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Aim of this work was to study underpotential deposition of aluminium onto polycrystalline vanadium 

electrode from equimolar AlCl3+NaCl melt at 473, 523 and 573 K. It was found that aluminium was 

deposited and incorporated into polycrystalline vanadium electrode at potentials more positive than the 

Al reverse potential. Applied electrochemical techniques: linear sweep voltammetry and potentiostatic 

deposition/galvanostatic striping, showed clear evidence of formation of three intermetallic compounds 

whose presence depends on temperature and applied deposition time. Deposits were studied via 

scanning electron microscopy (SEM), energy dispersive spectrometry and X-ray spectroscopy (EDS 

and EDX), atomic force microscopy (AFM) and X-ray diffraction (XRD).  
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1. INTRODUCTION 

Studies of Al-V binary alloys are a subject of very recent investigations and availability of 

relevant literature is limited. Vanadium alloys have been receiving increasing attention, primarily due 

to their potential to meet such requirements as light weight, high strength, improved thermal stability 

creep resistance with promising mechanical properties at elevated temperatures. Possible applications 

under study are generally in nuclear-fusion reactors, coal-gasification units, gas turbines, aerospace 

industry, etc. [1,2]. Vanadium-aluminium alloys, due to their excellent corrosion resistance, are 

materials considered ideal for implant applications [3]. Because lower aluminium content alloys are 

http://www.electrochemsci.org/
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brittle and provide moderate resistance to oxidation, alloying with vanadium enhances their ductility, 

strength, oxidation and corrosion resistance [4-6]. For example, it  is  well  known  that  single-phase  

V-Al  alloys, produced  by  using  conventional  non-equilibrium  alloying methods,  exhibit  greater  

resistance  to  chloride-induced pitting  corrosion  than  pure  Al  metal. The mechanism of vanadium 

influence on structure of aluminium alloys is not completely known, but it is believed that it influences 

grain refining, diminishes alloy conductance and increases temperature of recrystallization [7]. One of 

most recent applications of Al-V binary alloys is in hydrogen membranes for fuel cells [8, 9]. 

Vanadium is investigated as a more cost effective alternative to palladium because it has similar 

hydrogen permeability performance. Alloying with 20% of aluminium should aggravate hydrogen 

diffusion through grain boundaries. 

Production of Al-V alloys is rather difficult, vanadium is very slowly dissolved in aluminium 

and aluminium separates from liquid vanadium [10]. Because the normal equilibrium solubility of 

transition metals (including vanadium) in aluminum is rarely more than about 1 % atomic fraction 

(a/o), it is necessary to resort to non-equilibrium alloying methods such as melt spinning, ion 

implantation, reactive plasma spraying, sputter deposition, and thermal evaporation to prepare these 

metastable alloys. Isothermal electrodeposition from chloroaluminate melts, such as those obtained by 

combining anhydrous aluminum chloride with sodium chloride, mixtures of sodium chloride and 

potassium chloride, 1-(1-butyl)pyridinium chloride (BuPyCl), or 1-ethyl-3 methylimidazolium 

chloride (EtMeImCl), offers another route to these non-equilibrium materials [11]. 

Recent reports have again confirmed [12] that nanoscale systems, in principle, differ from bulk 

systems. This is especially true for a nanoscale layer of one metal (such is an underpotentially 

deposited monolayer from melts) in contact with another metal substrate, at moderately increased 

temperatures (473 to 573 K), which can lead to alloy formations. 

Non-aqueous solvents that have been used successfully to electrodeposit metals and their alloys 

on different substrates [13-15], including aluminium and its metal alloys, are  chloroaluminate molten 

salts [13,14,16,17] which are generated when anhydrous aluminium chloride is mixed with inorganic
 

[13,14,18-20]
 
or organic

 
[13-15,17,21-23] chloride salts and then taken to the melting point. They seem 

to be ideal solvents for the electrodeposition of metal-aluminium alloys because they constitute a 

reservoir of reducible aluminium-containing species. They are excellent solvents for many metal ions, 

and they exhibit good intrinsic ionic conductivity. 

There are records of very specific thermal formations of Al3V/Al2O composites [6] or Al-V 

alloy [2,4,24]  and very few of Al-V alloys obtained by overpotential codeposition of V and Al from 

organic melts – ionic liquids [11,25]. However, in literature there are no detailed studies of aluminium 

UPD on vanadium from inorganic melts.  

We have reported on a number of alloys prepared from chloroaluminate molten salts by 

underpotential deposition of aluminium onto different metals [26-31] and in this article we focus on 

underpotential deposition (UPD) of aluminium on policrystalline substrates of vanadium from 

AlCl3+NaCl equimolar melts and possible formation of intermetalic compounds with vanadium 

substrate. 
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2.  EXPERIMENTAL  

The electrodeposition processes were carried out in a three-electrode electrochemical cell, 

(made of Pyrex glass) designed for work with melts under a purified argon atmosphere and controlled 

by a Potentiostat/Galvanostat (Princeton Applied Research Corporation Model 273A) described earlier 

[26-31]. The working electrode for electrochemical experiments was 1mm diameter  vanadium wire 

(99,99% V, Sigma-Aldrich, USA), and for surface/sub-surface analysis a 2 cm
2
 99,99% pure vanadium 

square plate. The reference electrode was 3mm diameter aluminium wire, 99,999% Al, Alfa Products, 

Thiokol / Ventron division, USA) in glass Luggin capillary and counter electrode  was aluminium 

(99,999% Al) in the shape of a curved rectangular shovel (7,5 cm
2
 active surface area). Whole cell set 

up (including a furnace) was placed into a transparent plastic “glove box” in order to create a moisture 

free atmosphere around the cell. 

Surface of the aluminium reference and counter electrodes was mechanically polished, then  

etched in solutions of 50 vol.% HF + 15 vol. % H2O and NH4OH (conc. 96%) + 5 vol. % H2O2 and 

washed with triply distilled water and ethyl alcohol. The vanadium working electrodes for 

electrochemical experiments and for surface/sub-surface analysis after mechanical polishing were 

etched in (1:1 = H2O:HNO3) solution (stirred for 15-20 seconds) and rinsed with plenty of tap water.       

Melt preparation included  removal of bonded water from sodium chloride (NaCl p.a., 

“Merck”) [26-31] but the procedure could not be applied for drying aluminium (III) chloride (99,99% 

pure AlCl3, “Aldrich Chemical Company, Inc.”). Instead, fresh, sealed bottle of anhydrous AlCl3 was 

used for each experiment. Finally,  the melt was subjected to pre-electrolysis between two aluminium 

(99,999 % Al) plates with large surface area (20cm
2
 each) at 493-523 K with constant current density i 

= 1,5·10
-2

Acm
-2

 for 10 hours.  

Linear sweep voltammetry (LSV) and potentiostatic UPD followed by galvanostatic stripping 

were the electrochemical techniques applied in the experiments. The first procedure with the LSV 

included the potential range scanned from a starting potential, ES (usually 50 to 60 mV more negative 

than the open circuit potential of vanadium working electrode, (1,017 – 1,100 V measured against the 

aluminium reference electrode) to a final potential, EF (0,030 – 0,050 V positive to the reversible 

potential of Al), followed by the return scan. In the second procedure the same potential range was 

scanned, but the scan was interrupted when the potential reached 0,030 – 0,050 V positive to the 

reversible aluminium potential; and this potential was held for  τd = 1, 5 and 10  minutes before starting 

the return scan. The sweep rate in both cases was 0,010 Vs
-1

 Obtained results were recorded by 

Potentiostat/Galvanostat Princeton Applied Research Corporation Model 273A and an X-Y-t recorder 

(Hewlet Packard M7040A).  

The procedure for the potentiostatic UPD followed by galvanostatic stripping included change 

of the working electrode potential from an initial potential, EI (50 to 60 mV more negative to the open 

circuit potential of vanadium in the given melt) to a potential, EX (30 to 50 mV more positive to 

aluminium equilibrium potential in the given melt), this potential was maintained for τd = 1, 5, and 10 

min whereupon the applied potential was switched off to open the electrode circuit. The electrode 

potential was then recorded by an XY recorder as a function of time, while a small current ( 0,02 

mAcm
-2

) slowly stripped the aluminium from the surface of vanadium specimen. If the stripping 
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current was interrupted for a few seconds, the measured potential did not change significantly. This 

suggested that the activation overpotential which should be caused by the stripping current was 

negligible. This meant that the potentials measured can be considered open circuit potentials. 

The samples for surface/subsurface analysis were prepared by controlled electrodeposition onto 

vanadium substrate from the equimolar AlCl3+NaCl melt at constant underpotential (Ed = 0,020 – 

0,100 V vs. Al) for different time periods (τd = 60, 120 and 240 minutes) at three different 

temperatures (473, 523 and 573 K). Then, the working electrode was removed from the melt while still 

under polarisation and washed in the glove box with the absolute ethyl alcohol to remove the melt 

residue. The sample kept without exposure to the atmosphere until subjected to surface/subsurface 

analysis. 

The surface of the samples was examined by Scanning electron microscopy (SEM - “JEOL”, 

model JSM-5800, Japan). In addition, atomic force microscopy (AFM) was used, with NanoScope 3D 

(Veeco, USA), microscope operated in contact mode under ambient conditions (silicon nitride probes 

with spring constant of 20-80 N/m were used). Surface analysis was performed by Energy dispersive 

spectrometry (EDS - “Oxford INCA 3.2”, UK), energy dispersive X-ray spectroscopy (EDX -mapping 

- Oxford IncaEnergy  EDX). The crystal structures of alloys were characterized by XRD using (XRD - 

“Enraf Nonius powder diffractometer”, Germany). 

 

 

3. RESULTS 

Fig. 1. shows linear sweep voltammograms obtained with the same sweep rate on vanadium 

electrodes for different cathodic end potentials. The voltammograms recorded with the same sweep 

rate but with different times (τd) spent at negative potential end of the cycle and various temperatures 

(T) are shown in Fig. 2. Holding potential values, E (V vs. Al) and corresponding charges (10
-3

 Acm
-2

) 

under the anodic peaks recorded in the voltammograms for different deposition holding times τd and 

temperatures T, are summarized in Table 1.  

 

 
 

Figure 1. Linear sweep voltammograms of vanadium in equimolar AlCl3+NaCl melt; sweep rate 10 

mVs
-1

;  T = 523 K with following start/stop potentials: Ei = 1,000 V → Ef = 0,050V vs. Al 

(dot);  Ei = 1,000 V → Ef = 0,010V (dash) vs. Al; Ei = 1,000 V → Ef = 0,000V vs. Al (solid). 
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Potential vs. time diagrams of aluminium dissolution from vanadium electrodes, obtained by 

low-current galvanostatic stripping („open circuit measurements“) after 60 minutes UPD at different 

temperatures, are given in Fig. 3. Table 2 shows the potential values at the plateaux.  

SEM photogaphs of the vanadium electrode surface obtained after a) two and b) five hours of 

electrode potential held at 50 mV vs. Al and 523 K are shown in Fig. 4. EDS analysis results for the 

same samples are presented in Fig. 5, their numerical semi-quantitative results of EDS analysis in 

Table 3, and EDX aluminium mapping of these surfaces in Fig. 6 a) and b).  

 

       
a)                                                                b) 

 

  
c) 

 

Figure 2. Linear sweep voltammograms of vanadium electrode in equimolar AlCl3+NaCl melt 

obtained at different times (τd) spent at negative potential end of the cycle; sweep rate 10 mVs
-

1
; a) Ei = 1,000 V → Ef = 0,000V vs. Al; 300s hold at 473 K; b) Ei = 1,000 V → Ef = 0,040V 

vs. Al, 120s hold at 523 K (solid), 300s hold at 573 K (dash)  and  c) Ei = 1,000 V → Ef = 

0,050V vs. Al at 573 K, 60s (solid), 300s (dash) and 600s (dot). 
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Table 1. Cathodic end holding potential, E (V vs. Al) and the corresponding dissolution charge 

(mAscm
-2

) in the anodic section of voltammograms on vanadium electrodes as a function of 

deposition holding time  τd (s) and temperature  T (K). 

 

 

Substrat 

Holding 

time 

τd [s] 

Potential 

E 

[V vs.Al] 

   

473 K 

     

523 K 

 

573 K 

 

 

 

V 

120 0,040 99 mAscm
‒2

 195mAscm
‒2

 267 mAscm
‒2

 

300 0,040 182  mAscm
‒2

 254 mAscm
‒2

 325 mAscm
‒2

 

 

600 

 

 

0,040 

 

240 mAscm
‒2

 

 

390 mAscm
‒2

 

 

411 mAscm
‒2

 

 

 

 
 

Figure 3. „Open circuit“ graphs of aluminium dissolution from vanadium electrodes in equimolar 

AlCl3+NaCl melt after one hour aluminium UPD at 0,020 V vs. Al; T= 473 K; 523 K and 573 

K. 

 

Table 2. Inflection points and corresponding E (V vs. Al) values obtained in „open circuit“ 

measurments after aluminium one hour UPD on vanadium in equimolar AlCl3+NaCl melt at 

0,020 V vs. Al for different temperatures T(K).  

 

T(K) 

 

473 523 573 

Inflection Point 

Potential  (V vs. Al) 

0,166 0,273 0,382 0,133 0,270 0,530 0,260 0,480 0,560 



Int. J. Electrochem. Sci., Vol. 10, 2015 

  

8965 

       
a)                                                        b) 

 

Figure 4. SEM photogaphs of vanadium electrode surface after: a) two hours (magnification 500x) and 

b) five hours (magnification 2000x) of aluminium UPD at 0,050 V vs. Al, T= 523 K. 

 

 

                     
a)     b) 

 

Figure 5. Characteristic EDS spectra of vanadium samples given in Fig. 4.a)  and b)  

 

Table 3. Semi-quantitative EDS analysis of the working electrode surface after two and five hours of 

aluminium UPD at 0,050 V vs. Al, T= 523 K (see Fig.5.a) and 5.b)). 

 

 2 hours 5 hours 

Elmt Spect Elmt (%) At.(%) Elmt (%) At. (%) 

O K ED 43,6 69,17 39,10 66,39 

Al  K ED 2,69 2,57 5,85 4,05 

V  K ED 53,71 28,26 55,05 29,56 

Total  100,00 100,00 100,00 100,00 

 

                
 a)                 b) 

Figure 6. EDX maps of aluminium distribution after a) two and b) five hours of aluminium UPD at 

0,050 V vs. Al, T= 523 K (samples from Fig. 4.) of the vanadium electrode surface 
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Examples of XRD patterns for vanadium electrodes taken after aluminium UPD at different 

temperatures and deposition times are presented in Fig. 7. The phases and their crystallographic 

systems identified in the deposits obtained are listed in Table 4.  

 

    
a)       b) 

 

     
 

c)       d) 

 

Figure 7. Diffraction patterns of vanadium electrode samples after:  a) two hours of UPD at E = 0,050 

V vs. Al from equimolar AlCl3+NaCl melt and T = 473 K: (V) V, (*) AlV3, (●) Al23V4, (+) 

Al8V5; b) two hours of UPD at E = 0,050 V vs. Al from equimolar AlCl3+NaCl melt and T = 

523 K: (V) V, (*) AlV3, (●) Al23V4,(+) Al8V5; c) five hours of UPD at E = 0,050 V vs. Al from 

equimolar AlCl3+NaCl melt and T = 523 K: (V) V, (*) AlV3, (●) Al23V4, (+) Al8V5; d) five 

hours of UPD at E = 0,050 V vs. Al from equimolar AlCl3+NaCl melt and T = 573 K: (V) V, 

(*) AlV3, (●) Al23V4 ,(+) Al8V5 and the rest of the peaks are characteristic of AlO and Al2O3.  
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Table 4. The phases identified by XRD on vanadium samples after aluminium UPD at different times 

and temperatures. 

 

T(K) 
d 

(hour) 

Identified 

phase 
System References 

473 2 

AlV3 cubic [32,33] 

Al23V4 hexagonal [32,34] 

Al8V5 cubic [32,35] 

523 

2 

AlV3 cubic [32,33] 

Al23V4 hexagonal [32,34] 

Al8 V5 cubic [32,35] 

5 

AlV3 cubic [32,33] 

Al23V4 hexagonal [32,34] 

Al8 V5 cubic [32,35] 

573 2 

AlV3 cubic [32,33] 

Al23V4 hexagonal [32,34] 

Al8V5 cubic [32,35] 

 

Surface morphologies of the vanadium sample surface before and after aluminium 

uderpotential deposition at 523 K
 
for 5 hours and then analysed by AFM are presented in Fig. 8 a) and 

b). The surface after aluminium UPD on vanadium shows agglomerations of different sizes and a 

significant increase in roughness. 

 

 
 

Figure 8. 2D and 3D AFM images of the vanadium surface: a) before aluminium UPD; b) after 5 

hours aluminium uderpotential deposition at 523 K.
 
  

 

4.  DISCUSSION 

It was established [36,37] that AlCl4
‒
 and Na

+
 are dominating ions in the melt of equimolar 

mixture AlCl3+NaCl. The deposition of aluminium proceeds by reduction of AlCl4
‒
 ions and the 

http://www.sciencedirect.com/science/article/pii/S0257897213003769#f0015
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reversibility of this reaction establish reference potential for the electrochemical measurements in this 

work.     

The study of aluminium underpotential deposition (UPD) on vanadium was possible because 

the reversible potential of the vanadium polycrystalline electrode was 1,090±0,035 V vs. Al more in 

the same melt.  

The cathodic current increase was not observed during linear sweep experiments with the 

chosen cathodic end potentials, Ed, maintained for longer times (Fig. 2). However, the anodic current 

peaks and the charge limited by the anodic currents increased above the charge needed for the 

deposition of a monolayer of aluminium [26-28]. The increase in working temperature of the system, 

led to an increase of the peak currents and the charges under both cathodic and anodic peaks. It would 

appear that the aluminium underpotential deposition after at least one aluminium monolayer 

completion proceeds at the rate necessary to compensate for one aluminium monolayer which entered 

solid state intermetallic reaction with the substrate. This dynamic quasi-equilibrium would seem to 

hold as long as intermetallic solid state reaction proceeds by interdiffusion of aluminium and the 

substrate. Different anodic dissolution peaks, then, reflect different intermetallic compounds formed 

during previous aluminium deposition, having different dissolution potentials [4,21,26-31,38-42]
 
(Fig. 

2.a) and b)).  

The potential pulse with amplitude cathodically exceeding the potentials characteristic for the 

appearance of anodic peaks (Ed = 0,030 – 0,100 V vs. Al) followed by a quasi “open circuit“ 

measurement of the electrode potential over time was used to obtain the dissolution characteristics of 

the underpotentially deposited aluminium onto and into the vanadium substrate. The “open circuit” 

measurements resulted in the potential-time curves exhibiting plateaux. The plateaux were the result of 

dissolution material being able to sustain an equillibrium potential with AlCl4
-
 from the melt, Fig. 3 

[26-31]. The number of plateaux, Table 2, agree with the number of anodic peaks appearing on cyclic 

voltammograms (Table 1). The potentials of the three plateaux (Fig. 2.) agree well with the potentials 

of the anodic current peaks maxima in the LSV’s.  

Longer potentiostatic underpotential deposition caused a proportional increase in the “open 

circuit” dissolution time, but this did not affect the plateaux potentials. The increase in working 

temperature, however, increased the amount of aluminium dissolved indicating that interdiffusion of 

aluminium and vanadium in the solid state becomes faster at higher temperatures.  

The “open circuit” measurements and the existence of the reversible (or corrosion) potentials; 

their temperature dependence; very similar behaviour of these potentials and the reversible aluminium 

potential, give strong support to the assumptions that intermetallic compounds are formed between 

vanadium substrate and underpotentially deposited aluminium [26-31]. It is obvious from Tables 2 and 

4 that the number of plateaux observed in Fig. 3 equals the number of three two-phase regions. It was 

impossible to define what those three intermetallic phases were. This is not surprising, having in mind 

Al-V phase diagram which suggests the existence of a number of intermetallic compounds of different 

Al and V composition and metastable structures at temperatures below 573 K [43].  

According to the literature, [44,45] UPD monolayer formation is possible if the half of work 

function difference (0,5) between the depositing metal (in this case aluminium) and the substrate 

(in this case vanadium) is positive. The half of work function difference for Al-V pair is positive but 
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very small 0,010V [46]. This would make the probability for aluminium monolayer underpotential 

deposition also very small. Similar relationships between theoretical predictions and experimental 

results, we encountered with the Al-Zn pair [31]. Here too, the linear sweep voltammograms of 

aluminium deposition/dissolution (Fig.1.and 2.) and low-current galvanostatic stripping measurements 

(Fig. 3.), clearly show that some interaction between the substrate (vanadium) and aluminium from the 

melt occurs at a potential positive to the potential of the aluminium reference electrode. No increase in 

the cathodic current during holding at the cathodic-end potential had been recorded, therefore, no 

nucleation barrier for alloy formation could be recognized. This should be an indication that a dynamic 

quasi-equilibrium is maintained at the surface by diffusion of the aluminium into the vanadium 

substrate. Since the aluminium–vanadium phase diagram [43] for the temperatures used shows 

possibility of formation of numerous intermetallic compounds, the anodic dissolution peaks could be 

ascribed to the aluminium from different intermetallic compounds, having, naturally, different 

dissolution potentials.  

The results obtained with EDS and EDX clearly recognize presence of aluminium in the 

vanadium surface of at least 4 at. % (while vanadium was 30 at. %) after prolonged aluminium UPD 

(Table 3, Fig.5. and 6.). AFM analysis of the working vanadium electrode surface before and after 

aluminium UPD (Fig.7.) showed 2,5 times increase in surface roughness due to obvious change in 

morphology brought about by Al-V alloy formation. The microphotograph shown in Fig.7.a) reveals 

an almost flat and uniform surface of bare vanadium. The sporadic small spots of more coarse 

morphology could be seen, but that is probably a result of the mechanical marking during polishing. 

The micrograph obtained after aluminium UPD onto vanadium (Fig.7.b)) is bright in appearance and 

made up of small cluster of particles which are compact and uniformly cover the entire substrate. The 

pyramidal-shaped nodular agglomerations morphology is observed for Al-V deposit obtained from 

AlCl3 + NaCl melt. Another AFM image, from the smaller surface area (5 × 5 µm), of Al deposit 

showed that the crystallite agglomeration was made up of smaller, nanocrystalline globular particles. 

The 2D image of this deposit resembles very well the morphology shown in the corresponding SEM 

photographs (Fig. 3.). It appears that during aluminium underpotential deposition on vanadium, under 

given conditions, rather thin surface alloys structures are formed.  

The results obtained from XRD analysis on vanadium surfaces exposed to aluminium UPD 

from used melt, Fig.6., suggests that deposited aluminium under described conditions forms 

intermetallic compounds with vanadium, namely Al23V4, Al8V5, AlV3. 

Solubility of vanadium in solid aluminium at 893 K is about 0,2-0,3 at.% and solubility of 

aluminium in vanadium is high (around 60 at.%) [43]. The Al-V intermetallic phases are stucturally 

well characterized but the phase diagram as a whole still contains many uncertainties [43].  

Interest in the posibility of AlV3 alloy (so called A15 compound) good superconducting 

properties provoked numereous investigations with intermetallic phases containing around 75 at.% V. 

According to the Al-V phase diagram, Al23V4 (complex cubic structure) and Al8V5 (cubic γ brass 

structure) belong to solid state equilibrium phases, rich in aluminium, existing at temperatures below 

960 K and 1630 K, respectively. Numerous  attempts  have  been  made  to  synthesize  an  A15 

compound (AlV3) because of  its potential as a super-conducting material.  Reports have been made of 

A15 structures  formed  by annealing at 373 K in quartz  tubes,  with  lattice  parameters  of 0.4812  

http://www.sciencedirect.com/science/article/pii/S0010938X11002411#f0065
http://www.sciencedirect.com/science/article/pii/S0257897210001398#fig10
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and 0.4926  nm,  respectively [43]. Metallographic and microprobe analyses were  made  on dilute  

alloys  heat treated  for  short times at temperatures  between  773 and 1013 K.  It was  concluded  that 

only Al3V  and  Al6V  (A123V4) are equilibrium phases,  and that  Al21V2  appears only as a metastable 

transition  phase [5,43]. Hexagonal  β  A1V3,  with  a  = 0.7070  and  c  = 0.9565  nm,  was  reported  

to  form  under  pressures greater than  30 kbar  and  above  1773 K  and  tetragonal α AIV3, with a  =  

0.6167  and c  =  0.9481  nm,  appeared  at lower  temperatures  and  pressures  [47]. Hexagonal  β  

A1V3,  with  a  = 0.7070  and  c  = 0.9565  nm,  was  reported  to  form  under  pressures greater than  

30 kbar  and  above  1773 K  and  tetragonal α AlV3, with a  =  0.6167  and c  =  0.9481  nm,  appeared  

at lower  temperatures  and  pressures  [47].   

Some authors [10] consider that Al45V7 and Al23V4 (around 24 at. % of vanadium) alloys can 

be obtained only by diffusion mechanism, and not by casting. They suggest that the intermediary phase 

Al3V is isomorphic with Al8V5 and has significant range of solubility of aluminium up to 1633 K. 

Pronounced tendency of aluminium and vanadium to build superlattice formations in alloys was also 

observed.   

Annealing at temperaturs below about 973 K caused interdiffusion between V and Al thin 

layers results mainly in a solid-solution of Al in V [48]. After annealing for 1 hour at a temperature 

higher than about 973 K, several compunds were found to form by the reactions between the V-Al 

solid solution including A15 and some unidentified phase made with oxides [48]. V5Al8 and V3Al 

intermetallics have been formed by interdiffusion, by annealing of sputtered V/Al-multilayers at 973 K 

in vacuum; sapphire (102) was used as substrate. 

 

 

 

5. CONCLUSIONS 

Electrochemical techniques reveiled underpotential deposition of aluminium from equimolar 

AlCl3 + NaCl melt on polycrystalline vanadium substrate at temperatures 473 K, 523 K and 573 K. 

The observed aluminium underpotential deposition results in the formation of surface intermetallic 

compounds by interdiffusion of thin Al deposit and V substrate. The constant-potential regions 

measured during the low-current stripping corresponded to the coexistence of four pairs of the 

metallic-intermetallic phases.  

The deposits were studied by scanning electron microscopy (SEM), energy dispersive 

spectrometry and X-ray spectroscopy (EDS and EDX), atomic force microscopy (AFM) and X-ray 

diffraction (XRD) which confirmed aluminium UPD on vanadium and Al-V alloys formation. Three 

intermetallic compounds were identified as Al23V4; Al8V5. AlV3.  

The results suggest new posibilities of Al-V alloys formation (including  famous AlV3) using 

lower temperatures via a better controlled processes.   
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