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Abstract. We present a study of the applicability of the variational treatments based on using
of the modified Lang–Firsov unitary transformation (MLF method) in the investigation of the
vibron self–trapped states in biological macromolecular chains. Here we compare the values
of the ground state energy predicted by MLF methods with the values of the ground state
energy predicted by the standard small–polaron theory, for various values of the basic energy
parameters of the system. We obtain regions in system parameter space where MLF approach
gives better description of the vibron states.

1. Introduction
There exist many unresolved fundamental problems in molecular biology and biochemistry and
one from them is the problem of long–distance energy transport in biological macromolecules. It
is believed that the energy released by the hydrolysis of adenosine triphosphate (ATP) appears by
an universal energy source allowing many biological processes. Mentioned energy released by the
ATP hydrolysis may be captured by the protein molecules and excite the high–frequency amide–
I vibration of a peptide group. Due to the dipole–dipole coupling between the neighbouring
peptide groups the excited amide–I vibration is delocalized causing formation of the vibron
state which, in turn, can move along the polypeptide chain. However, it is yet not clearly
understood how this energy can be transported along macromolecule at long distances, without
being dissipated or dispersed. An earlier explanation of this process is based on the soliton
theory [1], [2], [3]. According to those models, a soliton arises due to the self–trapping (ST) of
the amide–I quanta.

According to the general theory of ST phenomena [4], ST problem exhibits two asymptotic
solutions depending on the values of three basic energy parameters of the system: the vibron
bandwidth 2 |J |, the phonon characteristic frequency ωC and the SP bending energy Eb (which
is proportional to the strength of the vibron–phonon coupling). Thus, in the adiabatic limit
(2 |J | > h̄ωC) lattice distortion with large inertia can not follow the exciton motion and it forms
an essentially static potential well where that particle may be trapped. Depending on the value
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of the mutual ratio of Eb and h̄ωC , the spatial extent of an entity created in this way (polaron)
may vary from being concentrated around one site only (Eb >> h̄ωC) i.e. adiabatic SP (ASP),
while in the case when Eb < h̄ωC it is spread over the large number of lattice sites and we have
adiabatic large polaron (ALP) or soliton. By contrast, in non–adiabatic limit (2 |J | < h̄ωC)
the quantum nature of the phonons plays a crucial role. In such case a vibron is dressed by
a virtual cloud of phonons which yields a lattice distortion essentially located on a single site
and instantaneously follows the vibron motion. The vibron dressed by the virtual phonon cloud
forms a small polaron (SP) whose properties are well described by performing the so–called
Lang–Firsov (LF) unitary transformation [5]. As a consequence, conventional SP theories are
applicable in the strong–coupling, non–adiabatic limit.

Unfortunately, the values of the basic energy parameters in biological macromolecular chains
belong to non–adiabatic limit. For that reason, it has been suggested by some authors [6],[7],
[8] that vibron self–trapping in hydrogen–bonded macromolecular chains might result in the
formation of a small–polaron, rather than a soliton. From the other side, the values of the
energy parameters indicate that the strength of vibron–phonon coupling in hydrogen–bonded
macromolecules falls in the weak to intermediate limits [9]. In addition, some recent numerical
[10] studies of the ST phenomena in hydrogen–bonded macromolecular chains indicate that its
proper theoretical description requires an approach that goes beyond the conventional strong–
coupling SP theories. Namely, according to results from [10] it seems that depending on the
temperature and the values of the system parameters the abrupt transition from partially dressed
(light and mobile) to self–trapped (practically immobile quasi particle) may occur. This situation
can not be described in the framework of the standard SP approach (based on using of the Lang–
Firsov unitary transformation) and as a consequence its theoretical investigations require the
means which involve the concept of partial dressing. This concept is based on modified Lang–
Firsov (MLF) unitary transformation and is applicable in a wide part of system parameter space.
Such an approach is considered in a close correspondence with the supplementary variational
treatment of the problem by means of the Toyozawa ansatz [11]. In our recent paper [12] we
used slightly more flexible method in order to investigate the temperature dependence of the SP
states character.

In this paper we consider two variational formalisms based on using of the modified Lang–
Firsov approach and compare obtained results with ones predicted by the standard SP theory.
The variational parameter(s) introduced here characterizes the degree in which the vibron
distorts the lattice and the lattice feedback on the vibron, i.e. vibron dressing. The first
variational approach (so called “fq–approach”) is based on the model used in [12], while the
second one (“δ–approach”) exploits the method introduced by Brown and Ivić in [7], [8] in the
form used in [13]. The last approach intermediates between non-adiabatic and adiabatic limit
with use of only one variational parameter. We calculate and compare the system ground state
energies for various basic system parameter values in the case when vibron interacts with both
optical and acoustical phonon subsystems. Our attention was restricted to the single–vibron
case.

2. Theoretical methods
The system under consideration consists of single vibron excited on n–th structural element of the
macromolecule which, in turn, interacts with thermal oscillations of the chain through the linear
short–ranged deformation potential interaction. We suppose that vibron excitation can move
along the chain from n–th to its nearest–neighbouring structural element. The corresponding
Hamiltonian can be written in the following form [14],

H = ∆
∑
n

a†nan−
∑
n

Ja†n(an+1 + an−1)+
∑
q

h̄ωqb
†
qbq+

1√
N

∑
q

∑
n

Fqe
iqnR0a†nan(bq + b†−q), (1)
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where ∆ is the vibron excitation energy, a†n(an) describes the presence (absence) of the vibron
quanta on the structural element, which is positioned on n–th lattice site, b†q(bq) creates
(annihilates) phonon quanta, and ωq is the phonon frequency. The inter–site overlap integral J
characterize the vibron transfer between neighbouring structural elements in the chain. Finally,
Fq = F ∗

−q is the vibron–phonon coupling parameter which governs the character of ST states.
In order to investigate the vibron self–trapping in macromolecular chains, we shall consider the
following quasi particle–phonon interaction:

(a) interaction with dispersionless optical phonon modes [14],[15], [16]

Fq = χ

√
h̄

2Mωq
,

where χ is the vibron–phonon coupling constant, which accounts the influence of the external
motion of the vibron on the (n ± 1)–th structural elements and on the modulation of
the vibron frequency in the n–th structural element, ωq = ωC is phonon dispersion law,
ωC = 2

√
κ/M , κ appears by the stiffness of the chain, M is the molecular group mass;

(b) interaction with acoustic phonon modes through the short–ranged deformation potential
(acoustic deformation potential, ADP) [15], [16]

Fq = 2iχ

√
h̄

2Mωq
sin qR0,

with ωq = ωC sin |qR0/2| being by phonon dispersion law, and R0 is a lattice constant.

In order to examine the degree of the vibron dressing, we pass to the small–polaron picture
using unitary transformation operator,

U = exp

{
− 1√

N

∑
q

∑
n

fqe
−iqnR0a†nan(b−q − b†q)

}
.

Here fq = f∗−q are variational parameters, while operators a†n(an) represent (partially) dressed
vibrons. In the case of the passing to the standard small–polaron picture, parameter fq has

standard Lang–Firsov form: fq =
F ∗
q

h̄ωq
. Operators a†n(an) that appear in the transformed

Hamiltonian, represent the (fully) dressed quasi particle. In all cases the operators b†q(bq) describe
the new phonons in the lattice with shifted equilibrium positions of molecular groups.

Partially dressed vibron states represent the dynamically stable eigen-states of the system
provided that these variational parameters correspond to the minimum energy state. Thus,
we search for their optimized values minimizing the system ground–state energy. According
to the method described in [17], optimization procedure will be performed in a mean–field
manner, which gives better upper bound of the system free energy and consequently the better
upper bound of the system ground state energy. In particular, we define (in wave number
representation) an effective, mean–field Hamiltonian H̃0 in the following way,

H̃ = H̃0 + H̃int, (2)

where H̃0 = H̃v + H̃ph, H̃v =
⟨
H̃ − H̃ph

⟩
ph

and H̃int = H̃ − H̃ph −
⟨
H̃ − H̃ph

⟩
ph
. The symbol

⟨ ⟩ph denotes the average over the new–phonon ensemble, which is considered in the thermal
equilibrium state at the temperature T . In such a way we derive,

H̃0 =
∑
k

ESP (k)a
†
kak +

∑
q

h̄ωqb
†
qbq, (3)
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where ak = 1√
N

∑
n e

iknR0an, and

ESP (k) = ∆− 1

N

∑
q

{
(fq + f∗−q)Fq − h̄ωq |fq|2

}
− 2Je−W (T ) cos(kR0) (4)

denotes the variational energy of the small–polaron band states, while W (T ) =
1
N

∑
q |fq|

2 (2ν̄q + 1)(1− cos(qR0)) denotes the vibron–band narrowing factor, which character-
izes the degree of the reduction of the corresponding overlap integral or equivalently the enhance-
ment of the polaron effective mass. For obvious reasons, they are sometimes called the ”‘dressing
fractions’” or the ”‘dressing parameters’”. At last, the quantity ν̄q, ν̄q = 1/(eh̄ωq/kBT − 1), de-
notes the phonon average number.

The polaron–phonon interaction term may be neglected provided that dressed vibrons
represent sufficiently well eigen states of system. In such a way it cannot affect SP equilibrium
properties substantially and at T = 0 K the further procedure simply reduces to minimization
of the SP ground state energy. We note the ground–state vector of the effective Hamiltonian H̃0

reads, |ψGS⟩ = a†k |0⟩vib⊗
∏

q |0⟩q, where
∏

q |0⟩q is the phonon vacuum vector so that the ground–

state energy corresponds to the lowest level of SP energy, i.e.,EGS =
⟨
ψGS

∣∣∣H̃0

∣∣∣ψGS

⟩
= ESP (k).

Thus, from the requirement, ∂ESP (k)
∂fq

∣∣∣
k0

= 0, we get,

fq =
F ∗
q

h̄ωq + 4|J |e−W (2ν̄q + 1) sin2
(
qR0

2

) . (5)

From the Eq.(5) it follows that for each value of q there is the corresponding value of the
variational parameter fq. For that reason, the optimization procedure for this approach becomes
extremely difficult problem, even numerically. Note, however, that only k0 = π/R0 (when
J < 0), or k0 = 0 (when J > 0), should be considered since it will correspond to the polaron
ground state only. This case is also the most relevant for the optical spectroscopy since vibron
bandwidths in these media are very narrow and its dispersion in all practical examination of
optical spectra can be neglected [10], [15], [16] [18], [19].

The expressions for vibron ground state energy (normalized on the characteristic phonon
energy h̄ωC and measured from the energy level ∆) and vibron dressing factor are obtained by the
substitution of the variational parameters into (4). Performing the summation over the phonon

quasi momenta q by virtue of the rule 1
N

∑
q . . . → R0

2π

∫ π/R0

−π/R0
. . . dq and by introducing two

dimensionless parameters (that determine the system parameter space) S = Eb
h̄ωC

and B = 2|J |
h̄ωC

,
we obtain,

EGS = −W − 3BW e−W −Be−W , (6)

and

W =
S

(1 + 2Be−W )3/2
(7)

in the case when vibron interact with optical phonon mode, and

EGS = −W
2

IE
IW

−Be−W , W = 8SIW , (8)

when the vibron interacts with acoustic phonon modes. The quantities IE , IW that appear in
the above relations have the integral representation,

IE =
1

π

∫ π/2

0
cos2 x

1 + 4Be−W sinx

(1 + 2Be−W sinx)2
dx, and IW =

1

π

∫ π/2

0

sinx cos2 x

(1 + 2Be−W sinx)2
dx.

Dubna-Nano 2012 IOP Publishing
Journal of Physics: Conference Series 393 (2012) 012033 doi:10.1088/1742-6596/393/1/012033

4



In the case of simple “δ–approach” we choose fq in the form: fq =
δF ∗

q

h̄ωq
, where 0 < δ < 1

is variational parameter. In that case, we have more simple variational technique in which
we should determine only one variational parameter (δ). On the other hand, this assumption
implies the equal dressing for all phonon modes. At the first sight, it looks like a very strong
assumption since the whole set of variational parameters (one for each mode) is substituted by
a single one. However, here we showed that predictions obtained by this approach are very close
with ones, obtained by more rigorous “fq approach”. Repeating above described procedure we
obtained condition which determines parameter δ,

4JδWLF e
−δ2WLF − 2Eb(1− δ) = 0, (9)

where Eb =
1
N

∑
q
|Fq |2
h̄ωq

is small–polaron binding energy, while WLF = 1
N

∑
q

|Fq |2
(h̄ωq)2

(1− cos qR0)

is SP band narrowing factor calculated in the non–adiabatic, strong coupling limit (standard
LF approach). Then, performing summation over phonon quasimomenta, we derive the relation
for the ground state energy (in (S,B) parameter space) in the form,

EGS = −δ(2− δ)S −Be−δ2S (10)

in the case when vibron interact with optical phonon, and

EGS = −δ(2− δ)S −Be−
8δ2S
3π , (11)

when vibron interact with acoustical phonons.

3. Results
According to the available literature data, the hopping constant in α–helix proteins is typically
equal to, J = 7.8 cm−1 (in the case of the hydrogen bonds between peptide units) and
J = −12.4 cm−1 (between different spines of hydrogen–bonded peptide units, i.e. in the case of
the covalent bonds between peptide unit) [19, 20]. The mass of the peptide unit ranges between
M = 2 · 10−25 kg and M = 5.7 · 10−25 kg [9, 19].

The above mentioned values of the system parameters in macromolecular chains indicate that
adiabatic parameter in these structures ranges between B = 0.01 and B = 0.5. In the same
time, coupling constant ranges between S = 0.01 and S = 0.3. The last fact indicates that these
structures belong to the non-adiabatic coupling limit from weak to intermediate one.

Obtained numerical results are presented on the Figs. 1–4. The calculations obtained by
“δ–approach” are presented by full lines, the ones obtained by the “fq–approach” are presented
by dashed lines, and the calculations obtained by the standard LF approach are presented
by dotted lines. As one can remark, the results obtained by both variational approaches are
strongly different compared with ones obtained by standard LF approach, for small values of
coupling constant S. This difference disappears on large values of S for all values of B. For
small and intermediate values of S, the difference between two variational approaches increases
with increasing of B. These results are expectable, since standard LF approach is not applicable
in weak coupling limit. On the other side, results obtained by both variational approaches are
very similar in the whole range of S, for small values of B (non-adiabatic limit). There are
significant difference only for B > 1 (adiabatic limit), for small and intermediate values of S.

One should be noted in addition, it is evident that both variational approaches predict a
multivalued dependence of EGS and W on S, in certain region of S, only in the adiabatic limit.
According to the variational principle, the only lowest energy value is physically meaningful.
Consequently, only lower values of EGS (and its corresponding values of W ) have physical
significance and truly variational energy is presented by one line which is not smooth (at certain
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value of S it have the point of cusp). In the same time, W undergoes an abrupt change. That
means that vibron ST state have abrupt transition from weakly dressed to heavy dressed polaron
state. Obtained results may look as a consequence of the applied variational approach. However,
it seems that these results are in good agreement with some recent numerical investigations [10],
where authors interpreted similar results as a coexistence of two types of SP states instead of
abrupt transition from one to another quasiparticle type.

Figure 1. The dependence of the EGS versus S, for different values of
the B. The case of vibron that interacting with optical phonon modes.

Figure 2. The dependence of the W on the S, for different values of
the B. The case of vibron that interaction with optical phonon modes.

4. Conclusions
In accordance to the obtained results, one may note that both variational approaches give very
similar qualitative and quantitative predictions, especially in non-adiabatic region. With the rise
of the adiabatic parameter, the difference between variational approaches, as well as between
variational approaches and standard small–polaron approach vanishes. In the case of the vibron
interacting with the optical phonon modes, ground state energies predicted by the “fq–approach”
are something lower than ground state energies predicted by the “δ–approach”. But, in the
non–adiabatic region of the parameter space this difference may be practically neglected, and
“δ–approach” is quite good method for the investigation of the vibron self–trapping states.
Similar results are obtained in the case when vibron interacts with acoustic phonon modes.
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Figure 3. The dependence of the EGS versus S, for different values
of the B. The case of vibron that interacting with acoustic phonon
modes.

Figure 4. The dependence of the W on the S, for different values
of the B. The case of vibron that interaction with acoustic phonon
modes.

In the adiabatic region of the system parameter space the difference between two variational
approaches is significant.

Due to the fact that practically all biological macromolecular structures belongs to the non-
adiabatic, weak or intermediate coupling limit, it seems that simple “δ–approach” may be by
the hopeful method for investigations of the self–trapped vibron states in such structures.
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