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Abstract Three coordination compounds of ruthenium(II), belonging to a recently synthesised ser-

ies of water-soluble compounds of general formula mer-[Ru(L3)(N-N)Cl]Cl, where L3 = 4’-chloro-

2,2’:6’,200-terpyridine (Cl-tpy), N-N= ethylenediamine (en), 1,2-diaminocyclohexane (dach) or 2,2’-

bipyridine (bpy), have shown strong binding to calf thymus DNA and moderate in vitro cytotoxicity

towards cancer cell lines. Knowing that serum proteins play a crucial role in the transport and deac-

tivation of ruthenium drugs, we have conducted a detailed study of their interactions with two

major metal-transporting serum proteins, albumin and transferrin, and it is presented herein.

Ruthenated protein adducts were formed with various concentrations of the three compounds

and then separated from the unbound portions by ultrafiltration through 10 kDa cut-off centrifugal

filter units. The stoichiometry of binding was determined using inductively coupled plasma optical

emission spectrometry. One mol of albumin bound up to 7, 8.5 and 1.5 mol of compound 1 ([Ru(Cl-

tpy)(en)Cl][Cl]), 2 ([Ru(Cl-tpy)(dach)Cl][Cl] and 3 ([Ru(Cl-tpy)(bpy)Cl][Cl]), respectively. One mol

of transferrin bound up to 3, 3.5 and 0.4 mol of 1, 2 and 3, respectively. The affinity of albumin and
olatac),

nikosa).
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transferrin for the three ruthenium compounds was evaluated using fluorescence quenching. The

binding constants for 1 and 2 lay within the range 104–105 M�1, suggesting moderate-to-strong

attachment to albumin. Both compounds showed much lower affinity for transferrin (102–

103 M�1). Compound 3 bound weakly to each studied protein. High resolution ESI qTOF mass

spectra of albumin before and after binding of 1 revealed the high stoichiometry of binding.

Although the binding of the compounds 1–3 to albumin and transferrin did not affect proteins’ sec-

ondary structure much, their tertiary structures underwent some alterations, as deduced from the

circular dichroism study. Changes in the stability of albumin, after binding to compounds 1–3 were

examined by differential scanning calorimetry.

� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A great number of human proteins, especially enzymes, contain metal

ions at their active sites, and these metal ions play key catalytic and

structural roles. Platinum-based drugs (cisplatin, carboplatin, and

oxaliplatin) have been among the most effective chemotherapeutic

agents in cancer treatment for years. However, their high toxicity and

the incidence of spontaneous or acquired drug resistance limit their

clinical use. To overcome these drawbacks, a huge number of coordina-

tion compounds of transition metals other than platinum has been

thoroughly studied (Dyson and Sava, 2006; Jakupec et al., 2008;

Motswainyana and Ajibade, 2015). Iron compounds with exciting

potent anticancer activity, mediated by production of reactive oxygen

species have been tested, but their toxicity remains a challenge (Wani

et al., 2016). The development of copper-based compounds as potential

drugs is hindered by their extremely poor aqueous solubility, making it

difficult to evaluate them in preclinical models or patients (Wehbe et al.,

2016). The unique properties of ruthenium-based drugs such as rich syn-

thetic chemistry, a range of oxidation states (RuII, RuIII andRuIV), slow

ligand exchange rates (close to those in cellular processes), favourable

water solubility and less toxicity than that of conventional platinum

drugs justify the great expectations posed for ruthenium compounds

(Ang and Dyson, 2006; Bergamo et al., 2012; Motswainyana and

Ajibade, 2015). Furthermore, their octahedral geometry enables them

to bind to nucleic acids by new and unique ways (Bergamo et al., 2012).

Two coordination compounds of ruthenium(III), KP1019, inda-

zolium trans-[tetrachlorobis(1H-indazole) ruthenate(III)] and NAMI-

A, imidazolium trans-[tetrachloro(1H-imidazole)-(S-dimethyl sulphox-

ide)ruthenate(III)] (Bergamo et al., 2012), have been extensively stud-

ied as potential anti-tumour drugs and both compounds proved

beneficial in phase I clinical trials (Hartinger et al., 2008;

Rademaker-Lakhai et al., 2004). Two organometallic Ru(II) arene

compounds, having a ‘‘piano-stool” configuration, have been

investigated preclinically, RAPTA-C, ([Ru(g6-p-cymene)Cl2(pta)];

pta = 1,3,5-triaza-7-phosphaadamantane (Weiss et al., 2014) and

RAED-C, [Ru(g6-p-cymene)Cl(en)] (Aird et al., 2002).

A typical functional ruthenium coordination compound is acti-

vated by aquation, when its weakly bound ligand(s) dissociate in solu-

tion, enabling the metal ion to bind coordinately to a biological target

(Gianferrara et al., 2009). It is generally thought that the cytotoxic

activity of Ru compounds originates from binding to DNA, i.e.

DNA is their primary (the so-called classical) target. However, other

ruthenium compounds may also bind to ‘‘non-classical” targets such

as proteins and RNA (Ang and Dyson, 2006). Protein targets seem

to play a more important role than DNA in the anti-metastatic activity

of NAMI-A (Bergamo et al., 2012).

Whenever a ruthenium anticancer compound is synthesised, its

cytotoxicity and DNA binding ability are checked (Ang and Dyson,

2006; Motswainyana and Ajibade, 2015). However, the interactions

of ruthenium metallodrugs with specific cellular proteins relevant for

carcinogenesis or metastasis, such as histones (Adhireksan et al.,

2014; Wu et al., 2011), collagen (Sava et al., 2003), metallothionein-2
(Casini et al., 2009) or protein kinases (Meggers et al., 2007) are rarely

reported. Therefore, the role of protein binding in the action of

metallodrugs is a hot research topic.

A potential Ru-based metallotherapeutic would preferably be

administered intravenously, which means that its interaction with

serum proteins is of crucial importance (Jakupec et al., 2008). Investi-

gation of its interaction with the most abundant serum proteins is an

important step in the pharmacological characterisation of each novel

candidate drug (Groessl et al., 2010). This includes an assessment of

parameters such as the binding stoichiometry, binding constant and

the number of specific binding sites. Apart from being drug delivery

vehicles (Groessl et al., 2010), serum proteins may be involved in their

inactivation (Bergamo et al., 2003). The most abundant ones are as fol-

lows: HSA, human serum albumin (c = 35–50 g L�1), IgG,

immunoglobulin G (c= 7–16 g L�1) (Kratz and Beyer, 1998) and

Tf, serum transferrin (c= 2.5–3.5 g L�1) (Sun et al., 1999). HSA is a

non-glycosylated globular protein of 585 amino acids (Dugaiczyk

et al., 1982), accounting for about 60% of the total protein in blood

serum (Kratz and Beyer, 1998). The binding ability of HSA for a met-

allodrug affects its distribution in the body, rate of metabolism and

excretion (Kratz and Beyer, 1998). In plasma taken from a cancer

patient treated with KP1019, most of the drug was bound to HSA

(Sulyok et al., 2005). IgG is the second most abundant serum protein,

but its interactions with ruthenium metallodrugs have rarely been stud-

ied (Martinčič et al., 2014). As the third most abundant, Tf is a glyco-

sylated globular protein of 679 amino acids (Sun et al., 1999) that

serves to transport iron in human blood (Vincent and Love, 2012).

Approximately 30% of Tf molecules are iron-loaded (holoTf, holo-

transferrin), which leaves the unloaded protein (apoTf, apotransferrin)

free for transport of other metals (Vincent and Love, 2012). The role of

ruthenium-drug’ binding to Tf has been a subject of much dispute

(Bergamo and Sava, 2011). Despite the long-standing hypothesis that

Tf serves as a mediator to deliver Ru anticancer compounds selectively

into tumour cells via cell surface receptors for Tf, the number of which

is increased in tumours (Ang and Dyson, 2006), only few reports have

convincingly shown that this actually happens (Guo et al., 2013).

Besides organometallic coordination compounds of Ru(II) (Ang

et al., 2011), ruthenium compounds with polypyridyl ligands have

emerged as leading candidates for use as anticancer drugs (Ang and

Dyson, 2006; Zhao et al., 2014). They most often contain the follow-

ing: bpy, 1,10-phenanthroline (phen) or 2,2’:6’,200-terpyridine (tpy).

Considered as classical anticancer drugs, a large number of Ru(II)

polypyridyl compounds have been screened for anticancer activity

(Ang and Dyson, 2006), but their interactions with proteins have scar-

cely been studied.

We recently reported the synthesis of a series of ruthenium(II) ter-

pyridine compounds, with the general formula mer-[Ru(L3)(N-N)X]

[Y]n, in which L3 is either tpy or Cl-tpy; X is Cl or S-dimethyl sulphox-

ide (dmso-S); N-N is en, dach or bpy; Y is Cl, PF6 or CF3SO3, and

n= 1 or 2, depending on the nature of X (Rilak et al., 2014). Their

high water-solubility (>25 mg mL�1) makes them very attractive as

potential metallotherapeutics for intravenous application. Three

http://creativecommons.org/licenses/by-nc-nd/4.0/
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compounds from the series: [Ru(Cl-tpy)(en)Cl][Cl] (1), [Ru(Cl-tpy)

(dach)Cl][Cl] (2) and [Ru(Cl-tpy)(bpy)Cl][Cl] (3) (Fig. 1) were chosen

for investigation of their interactions with biologically important mole-

cules. These compounds form monofunctional adducts with N7 of 9-

methylguanine or guanosine-5’-monophosphate (Rilak et al., 2014).

They bind strongly to calf thymus (CT) DNA (Kb = 104–105 M�1),

both covalently and non-covalently, intercalating between base pairs

(Lazić et al., 2016), which means they can be referred to as classical

compounds. In addition, coordinative bonding of compounds 1 and

2 to the imidazole ring of L-histidine (His) was also demonstrated

(Lazić et al., 2016). Within this frame, we aimed to examine whether

the chosen three Ru(II) terpyridine compounds bind to major metal-

transporting proteins from human blood. In the study presented

herein, we examined interactions of the three Ru(II) compounds: 1,

2 and 3 (Fig. 1) with HSA and serum Tf. It is worth noting that most

binding studies in vitro involved apoTf, whereas in the circulation,

30% of Tf is saturated with iron (Sun et al., 1999). To simulate the

actual physiological situation, we used partially iron-saturated Tf (a

mixture of apoTf and holoTf at 30% iron saturation), throughout

our work. The interactions were studied using a battery of methods:

inductively coupled plasma optical emission spectrometry (ICP

OES), fluorescence quenching, circular dichroism (CD) and differential

scanning calorimetry (DSC).
2. Experimental

2.1. Materials

The compounds [Ru(Cl-tpy)(en)Cl][Cl] (1), [Ru(Cl-tpy)(dach)
Cl][Cl] (2) and [Ru(Cl-tpy)(bpy)Cl][Cl] (3) were synthesised

as described recently. Microanalysis, ultraviolet-visible (UV-
vis) spectroscopy and 1H nuclear magnetic resonance
(NMR) spectroscopy were used to check their purity and the
data and spectra agreed well with those already reported

(Rilak et al., 2014). Molar masses of the ions of the com-
pounds (without the outer chloride) are as follows: 464.33
(1), 518.42 (2) and 560.42 g mol�1 (3). Ultrapure water pro-

duced in a Milli-Q system (Millipore Inc.) was used through-
out. Analytical or reagent grade chemicals were obtained
from Sigma–Aldrich (St. Louis, MO, USA) or other commer-

cial vendors. HSA (Catalog # A8763), bovine serum albumin
(BSA, A7906) and partially iron saturated human serum Tf
(T3309) were from Sigma Aldrich and used as received. Molar

masses of the proteins employed in calculations were taken
from the producers’ information sheets: 66 437, 66 430 and
80 000 g mol�1 for HSA, BSA and Tf, respectively. Protein
solutions were prepared in phosphate buffered saline (PBS,

20 mM phosphate, 100 mM NaCl, pH 7.40) and stored in
the dark at 4 �C for no longer than 3 days. HSA concentration
was checked by measuring the absorbance at 280 nm (A280),

using 37 219 M�1 cm�1 as the molar extinction coefficient
Figure 1 Chemical structures of the three Ru(II) terpyridine compoun

Cl]Cl (2) and Ru(Cl-tpy)(bpy)Cl]Cl (3).
(Ɛ280) (Ace et al., 1995). This is not applicable to Tf, as iron
binding alters its Ɛ280 value in a nonlinear manner. The Ɛ280
of Tf falls somewhere between 83 800 and 93 000 M�1 cm�1.

Therefore, Tf was precisely weighed on an analytical balance,
dissolved and the A280 of the solution checked (James and
Mason, 2008).

2.2. Preparation of ruthenated protein adducts

To prepare protein adducts with the Ru(II) terpyridine com-

pounds, a constant amount of HSA (2.5 mg) or Tf (2.5 mg)
was incubated with increasing quantities of compounds 1, 2
or 3 in a fixed total volume of 0.5 mL of 20 mM PBS pH

7.4, for 24 h at 37 �C in a thermal cycler with constant shaking.
The final protein-to-ruthenium ratios were 1:1, 1:2, 1:5 and
1:10. Unbound compound was removed from the adducts by
ultrafiltration, using centrifugal filter devices, with a molecular

mass cut-off 10 kDa (Microcon, Millipore Inc.). To prevent
possible aggregation of the proteins, the centrifugation speed
never exceeded 7000g, whilst the temperature was kept con-

stant at 10 �C. The adducts, recovered in the so-called reten-
tates (0.1 mL), were then extensively washed with a working
buffer (20 mM phosphate buffer, pH 7.4). Samples of HSA

and Tf, incubated with the buffer alone and treated exactly
as the other samples throughout, served as controls. The work-
ing buffer contained no additional salts or any other additives
and was passed through a 0.45 lm filter (Sartorius) and

degassed before each operation. The samples were finally
adjusted to a volume of 2.0 mL with the working buffer and
used as such in CD and DSC experiments. Samples for the

ICP OES were similarly prepared, except that the incubation
mixtures contained different amounts of HSA (2.0 mg) and
Tf (1.66 mg), the retentates were not diluted at the end

(0.1 mL) and the proteins were also incubated with the drug
cisplatin.

2.3. General procedures

Stock solutions of Ru(II) terpyridine compounds 1, 2 and 3 in
ultrapure water were freshly prepared before each experiment.
Their UV-vis spectra were checked each time, as were their mass

spectra, which were obtained by matrix-assisted laser desorp-
tion and ionisation time of flight mass spectrometry (MALDI
TOF MS). The UV-vis spectra were recorded at room temper-

ature using the wavelength scanning mode (Fig. S1) on a Varian
Cary 100 Bio double beam spectrophotometer (Palo Alto, CA,
USA). The operating range was 200–900 nm and 1.0 cm path-

length quartz cuvettes (3.0 mL) were used. Mass spectra of
the compounds were acquired in the positive reflectron mode
ds under investigation: [Ru(Cl-tpy)(en)Cl]Cl (1), Ru(Cl-tpy)(dach)
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(Fig. S2) on a 4800 Plus MALDI TOF/TOF mass spectrometer
(Applied Biosystems, Carlsbad, CA, USA) equipped with a
200 Hz, 355 nm Nd:YAG laser, as described elsewhere

(Nišavić et al., 2016). ICP OES measurements were performed
on a SPECTROFLAME-ICP Model P (Spectro Analytical
Instruments, Kleve, Germany), operated at 27.12 MHz,

2.5 kW. ICP OES detected three spectral lines originating from
ruthenium, the strongest occurring at 372.803 nm (Fig. S3),
which was used both for calibration and for the measurements.

The fluorescence measurements were run on a Varian Cary
Eclipse spectrofluorometer operating at 25 �C, using a scan rate
of 120 nm min�1, an averaging time of 0.5 s, data collection
every 1 nm and excitation and emission slit widths set to 5 nm

and 10 nm, respectively. The fluorescence intensity was mea-
sured within the 310–450 nm range, upon excitation at
295 nm (excitation wavelength, kexc). The CD spectra were

acquired at a constant temperature of 25 �C (Peltier tempera-
ture controller) over the wavelength 190–320 nm using a J-810
Jasco Spectropolarimeter, equipped with a xenon lamp and

purged with nitrogen gas. The parameters were set as follows:
resolution, 0.1 nm; scan speed, 50 nm min�1; band width,
1.0 nm; response 1 s. The dynode voltage never exceeded

0.6 kV and the nitrogen flow was kept around 5 L min�1. The
instrument was calibrated for ellipticity units (in millidegrees)
and wavelength (in nm) using (+)-10-camphorsulphonic acid
at 290.5 nm. DSC analyses were done using Nano DSC (TA

Instruments, New Castle, DE, USA). All the solutions were
degassed prior to DSC runs. The adduct of BSA and compound
1 (BSA/1 adduct) was prepared by incubating 15 lM protein

solution with a 20-fold molar excess of 1, in 50 mM ammonium
bicarbonate buffer (pH 8.0) for 24 h, at 37 �C with constant
shaking. The mass spectra of BSA and its adduct with com-

pound 1 were recorded on a SYNAPT G2 system (Waters,
Manchester, UK). The samples were introduced into the mass
spectrometer via an Acquity ultra performance liquid chro-

matography (UPLC) column BEH130 C18 (100 lm � 100 mm;
Waters, Milford) attached to a nanoAcquity UPLC system
(flow rate 1 ll min�1), coupled to the SYNAPT. The samples
were diluted 1:10 in water and 5 lL was applied to a pre-

column with a solution of acetonitrile/H2O/
HCOOH = 40:59.9:0.1 (v:v:v). The pre-column 2G-V/M 5 lm
Symmetry C18 trap (180 lm � 20 mm), with a flow rate of

15 ll min�1 was used to desalt the samples prior to theMS anal-
ysis. The instrument conditions were as follows: capillary volt-
age 1.5 kV, sampling cone voltage 40 V, source temperature

80 �C, desolvation temperature 120 �C, acquisition window
500–4000 m/z in 1 s and source operating in the positive ionisa-
tion mode. Data were processed using the Mass Lynx 4.1
software.

2.4. ICP OES measurements

The samples of ruthenated and platinated protein adducts

were subjected to overnight digestion in concentrated ultra-
pure nitric acid. The final volume was adjusted to 2.2 mL with
2% nitric acid. The samples were then analysed for their metal

content. HSA and Tf samples incubated in the buffer without
Ru compounds served as blanks. The Ru and Pt standards
(NCS Analytica Instruments, 1000 lg mL�1) were diluted with

ultrapure water to make a 10 lg mL�1 stock solution, whilst
the standards for calibration were freshly prepared by diluting
the stock solution with 2% HNO3. The concentrations used
for calibration were as follows: 1, 2, 5 and 10 lg mL�1

(Fig. S4). The whole procedure was carried out twice; the sam-

ples were prepared in duplicates and two independent mea-
surements were made for each sample.

2.5. Fluorescence quenching experiments

The protein/compound adducts were prepared by indepen-
dently incubating a constant amount of protein with increasing

amounts of compounds 1, 2 or 3 in a fixed total volume of
2.0 mL 20 mM PBS pH 7.4 for 24 h, at 37 �C with constant
shaking. The final molar ratios of protein-to-ruthenium were

as follows: 1:0 (control), 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:10,
1:12.5, 1:15 and 1:20. The concentrations of HSA and Tf were
2.5 lM and 2.6 lM, respectively. Emission spectra were
recorded between 310 and 450 nm upon excitation at 295 nm

immediately after the incubation using a quartz cuvette of
1.0 cm path length (Hellma Analytics). The emission spectra
of solutions containing only the studied compounds (at the

highest concentration) were also recorded under identical con-
ditions. Appropriate blanks corresponding to the buffer were
employed to correct the fluorescence background. Correction

due to dilution effects was not necessary, because very small
volumes (<10 lL) of concentrated solutions of the com-
pounds were added to the protein solutions. Absorbances of
all the samples were measured between 250 and 450 nm, and

the obtained values were used to correct the fluorescence data
for the inner filter effect.

2.6. Circular dichroism studies

CD spectra of the ruthenated HSA and Tf samples were
recorded both in the far UV (190–260 nm) and near UV

(260–320 nm) region, using two types of Hellma quartz cuv-
ettes: a demountable cuvette with a path length of 0.01 cm,
for far UV, and one with a 1.0 cm-path length for near UV

measurements. The samples were prepared in triplicates and
four scans were accumulated for each sample. The CD spec-
trum of the buffer alone was subtracted from each spectrum.
The concentrations of HSA and Tf were 18 lM and 15 lM,

respectively.

2.7. Differential scanning calorimetry

DSC measurements were carried out over the temperature
range 25–90 �C, following equilibration for 10 min at 25 �C.
Temperature scan rate was 1 �C min�1. Cell volume was

0.3 mL. The concentration of HSA was 18 lM.

3. Results and discussion

3.1. Binding stoichiometry for interactions between the Ru(II)
terpyridine compounds and metal-transporting proteins

In our study, we have assessed the stoichiometry of binding
between compounds 1, 2 and 3 (Fig. 1) and HSA or Tf, using
ICP OES. To prepare ruthenated or platinated protein adducts

(HSA/metal or Tf/metal), the three compounds and cisplatin
were individually incubated with HSA or partially iron-



Table 1 Metal (ruthenium or platinum) content of protein/metal adducts as determined by ICP OES. ri indicates the initial protein-to-

metal molar ratio in the incubation mixture; rb is amount of Ru (or Pt) in the adducts, produced by incubation of human serum

albumin (HSA) or partially-iron saturated human serum transferrin (Tf) with an excess of Ru(II) terpyridine compounds 1, 2, 3 or

cisplatin for 24 h at 37 �C. The adducts were ultrafiltered through Microcon centrifugal filter devices (cut-off 10 kDa). Protein

concentration was 11 lM. rb is given as mol of Ru bound per mol of protein. Data shown are the mean ± SD of triplicate

measurements. The reference drug cisplatin was used for comparison.

ri rb

1 2 3 Cisplatin

(HSA/metal)

1: 10 (3 h) 4.60 ± 0.12 5.30 ± 0.20 1.11 ± 0.22 1.28 ± 0.05

1: 10 (24 h) 6.92 ± 0.42 8.35 ± 0.25 1.51 ± 0.15 4.00 ± 0.01

(Tf/metal)

1: 10 (24 h) 2.75 ± 0.30 3.36 ± 0.10 0.35 ± 0.01 2.00 ± 0.01
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saturated human serum Tf for 24 h at 37 �C. The unbound
ruthenium compound (or cisplatin) was removed from the
reaction mixture by ultrafiltration (Guo et al., 2013). The

ICP OES analysis of the protein adducts indicated that all
three compounds bound to the metal-transporting proteins:
HSA and Tf, although to different extents (Table 1).

Few general conclusions can be drawn from the data. The
3 h-incubation time was not long enough for complete binding
of the studied compounds to HSA; compound 2 appeared to
be the best protein binding partner (1 mol of HSA bound up

to 8.35 mol of 2 for 24 h) and HSA displayed higher binding
capacity for the three compounds than Tf (see Table 1).

The results for cisplatin binding to HSA and Tf agreed with

those obtained by others (Guo et al., 2013; Timerbaev et al.,
2004). It is worth noting that the method used to remove
unbound drug can greatly affect the results. Low values were

obtained by those who used size exclusion chromatography
(Groessl et al., 2010), which may have been due to dissociation
of weakly bound drug molecules from the protein.

The biological destiny of a metallodrug greatly depends on
its distribution between free and bound forms, so the extent to
which a drug binds to the major plasma proteins affects its bio-
logical actions in the body (Bergamo et al., 2003; Groessl et al.,

2010). Although the stoichiometry of binding between Ru(III)
drugs and human serum proteins is known from several
reports, only a few such data exist for ruthenium(II) com-

pounds. It was shown that Tf can be loaded with at least ten
KP1019 equivalents (Pongratz et al., 2004). The content of
ruthenium bound to Tf, found in our study after incubation

with 1 or 2, was roughly 3-fold greater than that obtained with
Ru(II) compounds of the type [(g6-arene)Ru(en)Cl][PF6] (Guo
et al., 2013).

Coordination of Ru(II) compounds 1 and 2 to His (Lazić

et al., 2016), cysteine (Cys) and methionine (Met) (Rilak
et al., 2015) has recently been demonstrated. The fact that
HSA contains 16 His residues, one free Cys and six Met

(Dugaiczyk et al., 1982), implies a great number of possible
binding sites for these compounds. It is not surprising that
HSA bound so many positively charged ions of 1 and 2,

because HSA has many negatively charged surface areas, the
overall charge being �12.2 (Paul et al., 2015). On the other
hand, the overall charge of Tf is low, just 0.4 (Paul et al.,

2015), even though the protein contains 19 His residues, many
of which are solvent-exposed (Macgillivray et al., 1982) and
theoretically available for attachment of the studied
compounds. Tf also contains nine Met residues (Macgillivray
et al., 1982).

3.2. Binding affinities of serum metal-transporting proteins for
the Ru(II) terpyridine compounds

Besides the stoichiometry, it is very important to determine the

strength of interactions between Ru(II) terpyridine compounds
1, 2 and 3 and major serum metal-transporting proteins. To
this end, we measured the relative binding affinities of HSA
and Tf for the above compounds (expressed as binding con-

stants, Kb) using fluorescence quenching. kexc of 295 nm was
chosen due to the exclusive excitation of tryptophan (Trp) resi-
dues in proteins (Lakowicz, 2006; Peters, 2008).

3.2.1. Interaction with HSA

Fluorescence quenching experiments were done by indepen-
dently adding different amounts of compounds 1, 2 or 3 (0–

31.25 lM) to HSA solutions (2.5 lM) in 20 mM PBS pH 7.4.
The mixtures were incubated for 24 h at 37 �C prior to the
measurement.

Fig. 2 shows typical changes of fluorescence intensity of
HSA in the presence of increasing amounts of 1 (HSA + 1),
2 (HSA + 2) or 3 (HSA + 3) in the incubation mixtures. A

substantial decrease in HSA fluorescence was observed with
1 and 2 in a concentration-dependent manner. Five molar
excesses of compounds 1 and 2 quenched the fluorescence

intensity of HSA to approximately 53% and 47% of the initial
value, respectively.

The strong quenching of Trp-214 fluorescence points to
conformational change of the hydrophobic cavity of subdo-

main IIA, where the Trp-214 residue is located (Peters,
2008). This change was, most probably, provoked by binding
of compound 1 or 2 to HSA. Upon excitation at 295 nm, none

of the three compounds showed any fluorescence emission in
the range from 310 to 450 nm.

The characteristic HSA emission, centred at 347 nm, shifted

slightly from 347 to 342 nm for HSA + 1 to 339 nm for HSA
+ 2, respectively (Fig. 2). The observed blue shift is in accor-
dance with the formation of ruthenated HSA adducts. The
bonding altered microenvironment polarity in the vicinity of

Trp-214 (Vivian and Callis, 2001). Compared to 1 and 2, com-
pound 3 lowered HSA fluorescence to a much smaller extent (a
10-fold molar excess of 3 quenched HSA fluorescence to just



Figure 2 Fluorescence emission spectra of human serum albumin (HSA) and its adducts with Ru(II) terpyridine compounds 1 (HSA

+ 1), 2 (HSA + 2) and 3 (HSA + 3). Samples were prepared by incubating increasing amounts of the compounds with a constant

amount of protein in a buffer (20 mM phosphate, 100 mM NaCl pH 7.4), for 24 h at 37 �C. The final HSA concentration was 2.5 lM and

that of the compounds ranged from 0 to 31.25 lM. kexc = 295 nm. The spectra were corrected for the inner filter effect.

Table 2 Stern-Volmer data for the interaction of Ru(II)

terpyridine compounds 1, 2 and 3 with human serum albumin,

as calculated from the fluorescence quenching experiments.

Compound KSV (104 M�1) kq (10
12 M�1 s�1) R

1 7.25 ± 0.13 12.08 ± 0.21 0.9989

2 8.70 ± 0.16 14.48 ± 0.27 0.9988

3 0.37 ± 0.73 0.62 ± 0.12 0.9009

296 M. Nišavić et al.
90% of its initial value) without the blue shift (HSA + 3). It is
possible that the hydrophobic cavity in subdomain IIA of
HSA was not sterically accessible to the rigid compound 3.

The fluorescence intensities were corrected for the inner fil-
ter effect using Eq. (1), before being subjected to Stern-Volmer
analysis (Eq. ((2)) (Lakowicz, 2006).

Fcorr ¼ Fobs � 10
AexcþAem

2 ð1Þ

F0

F
¼ 1þ KSV � ½Q� ¼ 1þ s0 � kq � ½Q� ð2Þ

where Fcorr and Fobs are the corrected and observed fluores-
cence intensities, respectively; Aexc and Aem are absorbances

of incubation mixtures at 295 nm and 347 nm, respectively;
F0 and F are fluorescence intensities in the absence and pres-
ence of the quencher (studied ruthenium compounds), respec-

tively; Ksv is the Stern-Volmer constant; kq is the bimolecular
quenching constant; s0 is the average lifetime of fluorophore
Figure 3 Stern-Volmer plots for quenching of human serum

albumin (HSA, 2.5 lM) with increasing concentrations of the Ru

(II) terpyridine compounds 1 (HSA + 1), 2 (HSA+ 2) and 3

(HSA+ 3). The final concentration of the compounds ranged

from 0 to 31.25 lM. kexc = 295 nm, kem = 347 nm. The solid line

is a linear fit.
in the absence of quencher; [Q] is the concentration of the
quencher, i.e. [compound] (Lakowicz, 2006).

The plot of F0/F versus [compound] was linear (Fig. 3) up
to at least 12.5-fold excess of 1, 2 or 3 over HSA. Linearity

of the Stern-Volmer plots suggested the predominant involve-
ment of one type of quenching (Lakowicz, 2006). The Stern-
Volmer constants were calculated (Table 2). The Ksv values fol-

lowed the pattern 2 > 1� 3.
The bimolecular quenching constants, kq were calculated

from KSV using Eq. (2) and assuming s0 = 6 ns for HSA

(Lakowicz et al., 1980). 2 � 1010 M�1 s�1 is the maximal value
of kq resulting from collisional quenching of biopolymers
(Lakowicz, 2006). The obtained kq values were much higher

than 2 � 1010 M�1 s�1 (Table 2), especially those for 1 and 2.
This finding strongly suggests predominance of static quench-
ing of HSA fluorescence in the reaction with the studied com-
pounds (i.e. the formation of ground state complexes).

The fluorescence data were then treated using the modified
Stern-Volmer equation (Eq. (3)).

log
ðF0 � FÞ

F
¼ n � log½Q� þ logKb ð3Þ

The double logarithmic plots for all three studied compounds
were linear (Fig. 4). Kb and the number of binding sites (n) for
the interaction of HSA with 1, 2 and 3 were calculated from

the intercept and slope, respectively (Table 3).
Kb for compounds 1 and 2 lay within the range 104–

105 M�1, compound 2 being a slightly better binding partner

for HSA than compound 1 (Table 3). The very low Kb for 3

was not unexpected, since it was not very effective at quench-
ing fluorescence (HSA + 3, Fig. 2). The relatively high Kb

values for compounds 1 and 2 reflected moderate-to-strong



Figure 4 Double logarithmic plot for the quenching of human

serum albumin fluorescence by Ru(II) terpyridine compounds 1

(HSA + 1), 2 (HSA+ 2) and 3 (HSA+ 3). The solid line is a

linear fit.

Table 3 Binding constants (Kb) and the number of binding

sites (n) for interactions between human serum albumin and

compounds 1–3.

Compound Kb (M
�1) n R

1 (7.19 ± 0.0001) � 104 1.00 ± 0.02 0.9985

2 (8.59 ± 0.0001) � 104 1.00 ± 0.01 0.9994

3 6.72 ± 3.87 0.41 ± 0.12 0.8193
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interactions between them and HSA, suggesting the formation
of stable adducts. Therefore, upon intravenous administration,

free concentrations of 1 and 2 in plasma would be low, as they
would be mostly bound to HSA. In contrast to this, the low
value of Kb for compound 3 implies weak binding to HSA

and poor distribution in plasma.
Others reported similar Kb values ranging from 104 to 105

M�1 for binding of Ru((II) arene compounds to HSA

(Beckford, 2010). Furthermore, Ru(II) polypyridyl com-
pounds possessing bpy or phen ligands bound to HSA with
Kb of approximately 105 M�1 (Sun et al., 2015). In accordance
with published data we found only one specific binding site for

compounds 1 and 2 on the HSA molecule (Sun et al., 2015).

3.2.2. Interaction with human serum transferrin

Fluorescence quenching was examined by independently add-

ing different amounts of compounds 1, 2 or 3 to solutions of
Tf (2.6 lM) in 20 mMPBS pH 7.4. Themixtures were incubated
for 24 h at 37 �C prior to the measurement. Intravenous
Table 4 Stern-Volmer quenching constants (Ksv), apparent associat

interacting system: partially iron-saturated human serum transferrin

Compound Ksv (10
3 M�1) kq (10

12 M�1 s�1) R

1 7.51 ± 0.60 1.25 ± 0.09 0

2 11.42 ± 0.41 1.90 ± 0.07 0

3 2.39 ± 0.55 0.40 ± 0.09 0
administration of sodium salt of indazolium trans-
[tetrachlorobis(1H-indazole) ruthenate(III)] (KP1339) resulted
in a 20-fold excess of this compound over Tf in blood (Trondl

et al., 2014). We used Tf-to-ruthenium ratios up to 1:20. As
for quenching of HSA fluorescence (Fig. 2), Fig. S5 displays
typical changes in Tf fluorescence with increasing amounts of

compounds 1, 2 and 3 in the incubation mixtures. At the Tf-
to-ruthenium ratio of 1:10, fluorescence of the protein at the
emission maximum (327 nm) dropped to approximately 81%

and 77% of its initial value, for compounds 1 and 2, respec-
tively. Compound 2 showed slightly greater protein binding
than 1, whereas the binding of 3 was negligible as maximal
quenching was 97%of the F0 value. The fluorescence quenching

curves (Fig. S5) stopped decreasing at Tf-to-ruthenium ratios
greater than 1:12.5 (Tf + 2), 1:10 (Tf + 1) and 1:7 (Tf + 3).

The fluorescence quenching data for the interaction between

Tf and 1, 2 or 3 were corrected for the inner filter effect using
Eq. (1) and subjected to Stern-Volmer analysis using Eq. (2).
The Stern-Volmer plots (Fig. S6) were linear, implying a single

type of quenching (Mazuryk et al., 2012), so Ksv values were
calculated from the slopes. Assuming 6 ns as the s0 value for
Tf (Lakowicz et al., 1980; Mazuryk et al., 2012), the kq values

were also assessed (Table 4). The data were then analysed
employing Eq. (3) and plotted in a double logarithmic plot
(Fig. S7), which was then used to assess the binding parameters:
apparent association constant (Kapp) and n (Table 4).

The Ksv values we obtained with compounds 1 and 2

(Table 4) are concordant with that for NAMI-A binding to
apo-Tf (Mazuryk et al., 2012). We found kq � 1012 M�1 s�1,

which implies some types of bonding between Tf and studied
compounds 1 and 2. Compound 3 bound weakly to Tf, prob-
ably due to steric hindrance around the ruthenium centre.

In contrast to HSA, which has Trp-214 as a single fluo-
rophore (Peters, 2008), human Tf possesses eight Trp residues
(Macgillivray et al., 1982). Since these residues are all more or

less sensitive to changes in the local environment, the analysis
of fluorescence quenching data is more difficult. A binding
event that would quench the fluorescence of all Trp residues
in Tf is not probable (Mazuryk et al., 2012). This is evident

when one compares the quenching efficacy that compounds
1, 2 and 3 exerted towards HSA with those towards Tf. Within
this frame, the calculated binding constants do not represent

true Kb, but rather Kapp.
Published data on Kapp for binding of ruthenium coordina-

tion compounds to Tf are scarce, if one excepts the few com-

pounds in clinical testing. KP1019 bound to Tf with an Kapp

of 5.6–6.5 � 103 M�1 (Polec-Pawlak et al., 2006; Timerbaev
et al., 2005).

To sum up the fluorescence quenching data, HSA appeared

to be a much more active binder of the studied compounds
than Tf and their relative binding affinity to both proteins fol-
lowed the pattern: 2 > 1� 3.
ion constants (Kapp) and the number of binding sites (n) for the

and Ru(II) terpyridine compounds 1, 2 and 3.

Kapp (10
2 M�1) n R

.9782 0.64 ± 0.02 0.54 ± 0.04 0.9793

.9949 10.00 ± 0.01 0.77 ± 0.04 0.9916

.8878 0.025 ± 0.03 0.36 ± 0.08 0.9298
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3.3. Identification of ruthenium-serum albumin adducts by
electrospray ionisation mass spectrometry

Mass spectrometry (MS) is becoming an important tool for
studying interactions of coordination compounds of transition

metals with model proteins (Hartinger et al., 2013). BSA is
often employed to study interactions between serum albumin
and (metallo)drugs, because it is structurally similar to HSA
(Peters, 2008). With the aid of a high-resolution electrospray

ionisation (ESI) qTOF MS, we detected a BSA adduct of the
ion 1, [Ru(Cl-tpy)(en)Cl]+. The interactions that held the
BSA/1 adduct together were rather strong, since they persisted

within the denaturing conditions in the UPLC column,
through which the adduct passed on its way to the MS instru-
ment. Using the MaxEnt algorithm (Waters), we deconvoluted

the mass spectra of BSA and its ruthenated adduct onto a true
mass scale (Fig. S8), and we obtained their accurate molecular
masses. A peak at 66434.2109 Da dominated the spectrum of

the free protein (intact BSA in Fig. S8). The molecular mass
of BSA, calculated from its amino acid sequence, is
66430.3 Da. The deconvoluted mass spectrum of the adduct
(BSA + 1 in Fig. S8) contained a major signal at

71954.98 Da. The signal was tentatively assigned to an adduct
of composition: {BSA + 9 [Ru(Cl-tpy)(en)]2+ + [Ru(Cl-tpy)
(en)H2O]2+ + 3 [Ru(Cl-tpy)(H2O)2]

2+ � 3H} (Table 5).

Therefore, after dissociation of their inner chloride ions,
nine moieties of the compound 1 would coordinately bind to
a single BSA molecule; one Ru(II) moiety would first exchange

inner Cl� for a water molecule and then bind to BSA nonco-
valently; three ruthenium moieties would attach to BSA coor-
dinately, after loosing their en ligands and inner Cl� and
adopting two water molecules. The dissociation of Cl� from

ruthenium compounds is considered necessary for their coordi-
nation to proteins (Casini et al., 2007, 2009; Groessl et al.,
2010). Losing the en ligand from 1 was not unexpected, as

some RAPTA compounds lost their pta ligand upon binding
to proteins (Casini et al., 2007). Being smaller than [Ru(Cl-
tpy)(H2O)2]

2+, [Ru(Cl-tpy)(en)]2+ would be able to reach

the less accessible electron donor groups in BSA. The [Ru
(Cl-tpy)(en)H2O]2+ moiety most probably bound to BSA
through electrostatic interactions with negatively charged

amino acid residues on the protein (incubation mixture pH
was 8.0, whilst pI of BSA is 4.7) (Peters, 2008).

Therefore, thirteen ruthenium moieties that originated from
compound 1 bound to a single BSA molecule. BSA can bind

up to 6 mol equivalents of 1 at a BSA-to-Ru ratio of 1:10
(Nišavić et al., 2016). This amount should be at least doubled
at the BSA-to-Ru ratio of 1:20, which was examined in our MS

experiment.
Table 5 Ruthenium functionalities assumed to bind to bovine

serum albumin and their monoisotopic masses. The moieties

that were detected in the MALDI TOF mass spectra of the

compound 1 (Fig. S2) are marked with an asterisk.

The ruthenium functionality Monoisotopic mass

[Ru(Cl-tpy)(en)Cl]+ 463.9983*

[Ru(Cl-tpy)(en)]2+ 429.0294

[Ru(Cl-tpy)(en)(H2O)]2+ 447.0399

[Ru(Cl-tpy)(H2O)2]
2+ 404.9818*
The high capacity of BSA for binding transition metals is
logical as it possesses sixteen His residues (Hirayama et al.,
1990), of which ten are reactive and solvent-exposed (Hnı́zda

et al., 2008). BSA also contains one free Cys thiol group, four
Met and an N-terminal amino group (Hirayama et al., 1990).
Several reports have indicated His residues of serum albumins

as sites of attachment of Ru(II) and Ru(III) moieties (Das
et al., 2014; Hu et al., 2009; Webb and Walsby, 2015). We
recently described coordination of 1 and 2 to several His resi-

dues in BSA (Nišavić et al., 2016).
In contrast to BSA, we still have no direct evidence for

covalent binding of compounds 1 and 2 to serum Tf. In order
to preserve the interactions of these compounds with Tf, which

are obviously weaker than those with HSA, native MS would
have to be performed. Not only is Tf a relatively large protein
(76–81 kDa), but it carries two N-glycan chains with variable

sugar content, which gives the protein a variable molecular
mass (Sun et al., 1999). The small difference in mass between
ruthenated and free Tf at a high charge state would make

the native ESI mass spectra very difficult to resolve.

3.4. Conformational changes of serum albumin and transferrin
upon binding of the Ru(II) terpyridine compounds

Any change in the native conformation of a protein may affect
its function, and great alterations may be a biological signal
for sending the protein down a degradation pathway. With this

in mind, we examined the changes in secondary and tertiary
structure of serum HSA and Tf following attachment of com-
pounds 1, 2 and 3, using CD spectroscopy. The far UV CD

spectra of HSA alone and its adducts with the studied com-
pounds are shown in Fig. 5. To eliminate the potential influ-
ence of free (unbound) compounds on the CD spectra, the

adducts were ultrafiltered before measurements. CD spectra
of the filtrates (fraction < 10 kDa) showed no signals in the
relevant wavelength range (190–320 nm).

A representative undistorted a helix displays two negative
peaks in far UV CD spectra, with maxima at approximately
208 and 228 nm (Kelly and Price, 2000). We recorded an
intense negative band with two peaks at 209 and 222 nm dom-

inating the far UV CD spectra of free HSA (Fig. 5). Therefore,
the spectra in Fig. 5 reflect the a helical secondary structure of
HSA, which comprises mostly a helices (Carter and Ho, 1994).

These spectra fit fairly well with the CD spectra of HSA
reported by others (Liu et al., 2016; Luong et al., 2011; Peng
et al., 2016; Samanta et al., 2014).

When comparing the spectrum of free HSA with those of its
adducts with Ru(II) compounds 1, 2 and 3 (Fig. 5), we
observed no substantial differences, since all the spectra had
a similar pattern. Furthermore, the intensity of the negative

peaks at 209 and 222 nm showed little alteration upon the for-
mation of adducts (see Table S1). The maximal difference
between two measurements of a single sample was 2.6 mdeg,

caused by the tricky packing of samples into a 0.01 cm
demountable cell. Therefore, we came to the conclusion that,
in general, the secondary structure of HSA did not alter after

binding of studied compounds. Nevertheless, there were two
minimal alterations of the original a helical structure of
HSA: HSA/1 adduct at a HSA-to-Ru ratio of 1:2 (slightly sta-

bilising) and HSA/3 adduct at a HSA-to-Ru ratio of 1:5
(slightly destabilising). Samples prepared at HSA-to-Ru ratios



Figure 5 Far UV CD spectra of human serum albumin (HSA) and its adducts with Ru(II) terpyridine compounds 1 (HSA/1), 2 (HSA/2)

and 3 (HSA/3). The inset shows the expansion of the region 200–235 nm. Samples were prepared by incubating increasing amounts of the

compounds with a constant amount of protein for 24 h at 37 �C. Unbound compounds were removed from the HSA adducts by

ultrafiltration. The buffer was 20 mM phosphate, pH 7.4. Protein concentration was 19 lM. The double minima at 209 and 222 nm

originating from a helices are shown.
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greater than 1:5 could not be measured, because their dynode
voltage values exceeded 0.6, due to high absorption of the

compounds in the far UV region (compare Fig. S1).
We recorded an intense negative band with two peaks at

209 and 222 nm dominating the far UV CD spectra of free

Tf (Fig. 6). The spectra in Fig. 6 reflect the secondary structure
of Tf, which comprises alternating a helices and b sheets (Sun
et al., 1999). The far UV CD spectra of Tf (Fig. 6) are in good

agreement with those previously published (Zhang et al.,
2015). Binding of compounds 2 and 3 caused minimal (if
any) changes in the secondary structure of Tf (see Table S1).
However, there was a mild destabilisation of the a helicity with

compound 1, but only when applied at a Tf-to-Ru ratio of 1: 2.
Binding of compound 3 to Tf caused no change of the spectra
in Fig. 6 (Tf/3), which is in accordance with the very low value

of Kapp (Table 4) and the low stoichiometry of binding
(Table 1). To sum up, the studied coordination compounds
of Ru(II) bound to HSA and Tf generally without disturbing

their secondary structures.
The CD spectrum of a protein in the near UV region
(320–260 nm) reflects the microenvironment of aromatic side

chains and disulphide bonds, being a fingerprint of the pro-
tein’s tertiary structure. Aromatic amino acids give character-
istic wavelength profiles: Trp, a peak in the region from 270 to

290 nm (Cooper, 2011) or 290–305 nm (Kelly and Price, 2000);
tyrosine (Tyr), a peak between 270 and 280 nm; phenylalanine
(Phe), a peak between 255 and 270 nm (Cooper, 2011; Kelly

and Price, 2000). Fig. S9 shows a near UV CD spectrum of
intact HSA in parallel with the spectra of HSA adducts with
Ru(II) terpyridine compounds 1, 2 or 3. The spectra are con-
sistent with the relevant ones obtained by others (Luong

et al., 2011). Of all three tested compounds, compound 2

induced the smallest change in the tertiary structure of HSA
(HSA/2 in Fig. S9). The near UV CD spectrum of HSA dif-

fered from those for HSA/1 and HSA/3 adducts mainly in
the 260–280 nm wavelength range, which is the fingerprint of
Phe and Tyr residues. The negative signals became more neg-

ative, which indicated that HSA became more tightly folded



Figure 6 Far UV CD spectra of partially iron-saturated transferrin (Tf) and its adducts with Ru(II) terpyridine compounds 1 (Tf/1), 2

(Tf/2) and 3 (Tf/3). For the experimental conditions see Fig. 5. Protein concentration was 16 lM. The double minima at 209 and 222 nm

originating from a helices are shown.

Figure 7 Near UV CD spectra of intact human serum transfer-

rin (Tf) and its adducts with Ru(II) terpyridine compounds 1 (Tf/

1), 2 (Tf/2) and 3 (Tf/3). A protein-to-ruthenium ratio of 1:2 was

used in preparation of the adducts. Protein concentration was

16 lM. The arrows designate the wavelength ranges where signals

from the aromatic amino acid residues were expected to appear.
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(Samanta et al., 2014) after binding 1 or 3. However, drastic
changes in the CD signals were absent, which meant that the
tertiary structure of HSA suffered only slight modifications

upon attachment of the compounds.
Fig. 7 displays near UV CD spectrum of intact Tf in paral-

lel with spectra of Tf adducts with the Ru(II) compounds 1, 2

or 3. The spectrum of intact Tf was similar to those reported
by others (Mehtab et al., 2013). A peak close to 290 nm orig-
inating from Trp is clearly visible. The spectra of Tf adducts
(Tf/1, Tf/2 and Tf/3) followed similar patterns (Fig. 7). The

native conformation of Tf altered after binding the studied
compounds, much more so in the region of Tyr signals than
in the region dominated by Trp signals. Although the confor-

mation of intact Tf altered with binding of compound 3 at a
Tf-to-ruthenium ratio of 1:2, it did not change further at the
Tf-to-ruthenium ratio of 1:10 (Fig. S10). This finding probably

reflects a limited number of binding sites for compound 3 on
Tf, which confirmed the results obtained by ICP OES (com-
pare Table 1). Although ICP OES data suggested that Tf could

accommodate more molecules of compounds 1 and 2, near UV
CD spectra of Tf/1 and Tf/2 adducts prepared at



Figure 8 DSC thermograms of human serum albumin (HSA) and its adducts with Ru(II) terpyridine compounds 1 (HSA/1), 2 (HSA/2)

and 3 (HSA/3), prepared at three different protein-to-ruthenium ratios, in 20 mM phosphate buffer pH 7.4. Protein concentration was

19 lM.
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Tf-to-ruthenium ratios of 1:5 and 1:10 were not recorded

owing to the high dynode voltages.

3.4.1. Conformational changes of HSA as seen through DSC

The change in thermostability of a protein in the presence of a

drug is the most obvious manifestation of drug binding (Celej
et al., 2006). We monitored changes in the thermostability of
HSA in the absence and presence of increasing amounts of

compounds 1, 2 or 3 using DSC. The same samples that went
through the CD measurements were afterwards subjected to
DSC, which was set to run from 25 to 90 �C at the speed of

1 �C min�1. The results are shown in the form of heat capacity
at constant pressure (Cp) vs temperature curves (DSC thermo-
grams) in Fig. 8.

Free HSA shows characteristic two-state thermally induced
unfolding, with two endothermic peaks (Michnik et al., 2006).
Two peaks were observed in bimodal thermograms in Fig. 8,

which were then annotated as the first (T1
m) and the second

denaturation temperature (T2
m). T

1
m of free HSA in the buffer

was approximately 65 �C and it did not show any significant
change when the protein bound to the studied compounds

(Table S2). T2
m of HSA in the buffer was found to be around

80 �C. Sometimes T2
m of HSA/1 and HSA/2 adducts were
lower than T2
m of unbound HSA (Table S2), which was due

to a shift in the equilibrium towards the denatured protein
bound to the compounds. Compound 3 generally did not
affect the thermal stability of HSA, mostly due to low reactiv-

ity with the protein. That compound 3 reacts poorly with HSA
was also deduced from the fluorescence quenching (Fig. 2) and
ICP OES (Table 1) measurements. Therefore, the results of the

DSC study suggest that binding of the studied Ru(II) ter-
pyridine compounds to HSA did not cause substantial confor-
mational changes in the protein. This finding is consistent with
that of the far UV CD study.
4. Conclusions

Three compounds were chosen from a series of coordination com-

pounds of general formula [Ru(Cl-tpy)(chel)Cl]+. Their interaction

with two major metal-transporting proteins from serum, albumin and

partially iron-saturated Tf, was addressed with an emphasis on the

affinity and stoichiometry of the binding. Compared to Tf, HSA

appears to be a more favourable binding partner for the studied ruthe-

nium compounds. The affinity of the two proteins for 1, 2 and 3 was

evaluated using fluorescence quenching studies. Moderate-to-strong

binding of compounds 1 and 2 to HSA was found, whereas their affinity

for Tf was much lower. Compound 3 bound weakly to the proteins. The
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compounds containing en and dach were more reactive with HSA and

Tf than the compound with bpy, possibly due to easier release of chlo-

ride. The large capacity of serum albumin for binding 1 was detected

using high resolution ESI qTOF mass spectrometry and highly purified

BSA as a representative of serum albumins. The binding of the com-

pounds to HSA and Tf did not affect secondary structures of the pro-

teins much, whilst their tertiary structures showed some alterations.

This finding is important, knowing that the native conformation of a

transport protein should not be markedly altered upon binding a drug.

Such as occurrence may prevent the protein from performing its normal

actions (i.e. bind to cellular receptors and deliver the drug) or it may

even be sent down a degradation pathway. Overall, our study implies

that proteins are biological targets of the Ru(II) terpyridine compounds

that contain bidentate aliphatic diamines such as en or dach. Investiga-

tions of this type are a key to understanding the transport and pharma-

cokinetics of potential anticancer drugs. The anti-metastatic properties

of the ruthenium compounds, their interactions with intracellular pro-

teins and their uptake by cancer cells are currently being examined and

the findings will be reported elsewhere.
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Chemistry and Biochemistry, Ruder Bošković Institute,
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