
tion strategy relies on resonance phenomena responsible for
a stronger optical energy confinement at specific slots on the
substrate. One protein biosensor design focuses on label-free
approach based onmicro-resonators – ring resonator and crystal
cavities arrays – and localized surface plasmon resonance (LSPR)
on biofunctionalizedmetal nanoparticles or nanoantennas [129–
133]. The other main signal enhancement strategy focuses on
the use of a metal nanostructured substrate and near-infrared
fluorophore labels in immunoassays [134,135]. The excitation
field enhancement generated at the nanoscale gaps between
themetal structures results in an increase of the optical transition
rate and thus a stronger emission [136]. In comparison to more
conventional LFA-based nitrocellulose, this approach provides
a high signal-to-noise ratio, larger dynamic range – typically up
to 6 orders of magnitude – and reduced fluorophore auto-
fluorescence [137,138].

5.5. Miniaturized sensors

The current trend of miniaturization of immunosensors using
micro and nanotechnology promises to increase the sensitivity
and multiplexing for the analysis of proteins and other bio-
markers, while providing cost-effective alternatives to estab-
lished assays [139]. Nanostructured electrodes can provide
limits of detection at sub-nanomolar concentrations by the
use of redox labels with the advantage of using simple por-
table instrumentation [140–142]. Nanoparticles can be used to
increase the original concentration of the analytes using mag-
netic nanoparticles [143], as well as to increase the transduced
signal by optical (plasmonic or quantum dots) [144–146] or
electrochemical means (by redox reactions or by changing the
conductivity) [147]. However, usually these approaches make
the assays more complex due to the use of labels. Other
transduction methods based on nanotechnology are evolving
to develop label-free biosensors using optical, electrochemical,
and mass transduction. Micro cantilevers can be functionalized
for the detection of very low concentrations of proteins (fM)
[148]. Plasmonic immunosensors based on the localized sur-
face plasmon resonance (LSPR) [146,149] and immunoassays
based on potentiometric measurements with immuno-field
effect transistors (immunoFETs) [150,151] are promising tech-
nologies for label-free sensing offering ultralow sensitivities (fM),
cost-effectiveness and the possibility for ultra-high multiplexing
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combining several sensors with the concept of micro-arrays
(immobilization of molecular libraries) [152,153]. These charac-
teristics of transducers like plasmonic biosensors or immunoFETs
make them excellent candidates for early detection of cancer-
biomarkers and POC diagnostics [154–156]. However, most of
the nanotechnology-based devices are still at the stage of ‘proof
of concept.’While some of them have passed the threshold to be
commercialized for applications related to DNA, most of them in
combination with PCR amplification [157], protein assays still
have issues to compete in sensitivity and selectivity with respect
to well-stablished methods such as ELISA [158].

5.6. Protein sequencing

The strong improvements of immunoassays, mass spectrome-
try, and other targeted platforms to analyze proteins in multi-
plex mode, as discussed above, can still be further improved.
In that sense, we may be able to learn from the Next
Generation Sequencing field where exponential developments
have enabled parallel analysis of single DNA and RNA mole-
cules in multiplex fashion. In particular, parallel single-
molecule detection modules are developed for proteins as
a nucleotide sequencing equivalent based on fluorescence,
tunneling currents, and nanopores [159–161]. Although still
early days, such high-throughput single-molecule protein
sequencing analyses would revolutionize the proteomics
field, providing comprehensive overviews of proteomes, tar-
geted detection of high and low-abundant proteins, and the
realization of single-cell proteomics.

6. Expert commentary

6.1. Validation of a method toward application

The validation of candidate protein biomarkers is an impera-
tive component for application in pharmaceutical drug devel-
opment and clinical sample analysis. Fast, sensitive, and
reliable technologies are needed to execute this essential
step, including selection of biomarkers for further develop-
ment to robust assays. The multiplex approach, particularly
in parallel read outs is required to reach large numbers of
samples for validation in a high-throughput manner.

The sandwich-format immunoassay has been developed
into a standardized, robust, and reproducible method and
several multiplex versions of the method have emerged.
Being a crucial component, the quality of antibodies (or alter-
native binders) needs to be highly specific and selective, thus
being able to bind the target protein with minimal-to-no
cross-reactivity and interaction with other proteins. Overall,
this part of the process requires more attention in the valida-
tion steps. There are web-based resources, such as the Human
Protein Atlas or Antibodypedia, that provide researchers with
summarized information of available antibodies and their vali-
dation status. However, for antibodies and any binders devel-
oped for protein quantification it is highly recommended to
characterize and confirm binding and cross-reactivity in the
specific setting of the aimed method. For this purpose thor-
ough analytical validation of the immunoassay should be
performed preferably according to widely acknowledged

guidelines such as those of the Clinical Laboratory Standards
Institute (CLSI). For monoclonal antibodies, sequence informa-
tion and epitope mapping information is helpful for standar-
dization [162,163]. Immunoassay technologies show the
possibilities for multiplexing with various read out systems.
The limiting factor is the accessibility and quality level of the
antibodies used. Alternative binders such as affimers or apta-
mers are expanding the possibilities to specifically bind pro-
teins, by different interaction mechanisms and under
conditions with diverse stringency.

In parallel, high-resolution mass spectrometry has inherent
possibility to multiplex many proteins in one run without the
use of specific binders. It has the potential to measure proteins
at the sub nanogram/mL biofluid or sub ng protein/gram of
tissue if appropriate sample preparation is applied. Although
mass spectrometry techniques show very good reproducibil-
ity, the process is still time-consuming because of the serial
approach of protein (or peptide) separation and detection.
The less-than impressive sensitivity is caused mostly by ion
suppression of peptides that elute simultaneously with the
peptides of interest. So inherently low levels of detection can
be reached although at the cost of lower throughput.
Therefore, breakthroughs in the more efficient loading of
ions in the mass spectrometer will increase the sensitivity.
Developments such as IMS, FAIMS separation technology inte-
grated online to the mass spectrometer and further improve-
ments in DIA are experimental tools to reach the clinic. Of
particular interest to biomarker scientists, mass spectrometry
is particularly suited for analysis of post-translational modifica-
tions of proteins. These can strongly influence the stability,
folding, interaction with other biomolecules, and thus activity
of the protein. Mass spectrometry can provide such analysis
relatively straightforward in an unbiased manner, in contrast
to immunoassays where specific binders have to be devel-
oped. Novel experimental MS workflows such as IMS, that
provide structural information on proteins, are expected to
further increase the depth of protein characterization. Mass
spectrometry does lead the way forward in providing the
means for multiple, parallel analyte analyses, and in the con-
text of multiple biomarkers the opportunity for increased
diagnostic accuracy. The emergence of machine learning and
artificial intelligence will further enhance the predictive cap-
ability of these complex multi-biomarker data sets to define
disease susceptibility or onset [164,165].

We expect that alternative protein binders to supplement
or replace antibodies will be strong drivers of clinical pro-
tein biomarker assays. Affimers, that are generated as
recombinant proteins in stable scaffolds, with a high diver-
sity, can be selected for a particular property as desired
(specificity, selectivity, association/dissociation rates, stabi-
lity) to a much better extent than antibodies. Also of inter-
est, aptamers that mimic small molecules that are bound by
particular enzymes will particularly detect a protein subpo-
pulation that has drug target like properties, and as such
complements the selection of antibodies based on surface
binding affinity. Regarding protein biomarker detection, we
view the emergence of molecular barcodes as particularly
interesting as this enables the combination of different
types of binders in one integrated analysis and the
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possibility to achieve semi-quantitation of DNA, RNA, and
proteins. Finally, we see very high potential if analytical
protein platforms could adopt some principles of the expo-
nential developments in next-generation sequencing, for
instance by single-molecule sequencing through nanopores,
as this would significantly improve throughput and clinical
applications. Although examples for DNA are established,
the application for proteins is still premature.

Concluding, several analytical platforms have been developed
to analyze protein biomarkers in a multiplex manner, some of
which have the potential to seriously impact the way we do future
biomarker research and clinical implementation and will drive the
impact of personalized medicine [166]. Mass spectrometers are for
clinical use especially applied in metabolomics, drugs vitamins,
antibiotic resistance. The clinical use of mass spectrometers for
clinical use of proteins is near future. Especially changes in
Medical Device Regulation within Europe will change and acceler-
ate this process of quantifying proteins of interest in a clinical
environment (https://ec.europa.eu/health/sites/health/files/docs/
20200325_news_md_en.pdf).

Funding

This paper was funded by the European cooperation in science and
technology - COST action No. CA16113 - CliniMARK: ‘good biomarker
practice’ to increase the number of clinically validated biomarkers.

Declaration of interest

The authors have no relevant affiliations or financial involvement with any
organization or entity with a financial interest in or financial conflict with
the subject matter or materials discussed in the manuscript. This includes
employment, consultancies, honoraria, stock ownership or options, expert
testimony, grants or patents received or pending, or royalties.

Reviewer disclosures

Peer reviewers on this manuscript have no relevant financial or other
relationships to disclose.

ORCID

Fernado Corrales http://orcid.org/0000-0002-0231-5159
Goran Gajski http://orcid.org/0000-0002-1886-1453
Jaroslav Katrlik http://orcid.org/0000-0002-2876-9298
Deborah Penque http://orcid.org/0000-0002-4527-7148
Eda Aydindogan http://orcid.org/0000-0003-4882-6445
Marei Sammar http://orcid.org/0000-0001-8369-2820

References

Papers of special note have been highlighted as either of interest (•) or of
considerable interest (••) to readers.

1. Schork NJ. Personalized medicine: time for one-person trials.
Nature. 2015Apr30;520(7549):609–611..

• This paper combined the emerging insights in the benefits of
stratification of responding patients and the potential of indi-
vidual clinical trials.

2. van Gool AJ, Henry B, Sprengers ED. From biomarker strategies to
biomarker activities and back. Drug Discov Today. 2010 Feb;15
(3–4):121–126.

3. Pegram MD, Lipton A, Hayes DF, et al. Phase II study of
receptor-enhanced chemosensitivity using recombinant humanized
anti-p185HER2/neu monoclonal antibody plus cisplatin in patients
with HER2/neu-overexpressing metastatic breast cancer refractory
to chemotherapy treatment. J Clin Oncol. 1998 Aug;16(8):2659–2671.

4. Freedman LP, Cockburn IM, Simcoe TS. The economics of reprodu-
cibility in preclinical research. PLoS Biol. 2015 Jun;13(6):e1002165.

5. van Gool AJ, Bietrix F, Caldenhoven E, et al. Bridging the transla-
tional innovation gap through good biomarker practice. Nat Rev
Drug Discov. 2017 Sep;16(9):587–588.

6. Mischak H, Ioannidis JP, Argiles A, et al. Implementation of proteo-
mic biomarkers: making it work. Eur J Clin Invest. 2012 Sep;42
(9):1027–1036.

7. Rosenling T, Slim CL, Christin C, et al. The effect of preanalytical factors
on stability of the proteome and selected metabolites in cerebrosp-
inal fluid (CSF). J Proteome Res. 2009 Dec;8(12):5511–5522.

8. Cristobal A, van den Toorn HWP, van de Wetering M, et al.
Personalized proteome profiles of healthy and tumor human
colon organoids reveal both individual diversity and basic features
of colorectal cancer. Cell Rep. 2017Jan3;18(1):263–274.

• Wonderful application of high-end proteomics analysis to
understand organoid metabolism profiles to inform persona-
lized medicine.

9. Hornbeck P, Winston SE, Fuller SA. Enzyme-linked immunosorbent
assays (ELISA). Curr Protoc Mol Biol. 2001 May. Chapter 11: Unit 11.2.

10. Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA).
Quantitative assay of immunoglobulin G. Immunochemistry. 1971
Sep;8(9):871–874.

•• The first original published manuscript of immuno enzyme
based quatitative assay

11. Aydin S. A short history, principles, and types of ELISA, and our
laboratory experience with peptide/protein analyses using ELISA.
Peptides. 2015 Oct;72:4–15.

12. Gan SD, Patel KR. Enzyme immunoassay and enzyme-linked immu-
nosorbent assay. J Invest Dermatol. 2013 Sep;133(9):e12.

13. Revelen R, D’Arbonneau F, Guillevin L, et al. Comparison of
cell-ELISA, flow cytometry and Western blotting for the detection
of antiendothelial cell antibodies. Clin Exp Rheumatol. 2002 Jan-
Feb;20(1):19–26.

14. Czerkinsky CC, Nilsson LA, Nygren H, et al. A solid-phase
enzyme-linked immunospot (ELISPOT) assay for enumeration of
specific antibody-secreting cells. J Immunol Methods. 1983 Dec
16;65(1–2):109–121.

15. Tighe PJ, Ryder RR, Todd I, et al. ELISA in the multiplex era: potentials
and pitfalls. Proteomics Clin Appl. 2015 Apr;9(3–4):406–422.

16. Ma C, Fan R, Ahmad H, et al. A clinical microchip for evaluation of
single immune cells reveals high functional heterogeneity in phe-
notypically similar T cells. Nat Med. 2011 Jun;17(6):738–743.

17. Huang RP. Cytokine protein arrays. Methods Mol Biol.
2004;264:215–231.

18. Fulton RJ, McDade RL, Smith PL, et al. Advanced multiplexed
analysis with the FlowMetrix system. Clin Chem. 1997 Sep;43
(9):1749–1756.

19. Appleyard DC, Chapin SC, Srinivas RL, et al. Bar-coded hydrogel
microparticles for protein detection: synthesis, assay and scanning.
Nat Protoc. 2011 Oct 20;6(11):1761–1774.

20. Hemmila I, Holttinen S, Pettersson K, et al. Double-label
time-resolved immunofluorometry of lutropin and follitropin in
serum. Clin Chem. 1987 Dec;33(12):2281–2283.

21. Ogata A, Tagoh H, Lee T, et al. A new highly sensitive immunoassay
for cytokines by dissociation-enhanced lanthanide fluoroimmu-
noassay (DELFIA). J Immunol Methods. 1992 Apr 8;148(1–2):15–22.

22. Gilbert M, Livingston R, Felberg J, et al. Multiplex single molecule
counting technology used to generate interleukin 4, interleukin 6,
and interleukin 10 reference limits. Anal Biochem. 2016 Jun
15;503:11–20.

23. Rissin DM, Kan CW, Song L, et al. Multiplexed single molecule
immunoassays. Lab Chip. 2013 Aug 7;13(15):2902–2911.

EXPERT REVIEW OF PROTEOMICS 269



24. Gold L, Ayers D, Bertino J, et al. Aptamer-based multiplexed pro-
teomic technology for biomarker discovery. PLoS One. 2010 Dec
7;5(12):e15004.

25. Ngo D, Sinha S, Shen D, et al. Aptamer-based proteomic profiling
reveals novel candidate biomarkers and pathways in cardiovascular
disease. Circulation. 2016 Jul 26;134(4):270–285.

26. Moody MD, Van Arsdell SW, Murphy KP, et al. Array-based ELISAs
for high-throughput analysis of human cytokines. Biotechniques.
2001 Jul;31(1):186–90, 192–4.

27. Leng SX, McElhaney JE, Walston JD, et al. and multiplex technolo-
gies for cytokine measurement in inflammation and aging
research. J Gerontol A Biol Sci Med Sci. 2008 Aug;63(8):879–884.

28. Esmaeili R, Zhang M, Sternberg MR, et al. The Quansys multiplex
immunoassay for serum ferritin, C-reactive protein, and
alpha-1-acid glycoprotein showed good comparability with
reference-type assays but not for soluble transferrin receptor and
retinol-binding protein. PLoS One. 2019;14(4):e0215782.

29. Roda A, Mirasoli M, Michelini E, et al. Progress in chemical
luminescence-based biosensors: A critical review [review]. Biosens
Bioelectron. 2016 Feb;76:164–179.

30. Miao WJ. Electrogenerated chemiluminescence and its biorelated
applications [Review]. Chem Rev. 2008 Jul;108(7):2506–2553.

31. Sek S, Vacek J, Dorcak V. Electrochemistry of peptides [review]. Curr
Opin Electrochem. 2019 Apr;14:166–172.

32. Ding CF, Zhang W, Wang W, et al. Amplification strategies using
electrochemiluminescence biosensors for the detection of DNA,
bioactive molecules and cancer biomarkers [review]. Trac-Trends
Anal Chem. 2015 Feb;65:137–150.

33. Toedter G, Hayden K, Wagner C, et al. Simultaneous detection of
eight analytes in human serum by two commercially available
platforms for multiplex cytokine analysis. Clin Vaccine Immunol.
2008 Jan;15(1):42–48.

34. Gao WY, Saqib M, Qi LM, et al. Recent advances in electrochemilu-
minescence devices for point-of-care testing [review]. Curr Opin
Electrochem. 2017 Jun;3(1):4–10.

35. Wu MR, Lai QY, Ju Q, et al. Paper-based fluorogenic devices for in vitro
diagnostics [review]. Biosens Bioelectron. 2018 Apr;102:256–266.

36. Bouffier L, Arbault S, Kuhn A, et al. Generation of electrochemilu-
minescence at bipolar electrodes: concepts and applications
[Review]. Anal Bioanal Chem. 2016 Oct;408(25):7003–7011.

37. Davies P, Carlisle D. Five days that shook the NHS. Health Serv J.
2008 Jul;3;Suppl:4-7. DOI:10.1016/0006-291x(75)90498-2.

38. Dzantiev BB, Byzova NA, Urusov AE, et al. Immunochromatographic
methods in food analysis. Trends Analyt Chem. 2014March 01;55:81–93.

39. Mao X, Wang W, Du T-E. Rapid quantitative immunochromato-
graphic strip for multiple proteins test. Sens Actuators B Chem.
2013 Sep 01;186:315–320.

40. Bocoum FY, Ouedraogo H, Tarnagda G, et al. Evaluation of the
diagnostic performance and operational characteristics of four
rapid immunochromatographic syphilis tests in Burkina Faso. Afr
Health Sci. 2015 Jun;15(2):360–367.

41. Majumder S, Deen MJ. Smartphone sensors for health monitoring
and diagnosis. Sensors (Basel). 2019 May 9;19(9):2164.

42. Zhang D, Liu Q. Biosensors and bioelectronics on smartphone for
portable biochemical detection. Biosens Bioelectron. 2016 Jan;15
(75):273–284.

43. Li Z, Wang Y, Wang J, et al. Rapid and sensitive detection of protein
biomarker using a portable fluorescence biosensor based on quan-
tum dots and a lateral flow test strip. Anal Chem. 2010 Aug 15;82
(16):7008–7014.

44. Guler E, Yilmaz Sengel T, Gumus ZP, et al. Mobile phone sensing of
cocaine in a lateral flow assay combined with a biomimetic
material. Anal Chem. 2017 Sep 19;89(18):9629–9632.

45. Martinez-Perez B, de la Torre-diez I, Lopez-Coronado M. Mobile
health applications for the most prevalent conditions by the
World Health Organization: review and analysis. J Med Internet
Res. 2013 Jun 14;15(6):e120.

46. Oh H, Rizo C, Enkin M, et al. What is eHealth (3): a systematic review
of published definitions. J Med Internet Res. 2005 Feb 24;7(1):e1.

47. Lundberg M, Eriksson A, Tran B, et al. Homogeneous
antibody-based proximity extension assays provide sensitive and
specific detection of low-abundant proteins in human blood.
Nucleic Acids Res. 2011 Aug;39(15):e102.

48. Aebersold R, Mann M. Mass-spectrometric exploration of proteome
structure and function. Nature. 2016Sep15;537(7620):347–355.

• Introduction of the powerful potential of mass spectrometry in
protein biomarker research.

49. Doll S, Gnad F, Mann M. The case for proteomics and
phospho-proteomics in personalized cancer medicine. Proteomics
Clin Appl. 2019 Mar;13(2):e1800113.

50. Anderson NL, Anderson NG. The human plasma proteome: history,
character, and diagnostic prospects. Mol Cell Proteomics. 2002
Nov;1(11):845–867.

51. Wu C, Duan J, Liu T, et al. Contributions of immunoaffinity chromato-
graphy to deep proteome profiling of human biofluids. J Chromatogr
B Analyt Technol Biomed Life Sci. 2016 May 15;1021:57–68.

52. Mulvey CM, Breckels LM, Geladaki A, et al. Using hyperLOPIT to
perform high-resolution mapping of the spatial proteome. Nat
Protoc. 2017 Jun;12(6):1110–1135.

53. Lemeer S, Zorgiebel C, Ruprecht B, et al. Comparing immobilized
kinase inhibitors and covalent ATP probes for proteomic profiling
of kinase expression and drug selectivity. J Proteome Res. 2013 Apr
5;12(4):1723–1731.

54. Sutton CW. The role of targeted chemical proteomics in
pharmacology. Br J Pharmacol. 2012 May;166(2):457–475.

55. Ten HS, Boulon S, Ahmad Y, et al. Mass spectrometry-based
immuno-precipitation proteomics - the user’s guide. Proteomics.
2011 Mar;11(6):1153–1159.

56. Trenchevska O, Nelson RW, Nedelkov D. Mass spectrometric immu-
noassays in characterization of clinically significant proteoforms.
Proteomes. 2016 Mar 17;4(1):13.

57. Ducret A, James I, Wilson S, et al. Translation and evaluation of a
pre-clinical 5-protein response prediction signature in a breast
cancer phase Ib clinical trial. PLoS One. 2019;14(3):e0213892.

58. Collins CJ, Chang IJ, Jung S, et al. Rapid multiplexed proteomic
screening for primary immunodeficiency disorders from dried
blood spots. Front Immunol. 2018;9:2756.

59. Fu Q, Kowalski MP, Mastali M, et al. Highly reproducible automated
proteomics sample preparation workflow for quantitative mass
spectrometry. J Proteome Res. 2018 Jan 5;17(1):420–428.

60. Mbasu RJ, Heaney LM, Molloy BJ, et al. Advances in quadrupole and
time-of-flightmass spectrometry for peptideMRMbased translational
research analysis. Proteomics. 2016 Aug;16(15–16):2206–2220.

61. Abbatiello SE, Schilling B, Mani DR, et al. Large-scale interlaboratory
study to develop, analytically validate and apply highly multi-
plexed, quantitative peptide assays to measure cancer-relevant
proteins in plasma. Mol Cell Proteomics. 2015 Sep;14(9):2357–2374.

62. Percy AJ, Yang J, Hardie DB, et al. Precise quantitation of 136
urinary proteins by LC/MRM-MS using stable isotope labeled pep-
tides as internal standards for biomarker discovery and/or verifica-
tion studies. Methods. 2015 Jun 15;81:24–33.

63. Klont F, Pouwels SD, Hermans J, et al. A fully validated liquid
chromatography-mass spectrometry method for the quantification
of the soluble receptor of advanced glycation end-products
(sRAGE) in serum using immunopurification in a 96-well plate
format. Talanta. 2018 May 15;182:414–421.

64. Klont F, Joosten MR, Ten Hacken NHT, et al. Quantification of the
soluble receptor of advanced glycation end-products (sRAGE) by
LC-MS after enrichment by strong cation exchange (SCX)
solid-phase extraction (SPE) at the protein level. Anal Chim Acta.
2018 Dec 28;1043:45–51.

65. De Marchi T, Kuhn E, Dekker LJ, et al. Targeted MS assay predicting
tamoxifen resistance in estrogen-receptor-positive breast cancer
tissues and sera. J Proteome Res. 2016 Apr 1;15(4):1230–1242.

66. Yang X, Naughton SX, Han Z, et al. Mass spectrometric quantitation
of tubulin acetylation from pepsin-digested rat brain tissue using
a novel stable-isotope standard and capture by anti-peptide anti-
body (SISCAPA) method. Anal Chem. 2018 Feb 6;90(3):2155–2163.

270 A. VAN GOOL ET AL.

https://doi.org/10.1016/0006-291x(75)90498-2


67. Hsiao YC, Chi LM, Chien KY, et al. Development of a multiplexed
assay for oral cancer candidate biomarkers using peptide immu-
noaffinity enrichment and targeted mass spectrometry. Mol Cell
Proteomics. 2017 Oct;16(10):1829–1849.

68. Chen YT, Chen HW, Wu CF, et al. Development of a multiplexed
liquid chromatography multiple-reaction-monitoring mass spectro-
metry (LC-MRM/MS) method for evaluation of salivary proteins as
oral cancer biomarkers. Mol Cell Proteomics. 2017 May;16
(5):799–811.

69. Duangkumpha K, Stoll T, Phetcharaburanin J, et al. Urine proteo-
mics study reveals potential biomarkers for the differential diag-
nosis of cholangiocarcinoma and periductal fibrosis. PLoS One.
2019;14(8):e0221024.

70. Mun S, Lee J, Park A, et al. Proteomics approach for the discovery of
rheumatoid arthritis biomarkers using mass spectrometry. Int J Mol
Sci. 2019 Sep 5;20(18). DOI:10.3390/ijms20184368.

71. Van Raemdonck GA, Osbak KK, Van Ostade X, et al. Needle lost in
the haystack: multiple reaction monitoring fails to detect
Treponema pallidum candidate protein biomarkers in plasma and
urine samples from individuals with syphilis. F1000Res. 2018;7:336.

72. Chen J, Tang MS, Xu LC, et al. Proteomic analysis of biomarkers
predicting the response to triple therapy in patients with rheuma-
toid arthritis. Biomed Pharmacother. 2019 Aug;116:109026.

73. Zhang Q, Salzler R, Dore A, et al. Multiplex immuno-liquid
chromatography-mass spectrometry-parallel reaction monitoring
(LC-MS-PRM) quantitation of CD8A, CD4, LAG3, PD1, PD-L1, and
PD-L2 in frozen human tissues. J Proteome Res. 2018 Nov 2;17
(11):3932–3940.

74. Martinez-Garcia E, Lesur A, Devis L, et al. Development of
a sequential workflow based on LC-PRM for the verification of
endometrial cancer protein biomarkers in uterine aspirate
samples. Oncotarget. 2016 Aug 16;7(33):53102–53115.

75. Henderson CM, Bollinger JG, Becker JO, et al. Quantification by
nano liquid chromatography parallel reaction monitoring mass
spectrometry of human apolipoprotein A-I, apolipoprotein B, and
hemoglobin A1c in dried blood spots. Proteomics Clin Appl. 2017
Jul;11(7–8):1600103.

76. Guzel C, Govorukhina NI, Wisman GBA, et al. Proteomic alterations
in early stage cervical cancer. Oncotarget. 2018 Apr 6;9
(26):18128–18147.

77. van der Ende EL, Meeter LH, Stingl C, et al. Novel CSF biomarkers in
genetic frontotemporal dementia identified by proteomics. Ann
Clin Transl Neurol. 2019 Apr;6(4):698–707.

78. Skillback T, Mattsson N, Hansson K, et al. A novel quantification-
driven proteomic strategy identifies an endogenous peptide of
pleiotrophin as a new biomarker of Alzheimer’s disease. Sci Rep.
2017 Oct 17;7(1):13333.

79. Theodorescu D, Wittke S, Ross MM, et al. Discovery and validation
of new protein biomarkers for urothelial cancer: a prospective
analysis. Lancet Oncol. 2006 Mar;7(3):230–240.

80. Rodriguez-Ortiz ME, Pontillo C, Rodriguez M, et al. Novel urinary
biomarkers for improved prediction of progressive egfr loss in early
chronic kidney disease stages and in high risk individuals without
chronic kidney disease. Sci Rep. 2018 Oct 29;8(1):15940.

81. van den Broek I, Nouta J, Razavi M, et al. Quantification of serum
apolipoproteins A-I and B-100 in clinical samples using an auto-
mated SISCAPA-MALDI-TOF-MS workflow. Methods. 2015 Jun
15;81:74–85.

82. Popp R, Li H, LeBlanc A, et al. Immuno-matrix-assisted laser deso-
rption/ionization assays for quantifying AKT1 and AKT2 in breast
and colorectal cancer cell lines and tumors. Anal Chem. 2017 Oct
3;89(19):10592–10600.

83. Tran JC, Zamdborg L, Ahlf DR, et al. Mapping intact protein iso-
forms in discovery mode using top-down proteomics. Nature. 2011
Oct 30;480(7376):254–258.

84. Schmit PO, Vialaret J, Wessels H, et al. Towards a routine applica-
tion of top-down approaches for label-free discovery workflows.
J Proteomics. 2018 Mar;20(175):12–26.

85. Tegtmeyer LC, Rust S, van Scherpenzeel M, et al. Multiple pheno-
types in phosphoglucomutase 1 deficiency. N Engl J Med. 2014 Feb
6;370(6):533–542.

86. Blum BC, Mousavi F, Emili A. Single-platform ‘multi-omic’ profiling:
unified mass spectrometry and computational workflows for inte-
grative proteomics-metabolomics analysis. Mol Omics. 2018 Oct
8;14(5):307–319.

87. Rogers JC, Bomgarden RD. Sample preparation for mass
spectrometry-based proteomics; from proteomes to peptides. Adv
Exp Med Biol. 2016;919:43–62.

88. Lange V, Picotti P, Domon B, et al. Selected reaction monitoring for
quantitative proteomics: a tutorial. Mol Syst Biol. 2008;4(1):222.

89. Gallien S, Domon B. Detection and quantification of proteins in
clinical samples using high resolution mass spectrometry. Methods.
2015 Jun 15;81:15–23.

90. Picotti P, Aebersold R. Selected reaction monitoring-based proteo-
mics: workflows, potential, pitfalls and future directions. Nat
Methods. 2012 May 30;9(6):555–566.

91. Brun V, Masselon C, Garin J, et al. Isotope dilution strategies for
absolute quantitative proteomics. J Proteomics. 2009 Jul 21;72
(5):740–749.

92. Gerber SA, Rush J, Stemman O, et al. Absolute quantification of
proteins and phosphoproteins from cell lysates by tandem MS.
Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):6940–6945.

93. Kushnir MM, Rockwood AL, Roberts WL, et al. Measurement of
thyroglobulin by liquid chromatography-tandem mass spectrome-
try in serum and plasma in the presence of antithyroglobulin
autoantibodies. Clin Chem. 2013 Jun;59(6):982–990.

94. Beynon RJ, Doherty MK, Pratt JM, et al. Multiplexed absolute quan-
tification in proteomics using artificial QCAT proteins of concate-
nated signature peptides. Nat Methods. 2005 Aug;2(8):587–589.

95. Zeiler M, Straube WL, Lundberg E, et al. A protein epitope signature
tag (PrEST) library allows SILAC-based absolute quantification and
multiplexed determination of protein copy numbers in cell lines.
Mol Cell Proteomics. 2012 Mar;11(3):O111 009613.

96. Brun V, Dupuis A, Adrait A, et al. Isotope-labeled protein standards:
toward absolute quantitative proteomics. Mol Cell Proteomics.
2007 Dec;6(12):2139–2149.

97. Hanke S, Besir H, Oesterhelt D, et al. Absolute SILAC for accurate
quantitation of proteins in complex mixtures down to the attomole
level. J Proteome Res. 2008 Mar;7(3):1118–1130.

98. Kuhn E, Whiteaker JR, Mani DR, et al. Interlaboratory evaluation of
automated, multiplexed peptide immunoaffinity enrichment
coupled to multiple reaction monitoring mass spectrometry for
quantifying proteins in plasma. Mol Cell Proteomics. 2012 Jun;11
(6):M111 013854.

• A critical evaluation of a multi-laboratory study for a multi-
biomarker signature using an immunoaffinity capture sample
preparation approach. Covers many of the sample prepara-
tion, technical and statistical challenges that are typical of all
biomarker validation projects.

99. Oeckl P, Steinacker P, Otto M. Comparison of internal standard
approaches for SRM analysis of alpha-synuclein in cerebrospinal
fluid. J Proteome Res. 2018 Jan 5;17(1):516–523.

100. Carr SA, Abbatiello SE, Ackermann BL, et al. Targeted peptide
measurements in biology and medicine: best practices for mass
spectrometry-based assay development using a fit-for-purpose
approach. Mol Cell Proteomics. 2014 Mar;13(3):907–917.

•• Provides comprehesive guidelines of the requirements for
MRM MS analysis of target peptides, much of them based on
reference 62 and related papers.

101. Abbatiello S, Ackermann BL, Borchers C, et al. New guidelines for
publication of manuscripts describing development and applica-
tion of targeted mass spectrometry measurements of peptides and
proteins. Mol Cell Proteomics. 2017 Mar;16(3):327–328.

102. Whiteaker JR, Halusa GN, Hoofnagle AN, et al. CPTAC assay portal:
a repository of targeted proteomic assays. Nat Methods. 2014
Jul;11(7):703–704.

EXPERT REVIEW OF PROTEOMICS 271

https://doi.org/10.3390/ijms20184368


103. Kemna EH, Tjalsma H, Podust VN, et al. Mass spectrometry-based
hepcidin measurements in serum and urine: analytical aspects and
clinical implications. Clin Chem. 2007 Apr;53(4):620–628.

104. Eigner U, Holfelder M, Oberdorfer K, et al. Performance of a
matrix-assisted laser desorption ionization-time-of-flight mass
spectrometry system for the identification of bacterial isolates in
the clinical routine laboratory. Clin Lab. 2009;55(7–8):289–296.

105. Pasa-Tolic L, Masselon C, Barry RC, et al. Proteomic analyses using
an accurate mass and time tag strategy. Biotechniques. 2004
Oct;37(4):621–4, 626–33, 636 passim.

106. Gillet LC, Navarro P, Tate S, et al. Targeted data extraction of the
MS/MS spectra generated by data-independent acquisition: a new
concept for consistent and accurate proteome analysis. Mol Cell
Proteomics. 2012 Jun;11(6):O111 016717.

107. Sajic T, Liu Y, Aebersold R. Using data-independent, high-resolution
mass spectrometry in protein biomarker research: perspectives and
clinical applications. Proteomics Clin Appl. 2015 Apr;9
(3–4):307–321.

108. Anjo SI, Santa C, Manadas B. SWATH-MS as a tool for biomarker
discovery: from basic research to clinical applications. Proteomics.
2017 Feb;17(3–4):1600278.

109. Koopmans F, Ho JTC, Smit AB, et al. Comparative analyses of data
independent acquisition mass spectrometric approaches: DIA,
WiSIM-DIA, and untargeted DIA. Proteomics. 2018 Jan;18
(1):1700304.

110. Souza GH, Guest PC, Martins-de-Souza D. LC-MS(E), multiplex MS/
MS, ion mobility, and label-free quantitation in clinical proteomics.
Methods Mol Biol. 2017;1546:57–73.

111. Helm S, Baginsky S. MSE for label-free absolute protein quantifica-
tion in complex proteomes. Methods Mol Biol. 2018;1696:235–247.

112. Rosenberger G, Koh CC, Guo T, et al. A repository of assays to quantify
10,000 human proteins by SWATH-MS. Sci Data. 2014;1(1):140031.

113. Schubert OT, Gillet LC, Collins BC, et al. Building high-quality assay
libraries for targeted analysis of SWATH MS data. Nat Protoc. 2015
Mar;10(3):426–441.

114. Wu JX, Song X, Pascovici D, et al. SWATH mass spectrometry
performance using extended peptide MS/MS assay libraries. Mol
Cell Proteomics. 2016 Jul;15(7):2501–2514.

115. Smith LM, Kelleher NL. Consortium for Top Down P. Proteoform:
a single term describing protein complexity. Nat Methods. 2013
Mar;10(3):186–187.

116. Tiede C, Bedford R, Heseltine SJ, et al. Affimer proteins are versatile
and renewable affinity reagents. Elife. 2017 Jun 27;6. DOI:10.7554/
eLife.24903.

117. Lollo B, Steele F, Gold L. Beyond antibodies: new affinity reagents
to unlock the proteome. Proteomics. 2014 Mar;14(6):638–644.

118. Gold L, Walker JJ, Wilcox SK, et al. Advances in human proteomics
at high scale with the SOMAscan proteomics platform.
N Biotechnol. 2012Jun15;29(5):543–549.

• Paper describing the use of modified aptamers as a high-
throughput multiplex targeted proteomics

119. Katrlik J, Svitel J, Gemeiner P, et al. Glycan and lectin microarrays
for glycomics and medicinal applications. Med Res Rev. 2010
Mar;30(2):394–418.

120. Latosinska A, Siwy J, Mischak H, et al. Peptidomics and proteomics
based on CE-MS as a robust tool in clinical application: the past,
the present, and the future. Electrophoresis. 2019 Sep;40
(18–19):2294–2308.

121. Mischak H, Vlahou A, Ioannidis JP. Technical aspects and
inter-laboratory variability in native peptide profiling: the CE-MS
experience. Clin Biochem. 2013 Apr;46(6):432–443.

122. Sun L, Zhu G, Zhang Z, et al. Third-generation electrokinetically
pumped sheath-flow nanospray interface with improved stability
and sensitivity for automated capillary zone electrophoresis-mass
spectrometry analysis of complex proteome digests. J Proteome
Res. 2015 May 1;14(5):2312–2321.

123. Wuethrich A, Quirino JP. A decade of microchip electrophoresis for
clinical diagnostics - A review of 2008-2017. Anal Chim Acta. 2019
Jan 3;1045:42–66.

124. Mascini M, Palchetti I, Tombelli S. Nucleic acid and peptide apta-
mers: fundamentals and bioanalytical aspects. Angew Chem Int Ed
Engl. 2012 Feb 6;51(6):1316–1332.

125. Zakynthinos E, Pappa N. Inflammatory biomarkers in coronary
artery disease. J Cardiol. 2009 Jun;53(3):317–333.

126. de Avila BE, Escamilla-Gomez V, Campuzano S, et al. Disposable
amperometric magnetoimmunosensor for the sensitive detection
of the cardiac biomarker amino-terminal pro-B-type natriuretic
peptide in human serum. Anal Chim Acta. 2013 Jun 19;784:18–24.

127. Farzin L, Shamsipur M, Samandari L, et al. Recent advances in
designing nanomaterial based biointerfaces for electrochemical
biosensing cardiovascular biomarkers. J Pharm Biomed Anal. 2018
Nov 30;161:344–376.

128. Tsang HF, Xue VW, Koh SP, et al. NanoString, a novel digital
color-coded barcode technology: current and future applications
in molecular diagnostics. Expert Rev Mol Diagn. 2017 Jan;17
(1):95–103.

• Paper describing a novel platform for paralel detection of
DNA, RNA and proteins, enabling a multi-omics sample
analysis.

129. Bruzas I, Unser S, Yazdi S, et al. Ultrasensitive plasmonic platform
for label-free detection of membrane-associated species [article].
Anal Chem. 2016 Aug;88(16):7968–7974.

130. Ciminelli C, Dell’Olio F, Conteduca D, et al. Integrated photonic and
plasmonic resonant devices for label-free biosensing and trapping
at the nanoscale. Phys Status Solidi A. 2019;216(3):1800561.

131. Acimovic SS, Sipova H, Emilsson G, et al. Superior LSPR substrates
based on electromagnetic decoupling for on-a-chip
high-throughput label-free biosensing [Article]. Light Sci Appl.
2017 Aug 6(8):e17042.

132. Yavas O, Acimovic SS, Garcia-Guirado J, et al. Self-calibrating
on-chip localized surface plasmon resonance sensing for quantita-
tive and multiplexed detection of cancer markers in human serum
[article]. ACS Sens. 2018 Jul;3(7):1376–1384.

133. Wittenberg NJ, Im H, Johnson TW, et al. Facile assembly of micro-
and nanoarrays for sensing with natural cell membranes [article].
Acs Nano. 2011 Sep;5(9):7555–7564.

134. Liu B, Li YL, Wan H, et al. High performance, multiplexed lung
cancer biomarker detection on a plasmonic gold chip [article].
Adv Funct Mater. 2016 Nov;26(44):7994–8002.

135. Zhang R, Le BA, Xu W, et al. Magnetic “Squashing” of circulating
tumor cells on plasmonic substrates for ultrasensitive NIR fluores-
cence detection [article]. Small Methods. 2019 Feb;3(2):7.

136. Fothergill SM, Joyce C, Xie F. Metal enhanced fluorescence biosen-
sing: from ultra-violet towards second near-infrared window
[Review]. Nanoscale. 2018 Dec;10(45):20914–20929.

137. Jawad ZAR, Theodorou IG, Jiao LR, et al. Highly sensitive plasmonic
detection of the pancreatic cancer biomarker CA 19-9 [Article]. Sci
Rep. 2017 Oct;7:7.

138. Tabakman SM, Lau L, Robinson JT, et al. Plasmonic substrates for
multiplexed protein microarrays with femtomolar sensitivity and
broad dynamic range [Article]. Nat Commun. 2011 Sep;2(1):9.

139. Ansari AA, Alhoshan M, Alsalhi MS, et al. Prospects of nanotechnol-
ogy in clinical immunodiagnostics. Lect Notes Electr En. 2010 Jul;10
(7):6535–6581.

140. Ramachandran R, Chen SM, Kumar GPG, et al. An overview of
fabricating nanostructured electrode materials for biosensor
applications. Int J Electrochem Sci. 2015;Oct;10(10):8607–8629.

141. Arris FA, Benoudjit AM, Sanober F, et al. Characterization of elec-
trochemical transducers for biosensor applications. Multifaceted
protocol in biotechnology. Singapore: Springer; 2018:119–137.

142. Escamilla-Gómez V, Hernández-Santos D, González-García MB, et al.
Simultaneous detection of free and total prostate specific antigen
on a screen-printed electrochemical dual sensor. Biosens
Bioelectron. 2009;24(8):2678–2683.

143. Rocha-Santos TA. Sensors and biosensors based on magnetic
nanoparticles. Trends Analyt Chem. 2014;62:28–36.

144. Gill R, Zayats M, Willner I. Semiconductor quantum dots for
bioanalysis. Angew Chem. 2008;47(40):7602–7625.

272 A. VAN GOOL ET AL.

https://doi.org/10.7554/eLife.24903
https://doi.org/10.7554/eLife.24903


145. Li J, Wu N. Biosensors based on nanomaterials and nanodevices.
CRC Press, Boca Raton; 2014.

146. Anker JN, Hall WP, Lyandres O, et al. Biosensing with plasmonic
nanosensors. Nat Mater. 2008;7(6):442–453.

147. Pei X, Zhang B, Tang J, et al. Sandwich-type immunosensors and
immunoassays exploiting nanostructure labels: A review. Anal
Chim Acta. 2013;758:1–18.

148. Arntz Y, Seelig JD, Lang H, et al. Label-free protein assay based on
a nanomechanical cantilever array. Nanotechnology. 2002;14(1):86.

149. Hong Y, Huh Y-M, Yoon DS, et al. Nanobiosensors based on loca-
lized surface plasmon resonance for biomarker detection.
J Nanomater. 2012;2012:111.

150. Stern E, Klemic JF, Routenberg DA, et al. Label-free immunodetec-
tion with CMOS-compatible semiconducting nanowires. Nature.
2007;445(7127):519.

151. de Moraes A, Kubota L. Recent trends in field-effect
transistors-based immunosensors. Chemosensors. 2016;4(4):20.

152. Syahir A, Usui K, Tomizaki K-Y, et al. Label and label-free detec-
tion techniques for protein microarrays. Microarrays. 2015;4
(2):228–244.

153. Stekel D. Microarrays: making them and using them. Microarray
Bioinf. 2003, Cambridge university press, chapter 1 ;1–18.

154. Bellassai N, D’Agata R, Jungbluth V, et al. Surface plasmon reso-
nance for biomarker detection: advances in non-invasive cancer
diagnosis. Front Chem. 2019;7:570.

155. Doucey M-A, Carrara S. Nanowire sensors in cancer. Trends
Biotechnol. 2019;37(1):86–99.

156. Vashist S. Point-of-care diagnostics: recent advances and trends.
Biosensors (Basel). 2017 Dec 18;7(4). pii: E62.

157. Popowitch EB, O’Neill SS, Miller MB. Comparison of the biofire
filmArray RP, Genmark eSensor RVP, Luminex xTAG RVPv1, and
Luminex xTAG RVP fast multiplex assays for detection of respiratory
viruses. J Clin Microbiol. 2013;51(5):1528–1533.

158. Cohen L, Walt DR. Single-molecule arrays for protein and nucleic acid
analysis. Annu Rev Anal Chem (Palo Alto Calif). 2017 Jun 12;10(1):345–363.

159. Restrepo-Perez L, Joo C, Dekker C. Paving the way to
single-molecule protein sequencing. Nat Nanotechnol. 2018
Sep;13(9):786–796.

160. Di Muccio G, Rossini AE, Di Marino D, et al. Insights into protein
sequencing with an alpha-Hemolysin nanopore by atomistic
simulations. Sci Rep. 2019 Apr 23;9(1):6440.

161. Swaminathan J, Boulgakov AA, Hernandez ET, et al. Highly parallel
single-molecule identification of proteins in zeptomole-scale
mixtures. Nat Biotechnol. 2018 Oct 22;36(11):1076–1082.

162. Bradbury A, Pluckthun A. Reproducibility: standardize antibodies
used in research. Nature. 2015 Feb 5;518(7537):27–29.

163. Bradbury AM, Pluckthun A. Antibodies: validate recombinants
once. Nature. 2015 Apr 16;520(7547):295.

164. Xu T, Fang Y, Rong A, et al. Flexible combination of multiple
diagnostic biomarkers to improve diagnostic accuracy. BMC Med
Res Methodol. 2015 Oct;31(15):94.

165. Captur G, Heywood WE, Coats C, et al. Identification of a multiplex
biomarker panel for hypertrophic cardiomyopathy using quantita-
tive proteomics and machine learning. Mol Cell Proteomics. 2020
Jan;19(1):114–127.

166. Van Eyk JE, Snyder MP. Precision medicine: role of proteomics in
changing clinical management and care. J Proteome Res. 2019 Jan
4;18(1):1–6.

EXPERT REVIEW OF PROTEOMICS 273


	Abstract
	1.  Introduction
	2.  Sample selection and preparation
	3.  Immunoassays
	3.1.  ELISA
	3.2.  Chemiluminescence
	3.3.  Lateral flow immunoassays
	3.4.  DNA-based protein detection

	4.  Mass spectrometry
	4.1.  Mass spectrometry for biomarker validation– targeted proteomics (SRM, MRM, and PRM)
	4.2.  Data-dependent analysis (DDA) and data-independent analysis (DIA)

	5.  Alternative and other emerging technologies
	5.1.  Alternative protein binders
	5.2.  Alternative protein separation
	5.3.  Multi-omics analysis platforms
	5.4.  Photonic and plasmonic resonating structure arrays
	5.5.  Miniaturized sensors
	5.6.  Protein sequencing

	6.  Expert commentary
	6.1.  Validation of amethod toward application

	Funding
	Declaration of interest
	Reviewer disclosures
	References



