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1 Introduction

The detailed characterization of hadronic collisions is of great interest for the understanding

of the underlying physics. The production of particles can be classified according to the en-

ergy scale of the process involved. At high transverse momentum transfers (pT & 2 GeV/c)

perturbative Quantum Chromodynamics (pQCD) is the appropriate theoretical framework

to describe partonic interactions. This approach can be used to quantify parton yields and

correlations, whereas the transition from partons to hadrons is a non-perturbative process

that has to be treated using phenomenological approaches. Moreover, the bulk of particles

produced in high-energy hadronic collisions originate from low-momentum transfer pro-

cesses. For momenta of the order of the QCD scale, O(100 MeV), a perturbative treatment

is no longer feasible. Furthermore, at the center-of-mass energies of the Large Hadron Col-

lider (LHC), at momentum transfers of a few GeV/c, the calculated QCD cross-sections for

2-to-2 parton scatterings exceed the total hadronic cross-section [1]. This result indicates

that Multiple Partonic Interactions (MPI) occur in this regime. The overall event dynamics

cannot be derived fully from first principles and must be modeled using phenomenological
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calculations. Measurements at different center-of-mass energies are required to test and

constrain these models.

In this paper, we present an analysis of the bulk particle production in pp collisions at

the LHC by measuring the so-called Underlying Event (UE) activity [2]. The UE is defined

as the sum of all the processes that build up the final hadronic state in a collision exclud-

ing the hardest leading order partonic interaction. This includes fragmentation of beam

remnants, multiple parton interactions and initial- and final-state radiation (ISR/FSR) as-

sociated to each interaction. Ideally, we would like to study the correlation between the UE

and perturbative QCD interactions by isolating the two leading partons with topological

cuts and measuring the remaining event activity as a function of the transferred momentum

scale (Q2). Experimentally, one can identify the products of the hard scattering, usually

the leading jet, and study the region azimuthally perpendicular to it as a function of the jet

energy. Results of such an analysis have been published by the CDF [2–5] and STAR [6] col-

laborations for pp collisions at
√
s = 1.8 and 0.2 TeV, respectively. Alternatively, the energy

scale is given by the leading charged-particle transverse momentum, circumventing uncer-

tainties related to the jet reconstruction procedure at low pT. It is clear that this is only

an approximation to the original outgoing parton momentum, the exact relation depends

on the details of the fragmentation mechanism. The same strategy based on the leading

charged particle has recently been applied by the ATLAS [7] and CMS [8] collaborations.

In the present paper we consider only charged primary particles,1 due to the limited

calorimetric acceptance of the ALICE detector systems in azimuth. Distributions are mea-

sured for particles in the pseudorapidity range |η| < 0.8 with pT > pT,min, where pT,min =

0.15, 0.5 and 1.0 GeV/c, and are studied as a function of the leading particle transverse

momentum.

Many Monte Carlo (MC) generators for the simulation of pp collisions are available;

see [9] for a recent review discussing for example Pythia [10], Phojet [11], Sherpa [9] and

Herwig [12]. These provide different descriptions of the UE associated with high energy

hadron collisions. A general strategy is to combine a perturbative QCD treatment of the

hard scattering with a phenomenological approach to soft processes. This is the case for the

two models used in our analysis: Pythia and Phojet. In Pythia the simulation starts

with a hard LO QCD process of the type 2 → 2. Multi-jet topologies are generated with

the parton shower formalism and hadronization is implemented through the Lund string

fragmentation model [13]. Each collision is characterized by a different impact parameter

b. Small b values correspond to a large overlap of the two incoming hadrons and to an

increased probability for MPIs. At small pT values color screening effects need to be taken

into account. Therefore a cut-off pT,0 is introduced, which damps the QCD cross-section

for pT � pT,0. This cut-off is one of the main tunable model parameters.

In Pythia version 6.4 [10] MPI and ISR have a common transverse momentum evo-

lution scale (called interleaved evolution [14]). Version 8.1 [15] is a natural extension of

version 6.4, where the FSR evolution is interleaved with MPI and ISR and parton rescat-

1Primary particles are defined as prompt particles produced in the collision and their decay products

(strong and electromagnetic decays), except products of weak decays of strange particles such as K0
S and Λ.

– 2 –



J
H
E
P
0
7
(
2
0
1
2
)
1
1
6

terings [16] are considered. In addition initial-state partonic fluctuations are introduced,

leading to a different amount of color-screening in each event.

Phojet is a two-component event generator, where the soft regime is described by

the Dual Parton Model (DPM) [17] and the high-pT particle production by perturbative

QCD. The transition between the two regimes happens at a pT cut-off value of 3 GeV/c. A

high-energy hadronic collision is described by the exchange of effective Pomerons. Multiple-

Pomeron exchanges, required by unitarization, naturally introduce MPI in the model.

UE observables allow one to study the interplay of the soft part of the event with par-

ticles produced in the hard scattering and are therefore good candidates for Monte Carlo

tuning. A better understanding of the processes contributing to the global event activity

will help to improve the predictive power of such models. Further, a good description of the

UE is needed to understand backgrounds to other observables, e.g., in the reconstruction

of high-pT jets.

The paper is organized in the following way: the ALICE sub-systems used in the

analysis are described in section 2 and the data samples in section 3. Section 4 is dedicated

to the event and track selection. Section 5 introduces the analysis strategy. In sections 6

and 7 we focus on the data correction procedure and systematic uncertainties, respectively.

Final results are presented in section 8 and in section 9 we draw conclusions.

2 ALICE detector

Optimized for the high particle densities encountered in heavy-ion collisions, the ALICE

detector is also well suited for the study of pp interactions. Its high granularity and particle

identification capabilities can be exploited for precise measurements of global event proper-

ties [18–24]. The central barrel covers the polar angle range 45◦−135◦ (|η| < 1) and full az-

imuth. It is contained in the L3 solenoidal magnet which provides a nominal uniform mag-

netic field of 0.5 T. In this section we describe only the trigger and tracking detectors used

in the analysis, while a detailed discussion of all ALICE sub-systems can be found in [25].

The V0A and V0C counters consist of scintillators with a pseudorapidity coverage of

−3.7 < η < −1.7 and 2.8 < η < 5.1, respectively. They are used as trigger detectors and

to reject beam-gas interactions.

Tracks are reconstructed combining information from the two main tracking detectors

in the ALICE central barrel: the Inner Tracking System (ITS) and the Time Projection

Chamber (TPC). The ITS is the innermost detector of the central barrel and consists of

six layers of silicon sensors. The first two layers, closely surrounding the beam pipe, are

equipped with high granularity Silicon Pixel Detectors (SPD). They cover the pseudorapid-

ity ranges |η| < 2.0 and |η| < 1.4 respectively. The position resolution is 12µm in rφ and

about 100µm along the beam direction. The next two layers are composed of Silicon Drift

Detectors (SDD). The SDD is an intrinsically 2-dimensional sensor. The position along

the beam direction is measured via collection anodes and the associated resolution is about

50µm. The rφ coordinate is given by a drift time measurement with a spatial resolution of

about 60µm. Due to drift field non-uniformities, which were not corrected for in the 2010

data, a systematic uncertainty of 300µm is assigned to the SDD points. Finally, the two

outer layers are made of double-sided Silicon micro-Strip Detectors (SSD) with a position
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resolution of 20µm in rφ and about 800µm along the beam direction. The material budget

of all six layers including support and services amounts to 7.7% of a radiation length.

The main tracking device of ALICE is the Time Projection Chamber that covers the

pseudorapidity range of about |η| < 0.9 for tracks traversing the maximum radius. In order

to avoid border effects, the fiducial region has been restricted in this analysis to |η| < 0.8.

The position resolution along the rφ coordinate varies from 1100µm at the inner radius to

800µm at the outer. The resolution along the beam axis ranges from 1250µm to 1100µm.

For the evaluation of the detector performance we use events generated with the

Pythia 6.4 [10] Monte Carlo with tune Perugia-0 [26] passed through a full detector sim-

ulation based on Geant3 [27]. The same reconstruction algorithms are used for simulated

and real data.

3 Data samples

The analysis uses two data sets which were taken at the center-of-mass energies of
√
s =

0.9 and 7 TeV. In May 2010, ALICE recorded about 6 million good quality minimum-bias

events at
√
s = 0.9 TeV. The luminosity was of the order of 1026 cm−2 s−1 and, thus,

the probability for pile-up events in the same bunch crossing was negligible. The
√
s =

7 TeV sample of about 25 million events was collected in April 2010 with a luminosity of

1027 cm−2 s−1. In this case the mean number of interactions per bunch crossing µ ranges

from 0.005 to 0.04. A set of high pile-up probability runs (µ = 0.2–2) was analysed in order

to study our pile-up rejection procedure and determine its related uncertainty. Those runs

are excluded from the analysis.

Corrected data are compared to three Monte Carlo models: Pythia 6.4 (tune Perugia-

0), Pythia 8.1 (tune 1 [15]) and Phojet 1.12.

4 Event and track selection

4.1 Trigger and offline event selection

Events are recorded if either of the three triggering systems, V0A, V0C or SPD, has a signal.

The arrival time of particles in the V0A and V0C are used to reject beam-gas interactions

that occur outside the nominal interaction region. A more detailed description of the

online trigger can be found in [20]. An additional offline selection is made following the

same criteria but considering reconstructed information instead of online trigger signals.

For each event a reconstructed vertex is required. The vertex reconstruction procedure

is based on tracks as well as signals in the SPD. Only vertices within ±10 cm of the nominal

interaction point along the beam axis are considered. Moreover, we require at least one

track with pT > pT,min = 0.15, 0.5 or 1.0 GeV/c in the acceptance |η| < 0.8.

A pile-up rejection procedure is applied to the set of data taken at
√
s = 7 TeV: events

with more than one distinct reconstructed primary vertex are rejected. This cut has a

negligible effect on simulated events without pile-up: only 0.06% of the events are removed.

We have compared a selection of high pile-up probability runs (see section 3) with a sample

of low pile-up probability runs. The UE distributions differ by 20–25% between the two
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Collision energy: 0.9 TeV

Events % of all

Offline trigger 5,515,184 100.0

Reconstructed vertex 4,482,976 81.3

Leading track pT > 0.15 GeV/c 4,043,580 73.3

Leading track pT > 0.5 GeV/c 3,013,612 54.6

Leading track pT > 1.0 GeV/c 1,281,269 23.2

Collision energy: 7 TeV

Events % of all

Offline trigger 25,137,512 100.0

Reconstructed vertex 22,698,200 90.3

Leading track pT > 0.15 GeV/c 21,002,568 83.6

Leading track pT > 0.5 GeV/c 17,159,249 68.3

Leading track pT > 1.0 GeV/c 9,873,085 39.3

Table 1. Events remaining after each event selection step.

Selection criteria Value

Detectors required ITS,TPC

Minimum number of TPC clusters 70

Maximum χ2 per TPC cluster 4

Minimum number of ITS clusters 3

Minimum number of SPD or 1st layer SDD clusters 1

Maximum DCAZ 2 cm

Maximum DCAXY (pT) 7σ

Table 2. Track selection criteria.

samples. After the above mentioned rejection procedure, the difference is reduced to less

than 2%. Therefore, in the runs considered in the analysis, the effect of pile-up is negligible.

No explicit rejection of cosmic-ray events is applied since cosmic particles are efficiently

suppressed by our track selection cuts [23]. This is further confirmed by the absence of a

sharp enhanced correlation at ∆φ = π from the leading track which would be caused by

almost straight high-pT tracks crossing the detector.

Table 1 summarizes the percentage of events remaining after each event selection step.

We do not explicitly select non-diffractive events, although the above mentioned event

selection significantly reduces the amount of diffraction in the sample. Simulated events

show that the event selections reduce the fraction of diffractive events from 18–33% to 11–

16% (Pythia 6.4 and Phojet at 0.9 and 7 TeV). We do not correct for this contribution.
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4.2 Track cuts

The track cuts are optimized to minimize the contamination from secondary tracks. For

this purpose a track must have at least 3 ITS clusters, one of which has to be in the first

3 layers. Moreover, we require at least 70 (out of a maximum of 159) clusters in the TPC

drift volume. The quality of the track fitting measured in terms of the χ2 per space point is

required to be lower than 4 (each space point having 2 degrees of freedom). We require the

distance of closest approach of the track to the primary vertex along the beam axis (DCAZ)

to be smaller than 2 cm. In the transverse direction we apply a pT dependent DCAXY

cut, corresponding to 7 standard deviations of its inclusive probability distribution. These

cuts are summarized in table 2.

5 Analysis strategy

The Underlying Event activity is characterized by the following observables [2]:

• average charged particle density vs. leading track transverse momentum pT,LT:

1

∆η ·∆Φ

1

Nev(pT,LT)
Nch(pT,LT) (5.1)

• average summed pT density vs. leading track pT,LT:

1

∆η ·∆Φ

1

Nev(pT,LT)

∑
pT(pT,LT) (5.2)

• ∆φ-correlation between tracks and the leading track:

1

∆η

1

Nev(pT,LT)

dNch

d∆φ
(5.3)

(in bins of leading track pT,LT).

Nev is the total number of events selected and Nev(pT,LT) is the number of events in a

given leading-track transverse-momentum bin. The first two variables are evaluated in

three distinct regions. These regions, illustrated in figure 1, are defined with respect to the

leading track azimuthal angle:

• Toward: |∆φ| < 1/3 π

• Transverse: 1/3 π < |∆φ| < 2/3 π

• Away: |∆φ| > 2/3 π

where ∆φ = φLT − φ is defined in ±π. In eq. (5.1)–(5.3) the normalization factor ∆Φ is

equal to 2/3π, which is the size of each region. ∆η = 1.6 corresponds to the acceptance in

pseudorapidity. The leading track is not included in the final distributions.
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Figure 1. Definition of the regions Toward, Transverse and Away w.r.t. leading track direction.

6 Corrections

We correct for the following detector effects: vertex reconstruction efficiency, tracking ef-

ficiency, contamination from secondary particles and leading-track misidentification bias.

The various corrections are explained in more detail in the following subsections. We do

not correct for the trigger efficiency since its value is basically 100% for events which have

at least one particle with pT > 0.15 GeV/c in the range |η| < 0.8. In table 3 we summa-

rize the maximum effect of each correction on the measured final observables at the two

collision energies for pT,min = 0.5 GeV/c.

Vertex reconstruction. The correction for finite vertex reconstruction efficiency is per-

formed as a function of the measured multiplicity. Its value is smaller than 0.7% and 0.3%

at
√
s = 0.9 and

√
s = 7 TeV, respectively.

Tracking efficiency. The tracking efficiency depends on the track level observables η and

pT. The projections of the tracking efficiency on the pT and η axes are shown in figure 2.

In the pseudorapidity projection we observe a dip of about 1% at η = 0 due to the central

TPC cathode. The slight asymmetry between positive and negative η is due to a different

number of active SPD and SDD modules in the two halves of the detector. The number of

active modules also differs between the data-taking periods at the two collision energies.

Moreover, the efficiency decreases by 5% in the range 1–3 GeV/c. This is due to the fact

that above about 1 GeV/c tracks are almost straight and can be contained completely in

the dead areas between TPC sectors. Therefore, at high pT the efficiency is dominated

by geometry and has a constant value of about 80% at both collision energies. To avoid

statistical fluctuations, the estimated efficiency is fitted with a constant for pT > 5 GeV/c

(not shown in the figure).
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Correction
√
s = 0.9 TeV

√
s = 7 TeV

Leading track misidentification < 5% < 8%

Contamination < 3% < 3%

Efficiency < 19% < 19%

Vertex reconstruction < 0.7% < 0.3%

Table 3. Maximum effect of corrections on final observables for pT,min = 0.5 GeV/c.

Contamination from secondaries. We correct for secondary tracks that pass the track

selection cuts. Secondary tracks are predominantly produced by weak decays of strange

particles (e.g. K0
S and Λ), photon conversions or hadronic interactions in the detector

material, and decays of charged pions. The relevant track level observables for the con-

tamination correction are transverse momentum and pseudorapidity. The correction is

determined from detector simulations and is found to be 15–20% for tracks with pT <

0.5 GeV/c and saturates at about 2% for higher transverse momenta (see figure 3).

We multiply the contamination estimate by a data-driven coefficient to take into ac-

count the low strangeness yield in the Monte Carlo compared to data [24]. The coefficient

is derived from a fit of the discrepancy between data and Monte Carlo strangeness yields

in the tails of the DCAXY distribution which are predominantly populated by secondaries.

The factor has a maximum value of 1.07 for tracks with pT < 0.5 GeV/c and is equal to 1

for pT > 1.5 GeV/c. This factor is included in the Contamination entry in table 3.

Leading-track misidentification. Experimentally, the real leading track can escape

detection because of tracking inefficiency and the detector’s finite acceptance. In these

cases another track (i.e. the sub-leading or sub-sub-leading etc.) will be selected as the

leading one, thus biasing the analysis in two possible ways. Firstly, the sub-leading track

will have a different transverse momentum than the leading one. We refer to this as leading-

track pT bin migration. It has been verified with Monte Carlo that this effect is negligible

due to the weak dependence of the final distributions on pT,LT. Secondly, the reconstructed

leading track might have a significantly different orientation with respect to the real one,

resulting in a rotation of the overall event topology. The largest bias occurs when the

misidentified leading track falls in the Transverse region defined by the real leading track.

We correct for leading-track misidentification with a data-driven procedure. Starting

from the measured distributions, for each event the track loss due to inefficiency is applied

a second time to the data (having been applied the first time naturally by the detector)

by rejecting tracks randomly. If the leading track is considered reconstructed it is used as

before to define the different regions. Otherwise the sub-leading track is used. Since the

tracking inefficiency is quite small (about 20%) applying it on the reconstructed data a

second time does not alter the results significantly. To verify this statement we compared

our results with a two step procedure. In this case the inefficiency is applied two times

on measured data, half of its value at a time. The correction factor obtained in this way

is compatible with the one step procedure. Furthermore, the data-driven procedure has
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Figure 2. Tracking efficiency vs. track pT (left, |η| < 0.8) and η (right, pT > 0.5 GeV/c) from a

Pythia 6.4 and Geant3 simulation.

been tested on simulated data where the true leading particle is known. We observed a

discrepancy between the two methods, especially at low leading-track pT values, which is

taken into account in the systematic error. The maximum leading-track misidentification

correction is 8% on the final distributions.

Two-track effects. By comparing simulated events corrected for single-particle efficien-

cies with the input Monte Carlo, we observe a 0.5% discrepancy around ∆φ = 0. This effect

is called non-closure in Monte Carlo (it will be discussed further in section 7) and in this

case is related to small two-track resolution effects. Data are corrected for this discrepancy.

7 Systematic uncertainties

In tables 4, 5 and 6 we summarize the systematic uncertainties evaluated in the analysis for

the three track thresholds: pT > 0.15, 0.5 and 1.0 GeV/c. Each uncertainty is explained in

more detail in the following subsections. Uncertainties which are constant as a function of

leading-track pT are listed in table 4. Leading-track pT dependent uncertainties are sum-

marized in tables 5 and 6 for
√
s = 0.9 TeV and 7 TeV, respectively. Positive and negative

uncertainties are propagated separately, resulting in asymmetric final uncertainties.

Particle composition. The tracking efficiency and contamination corrections depend

slightly on the particle species mainly due to their decay length and absorption in the

material. To assess the effect of an incorrect description of the particle abundances in the

Monte Carlo, we varied the relative yields of pions, protons, kaons, and other particles by

30% relative to the default Monte Carlo predictions. The maximum variation of the final

values is 0.9% and represents the systematic uncertainty related to the particle composition

(see table 4).

Moreover, we have compared our assessment of the underestimation of strangeness

yields with a direct measurement from the ALICE collaboration [24]. Based on the discrep-

ancy between the two estimates, we assign a systematic uncertainty of 0–2.3% depending

on the pT threshold and collision energy, see tables 5 and 6.
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Figure 3. Contamination correction: correction factor vs. track pT (left, |η| < 0.8) and η (right,

pT > 0.5 GeV/c) from a Pythia 6.4 and Geant3 simulation.

ITS and TPC efficiency. The tracking efficiency depends on the level of precision of

the description of the ITS and TPC detectors in the simulation and the modeling of their

response. After detector alignment with survey methods, cosmic-ray events and pp colli-

sion events [28], the uncertainty on the efficiency due to the ITS description is estimated

to be below 2% and affects only tracks with pT < 0.3 GeV/c. The uncertainty due to the

TPC reaches 4.5% at very low pT and is smaller than 1.2% for tracks with pT > 0.5 GeV/c.

The resulting maximum uncertainty on the final distributions is below 1.9%. Moreover,

an uncertainty of 1% is included to account for uncertainties in the MC description of the

matching between TPC and ITS tracks (see table 4).

Track cuts. By applying the efficiency and contamination corrections we correct for those

particles which are lost due to detector effects and for secondary tracks which have not been

removed by the selection cuts. These corrections rely on detector simulations and therefore,

one needs to estimate the systematic uncertainty introduced in the correction procedure by

one particular choice of track cuts. To do so, we repeat the analysis with different values

of the track cuts, both for simulated and real data. The variation of the final distributions

with different track cuts is a measure of the systematic uncertainty. The overall effect, con-

sidering all final distributions, is smaller than 3.5% at both collision energies (see table 4).

Misidentification bias. The uncertainty on the leading-track misidentification correc-

tion is estimated from the discrepancy between the data-driven correction used in the

analysis and that based on simulations. The effect influences only the first two leading-

track pT bins at both collision energies. The maximum uncertainty (∼ 18%) affects the

first leading-track pT bin for the track pT cut-off of 0.15 GeV/c. In all other bins this un-

certainty is of the order of few percent. As summarized in tables 5 and 6, the uncertainty

has slightly different values for the various UE distributions.

Vertex-reconstruction efficiency. The analysis accepts reconstructed vertices with at

least one contributing track. We repeat the analysis requiring at least two contributing

tracks. The systematic uncertainty related to the vertex reconstruction efficiency is given

– 10 –
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√
s = 0.9 TeV

pT > 0.15 GeV/c pT > 0.5 GeV/c pT > 1.0 GeV/c

Particle composition ± 0.9% ± 0.7% ± 0.4%

ITS efficiency ± 0.6% — —

TPC efficiency ± 1.9% ± 0.8% ± 0.4%

Track cuts + 3.0%
− 1.1%

+ 2.0%
− 1.1%

+ 0.9%
− 1.5%

ITS/TPC matching ± 1.0% ± 1.0% ± 1.0%

MC dependence + 1.1% , + 1.1% , + 1.6% + 0.9% + 0.9% , + 0.9% , + 1.3%

Material budget ± 0.6% ± 0.2% ± 0.2%
√
s = 7 TeV

pT > 0.15 GeV/c pT > 0.5 GeV/c pT > 1.0 GeV/c

Particle composition ± 0.9% ± 0.7% ± 0.5%

ITS efficiency ± 0.5% — —

TPC efficiency ± 1.8% ± 0.8% ± 0.5%

Track cuts + 2.1%
− 2.3%

+ 1.6%
− 3.2%

+ 2.5%
− 3.5%

ITS/TPC matching ± 1.0% ± 1.0% ± 1.0%

MC dependence + 0.8% , + 0.8% , + 1.2% + 0.8% + 1.0%

Material budget ± 0.6% ± 0.2% ± 0.2%

Table 4. Constant systematic uncertainties at both collision energies. When more than one

number is quoted, separated by a comma, the first value refers to the number density distribution,

the second to the summed pT and the third to the azimuthal correlation. Some of the uncertainties

are quoted asymmetrically.

by the maximum variation in the final distributions between the cases of one and two

contributing tracks. Its value is 2.4% for pT,min = 0.15 GeV/c and below 1% for the other

cut-off values (see tables 5 and 6). The effect is only visible in the first leading-track pT bin.

Non-closure in Monte Carlo. By correcting a Monte Carlo prediction after full detec-

tor simulation with corrections extracted from the same generator, we expect to obtain the

input Monte Carlo prediction within the statistical uncertainty. This consideration holds

true only if each correction is evaluated with respect to all the variables to which the given

correction is sensitive. Any statistically significant difference between input and corrected

distributions is referred to as non-closure in Monte Carlo.

The overall non-closure effect is sizable (∼ 17%) in the first leading-track pT bin and

is 0.6–5.3% in all other bins at both collision energies.

Monte-Carlo dependence. The difference in final distributions when correcting the

data with Pythia 6.4 or Phojet generators is of the order of 1% and equally affects all

the leading-track pT bins.

Material budget. The material budget has been measured by reconstructing photon

conversions which allows a precise γ-ray tomography of the ALICE detector. For the

detector regions important for this analysis the remaining uncertainty on the extracted

– 11 –



J
H
E
P
0
7
(
2
0
1
2
)
1
1
6

√
s = 0.9 TeV

Number density

pT,LT pT > 0.15 GeV/c pT > 0.5 GeV/c pT > 1.0 GeV/c

Lead. track misid. 1st bin + (17.8, 16.3, 16.3)% + (4.6, 3.5, 3.5)% + (4.2, 2.9, 1.7)%

2nd bin + 2.9% + 1.3% —

MC non closure 1st bin − 17.2% − 3.6% − 1.2%

2nd bin − 3.2% − 0.8% − 1.2%

others − 0.6% − 0.8% − 1.2%

Strangeness 1st bin ± 1.9% ± 0.2% —

others ± 1.0% ± 0.2% —

Vertex reco. 1st bin − 2.4% − 0.7% − 0.5%

Summed pT

pT,LT pT > 0.15 GeV/c pT > 0.5 GeV/c pT > 1.0 GeV/c

Lead. track misid. 1st bin + (20.0, 18.1, 18.1)% + (5.3, 4.1, 4.1)% + (4.8, 3.4, 3.4)%

2nd bin + 3.7% + 1.6% —

MC non closure 1st bin − 17.0% − 2.8% − 1.1%

2nd bin − 3.0% − 1.0% − 1.1%

others − 0.7% − 1.0% − 1.1%

Strangeness 1st bin ± 1.9% ± 0.2% —

others ± 1.0% ± 0.2% —

Vertex reco. 1st bin − 2.4% − 0.7% − 0.5%

Azimuthal correlation

pT,LT pT > 0.15 GeV/c pT > 0.5 GeV/c pT > 1.0 GeV/c

Lead. track misid. 1st bin + 12.0% + 3.9% + 2.5%

2nd bin + 2.6% + 1.1% —

MC non closure 1st bin − 17.1% − 3.3% − 1.6%

2nd bin − 3.5% − 3.0% − 1.6%

others − 2.4% − 3.0% − 1.6%

Strangeness 1st bin ± 1.9% ± 0.2% —

others ± 1.0% ± 0.2% —

Vertex reco. 1st bin − 2.4% − 0.4% —

others − 0.5% − 0.4% —

Table 5. Systematic uncertainties vs. leading track pT at
√
s = 0.9 TeV. When more than one

number is quoted, separated by a comma, the first value refers to the Toward, the second to the

Transverse and the third to the Away region. The second column denotes the leading track pT bin

for which the uncertainty applies. The numbering starts for each case from the first bin above the

track pT threshold.

material budget is less than 7%. Varying the material density in the detector simulation,

the effect on the observables presented is determined to be 0.2–0.6% depending on the pT
threshold considered.
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√
s = 7 TeV

Number density

pT,LT pT > 0.15 GeV/c pT > 0.5 GeV/c pT > 1.0 GeV/c

Lead. track misid. 1st bin + (17.9, 16.3, 16.3)% + (4.0, 3.2, 3.2)% + (2.5, 1.2, 1.2)%

2nd bin + 2.7% — + 0.7%

MC non closure 1st bin − 16.8% − 2.6% − 1.9%

2nd bin − 2.9% − 1.4% − 1.9%

others − 0.6% − 1.0% − 1.9%

Strangeness 1st bin ± 1.8% ± 2.3% —

others ± 1.0% ± 2.3% —

Vertex reco. 1st bin − 2.4% − 0.7% − 0.5%

Summed pT

pT,LT pT > 0.15 GeV/c pT > 0.5 GeV/c pT > 1.0 GeV/c

Lead. track misid. 1st bin + (20.0, 17.9, 17.9)% + (4.9, 3.8, 3.8)% + (3.4, 1.9, 1.9)%

2nd bin + 3.4% + 0.8% + 1.1%

MC non closure 1st bin − 16.7% − 2.7% − 1.5%

2nd bin − 2.6% − 1.2% − 1.5%

others − 0.8% − 1.0% − 1.5%

Strangeness 1st bin ± 1.8% ± 2.3% —

others ± 1.0% ± 2.3% —

Vertex reco. 1st bin − 2.4% − 0.7% − 0.5%

Azimuthal correlation

pT,LT pT > 0.15 GeV/c pT > 0.5 GeV/c pT > 1.0 GeV/c

Lead. track misid. 1st bin + 16.8% + 3.4% + 0.9%

2nd bin + 2.5% — —

MC non closure 1st bin − 25.3% − 4.3% − 1.2%

2nd bin − 5.3% − 2.1% − 1.2%

others − 2.1% − 2.1% − 1.2%

Strangeness 1st bin ± 1.8% ± 2.3% —

others ± 1.0% ± 2.3% —

Vertex reco. 1st bin − 2.4% − 0.4% —

others − 0.5% − 0.4% —

Table 6. Systematic uncertainties vs. leading track pT at
√
s = 7 TeV. When more than one

number is quoted, separated by a comma, the first value refers to the Toward, the second to the

Transverse and the third to the Away region. The second column denotes the leading track pT bin

for which the uncertainty applies. The numbering starts for each case from the first bin above the

track pT threshold.
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√
s = 0.9 TeV

Number density Summed pT

Slope (GeV/c)−1 Mean Slope Mean (GeV/c)

pT > 0.15 GeV/c 0.00 ± 0.02 1.00 ± 0.04 0.00 ± 0.01 0.62 ± 0.02

pT > 0.5 GeV/c 0.00 ± 0.01 0.45 ± 0.02 0.01 ± 0.01 0.45 ± 0.02

pT > 1.0 GeV/c 0.003 ± 0.003 0.16 ± 0.01 0.006 ± 0.005 0.24 ± 0.01
√
s = 7 TeV

Number density Summed pT

Slope (GeV/c)−1 Mean Slope Mean (GeV/c)

pT > 0.15 GeV/c 0.00 ± 0.01 1.82 ± 0.06 0.01 ± 0.01 1.43 ± 0.05

pT > 0.5 GeV/c 0.005 ± 0.007 0.95 ± 0.03 0.01 ± 0.01 1.15 ± 0.04

pT > 1.0 GeV/c 0.001 ± 0.003 0.41 ± 0.01 0.008 ± 0.006 0.76 ± 0.03
√
s = 1.8 TeV (CDF)

Number density (at leading charged jet pT = 20 GeV/c)

pT > 0.5 GeV/c 0.60

Table 7. Saturation values in the Transverse region for the two collision energies. The result from

CDF is also given, for details see text.

8 Results

In this section we present and discuss the corrected results for the three UE distributions

in all regions at the two collision energies. The upper part of each plot shows the rele-

vant measured distribution (black points) compared to a set of Monte Carlo predictions

(coloured curves). Shaded bands represent the systematic uncertainty only. Error bars

along the x axis indicate the bin width. The lower part shows the ratio between Monte

Carlo and data. In this case the shaded band is the sum in quadrature of statistical and

systematic uncertainties.

The overall agreement of data and simulations is of the order of 10–30% and we were

not able to identify a preferred model that can reproduce all measured observables. In

general, all three generators underestimate the event activity in the Transverse region.

Nevertheless, an agreement of the order of 20% has to be considered a success, considering

the complexity of the system under study. Even though an exhaustive comparison of data

with the latest models available is beyond the scope of this paper, in the next sections we

will indicate some general trends observed in the comparison with the chosen models.

In the following discussion we define the leading track pT range from 4 to 10 GeV/c

at
√
s = 0.9 TeV and from 10 to 25 GeV/c at

√
s = 7 TeV as the plateau.

8.1 Number density

In figure 4–6 we show the multiplicity density as a function of leading track pT in the three

regions: Toward, Transverse and Away. Toward and Away regions are expected to collect
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the fragmentation products of the two back-to-back outgoing partons from the elementary

hard scattering. We observe that the multiplicity density in these regions increases mono-

tonically with the pT,LT scale. In the Transverse region, after a monotonic increase at low

leading track pT, the distribution tends to flatten out. The same behaviour is observed at

both collision energies and all values of pT,min.

The rise with pT,LT has been interpreted as evidence for an impact parameter depen-

dence in the hadronic collision [29]. More central collisions have an increased probability for

MPI, leading to a larger transverse multiplicity. Nevertheless, we must be aware of a trivial

effect also contributing to the low pT,LT region. For instance for any probability distribu-

tion, the maximum value per randomized sample averaged over many samples rises steadily

with the sample size M . In our case, the conditional probability density P(pT,LT|M) shifts

towards larger pT,LT with increasing M . Using Bayes’ theorem one expects the conditional

probability density P(M |pT,LT) to shift towards larger M with rising pT,LT:

P(M |pT,LT) ∼ P(pT,LT|M)P(M). (8.1)

The saturation of the distribution at higher values of pT,LT indicates the onset of the

event-by-event partitioning into azimuthal regions containing the particles from the hard

scattering and the UE region. The bulk particle production becomes independent of the

hard scale.

The plateau range is fitted with a line. The fit slopes, consistent with zero, and mean

values for the three pT thresholds are reported in table 7. In the fit, potential correlations

of the systematic uncertainties in different pT bins are neglected.

ATLAS has published a UE measurement where the hard scale is given by the leading

track pT, with a pT threshold for particles of 0.5 GeV/c and an acceptance of |η| < 2.5 [7].

Given the different acceptance with respect to our measurement, the results in the Toward

and Away regions are not comparable. On the other hand the mean values of the Transverse

plateaus from the two measurements are in good agreement, indicating an independence

of the UE activity on the pseudorapidity range. The CDF collaboration measured the UE

as a function of charged particle jet pT at a collision energy of 1.8 TeV [2]. The particle pT
threshold is 0.5 GeV/c and the acceptance |η| < 1. In the Transverse region CDF measures

3.8 charged particles per unit pseudorapidity above the pT threshold at leading-jet pT =

20 GeV/c. This number needs to be divided by 2π in order to be compared with the average

number of particles in the plateau from table 7 at the same threshold value. The scaled

CDF result is 0.60, also shown in table 7 for comparison. As expected it falls between our

two measurements at
√
s = 0.9 TeV and

√
s = 7 TeV. The values do not scale linearly with

the collision energy, in particular the increase is higher from 0.9 to 1.8 TeV than from 1.8 to

7 TeV. Interpolating between our measurements assuming a logarithmic dependence on
√
s

results in 0.62 charged particles per unit area at 1.8 TeV, consistent with the CDF result.

For illustration, figure 7 presents the number density in the plateau of the Trans-

verse region for pT > 0.5 GeV/c (our measurement as well as the value measured by

CDF at 1.8 TeV) compared with dNch/dη|η=0 of charged particles with pT > 0.5 GeV/c in

minimum-bias events [32] (scaled by 1/2π).2 The UE activity in the plateau region is more

2These data are for events that have at least one charged particle in |η| < 2.5.
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Number density Summed pT

pT > 0.15 GeV/c 1.76 ± 0.02 2.00 ± 0.03

pT > 0.5 GeV/c 1.97 ± 0.03 2.16 ± 0.03

pT > 1.0 GeV/c 2.32 ± 0.04 2.48 ± 0.05

Table 8. Constant fit in 4 < pT,LT < 10 GeV/c to the ratio between
√
s = 0.9 TeV and

√
s = 7 TeV

for number density (left) and summed pT (right) distributions in the Transverse region. The shown

uncertainties are based on statistical and systematic uncertainties summed in quadrature.

than a factor 2 larger than the dNch/dη. Both can be fitted with a logarithmic dependence

on s (a+ b ln s). The relative increase from 0.9 to 7 TeV for the UE is larger than that for

the dNch/dη: about 110% compared to about 80%, respectively.

In figure 8 (left) we show the ratio between the number density distribution at
√
s =

7 TeV and
√
s = 0.9 TeV. Most of the systematic uncertainties are expected to be correlated

between the two energies, therefore we consider only statistical uncertainties. The ratio

saturates for leading track pT > 4 GeV/c. The results of a constant fit in the range 4 <

pT,LT < 10 GeV/c are reported in table 8. The measured scaling factor for a pT threshold

of 0.5 GeV/c is in agreement with the observations of ATLAS [7, 30] and CMS [31].

For the track threshold pT > 0.15 GeV/c all models underestimate the charged multi-

plicity in the Transverse and Away regions. In particular at
√
s = 7 TeV PHOJET predic-

tions largely underestimate the measurement in the Transverse region (up to ∼ 50%), the

discrepancy being more pronounced with increasing pT cut-off value. Pythia 8 correctly

describes the Toward region at both collision energies and Phojet only at
√
s = 0.9 TeV.

For track pT > 1 GeV/c, Pythia 8 systematically overestimates the event activity in the

jet fragmentation regions (Toward and Away).

8.2 Summed pT

In figure 9–11 we show the summed pT density as a function of leading track pT in the

three topological regions. The shape of the distributions follows a trend similar to that

discussed above for the number density.

The general trend of Pythia 8 is to overestimate the fragmentation in the Toward

region at all pT cut-off values. Also in this case at
√
s = 7 TeV PHOJET largely under-

estimates the measurement in the Transverse region (up to ∼ 50%), especially at higher

values of pT cut-off. Other systematic trends are not very pronounced.

In table 7 we report the mean value of a linear fit in the plateau range. Our results

agree with the ATLAS measurement in the Transverse plateau.

In figure 8 (right) we show the ratio between the distribution at
√
s = 7 TeV and√

s = 0.9 TeV, considering as before only statistical errors. The results of a constant fit

in the range 4 < pT,LT < 10 GeV/c are reported in table 8. Also in this case the scaling

factor is in agreement with ATLAS and CMS results.

The summed pT density in the Transverse region can be interpreted as a measurement

of the UE activity in a given leading track pT bin. Therefore, its value in the plateau can

be used, for example, to correct jet spectra.
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8.3 Azimuthal correlation

In figure 12–22 azimuthal correlations between tracks and the leading track are shown in

different ranges of leading track pT. The range 1/3π < |∆φ| < 2/3π corresponds to the

Transverse region. The regions −1/3π < ∆φ < 1/3π (Toward) and 2/3π < |∆φ| < π

(Away) collect the fragmentation products of the leading and sub-leading jets. In general,

all Monte Carlo simulations considered fail to reproduce the shape of the measured distri-

butions. Pythia 8 provides the best prediction for the Transverse activity in all leading

track pT ranges considered. Unfortunately the same model significantly overestimates the

jet fragmentation regions.

9 Conclusions

We have characterized the Underlying Event in pp collisions at
√
s = 0.9 and 7 TeV by

measuring the number density, the summed pT distribution and the azimuthal correlation

of charged particles with respect to the leading particle. The analysis is based on about

6 · 106 minimum bias events at
√
s = 0.9 TeV and 25 · 106 events at

√
s = 7 TeV collected

during the data taking periods from April to July 2010. Measured data have been corrected

for detector related effects; in particular we applied a data-driven correction to account

for the misidentification of the leading track. The fully corrected final distributions are

compared with Pythia 6.4, Pythia 8 and Phojet, showing that pre-LHC tunes have

difficulties describing the data. These results are an important ingredient in the required

retuning of those generators.

Among the presented distributions, the Transverse region is particularly sensitive to

the Underlying Event. We find that the ratio between the distributions at
√
s = 0.9

and 7 TeV in this region saturates at a value of about 2 for track pT > 0.5 GeV/c. The

summed pT distribution rises slightly faster as a function of
√
s than the number density

distribution, indicating that the available energy tends to increase the particle’s transverse

momentum in addition to the multiplicity. This is in qualitative agreement with an in-

creased relative contribution of hard processes to the Underlying Event with increasing√
s. Moreover, the average number of particles at large pT,LT in the Transverse region

seems to scale logarithmically with the collision energy. In general our results are in good

qualitative and quantitative agreement with measurements from other LHC experiments

(ATLAS and CMS) and show similar trends to that of the Tevatron (CDF).

Our results show that the activity in the Transverse region increases logarithmically

and faster than dNch/dη in minimum-bias events. Models aiming to correctly reproduce

these minimum-bias and underlying event distributions need a precise description of the

interplay of the hard process, the associated initial and final-state radiation and multiple

parton interactions.
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Figure 4. Number density in Toward (top), Transverse (middle) and Away (bottom) regions at√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Right and left vertical scales differ by a factor

2. Shaded area in upper plots: systematic uncertainties. Shaded areas in bottom plots: sum in

quadrature of statistical and systematic uncertainties. Horizontal error bars: bin width.
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Number density — track pT > 0.5GeV/c.
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Figure 5. Number density in Toward (top), Transverse (middle) and Away (bottom) regions at√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Right and left vertical scales differ by a factor

2. Shaded area in upper plots: systematic uncertainties. Shaded areas in bottom plots: sum in

quadrature of statistical and systematic uncertainties. Horizontal error bars: bin width.
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Figure 6. Number density in Toward (top), Transverse (middle) and Away (bottom) regions at√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Right and left vertical scales differ by a factor

2. Shaded area in upper plots: systematic uncertainties. Shaded areas in bottom plots: sum in

quadrature of statistical and systematic uncertainties. Horizontal error bars: bin width.
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Figure 9. Summed pT in Toward (top), Transverse (middle) and Away (bottom) regions at√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Right and left vertical scales differ by a factor 4 (2) in

the top (middle and bottom) panel. Shaded area in upper plots: systematic uncertainties. Shaded

areas in bottom plots: sum in quadrature of statistical and systematic uncertainties. Horizontal

error bars: bin width.

– 22 –



J
H
E
P
0
7
(
2
0
1
2
)
1
1
6

Summed pT — track pT > 0.5GeV/c.
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Figure 10. Summed pT in Toward (top), Transverse (middle) and Away (bottom) regions at√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Right and left vertical scales differ by a factor 4 (2) in

the top (middle and bottom) panel. Shaded area in upper plots: systematic uncertainties. Shaded

areas in bottom plots: sum in quadrature of statistical and systematic uncertainties. Horizontal

error bars: bin width.
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Summed pT — track pT > 1.0GeV/c.
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Figure 11. Summed pT in Toward (top), Transverse (middle) and Away (bottom) regions at√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Right and left vertical scales differ by a factor 4 (3) in

the top (middle and bottom) panel. Shaded area in upper plots: systematic uncertainties. Shaded

areas in bottom plots: sum in quadrature of statistical and systematic uncertainties. Horizontal

error bars: bin width.
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Azimuthal correlations — track pT > 0.15GeV/c.
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Figure 12. Azimuthal correlation at
√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Leading-track:

0.5 < pT,LT < 1.5 GeV/c. For visualization purposes the ∆φ axis is not centered around 0. Shaded

area in upper plots: systematic uncertainties. Shaded areas in bottom plots: sum in quadrature of

statistical and systematic uncertainties. Horizontal error bars: bin width.
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Figure 13. Azimuthal correlation at
√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Leading-track:

2.0 < pT,LT < 4.0 GeV/c. For visualization purposes the ∆φ axis is not centered around 0. Shaded

area in upper plots: systematic uncertainties. Shaded areas in bottom plots: sum in quadrature of

statistical and systematic uncertainties. Horizontal error bars: bin width.
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Figure 14. Azimuthal correlation at
√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Leading-track:

4.0 < pT,LT < 6.0 GeV/c. For visualization purposes the ∆φ axis is not centered around 0. Shaded

area in upper plots: systematic uncertainties. Shaded areas in bottom plots: sum in quadrature of

statistical and systematic uncertainties. Horizontal error bars: bin width.
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Figure 15. Azimuthal correlation at
√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Leading-track:

6.0 < pT,LT < 10.0 GeV/c. For visualization purposes the ∆φ axis is not centered around 0. Shaded

area in upper plots: systematic uncertainties. Shaded areas in bottom plots: sum in quadrature of

statistical and systematic uncertainties. Horizontal error bars: bin width.
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Azimuthal correlations — track pT > 0.5GeV/c.
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Figure 16. Azimuthal correlation at
√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Leading-track:

0.5 < pT,LT < 1.5 GeV/c. For visualization purposes the ∆φ axis is not centered around 0. Shaded

area in upper plots: systematic uncertainties. Shaded areas in bottom plots: sum in quadrature of

statistical and systematic uncertainties. Horizontal error bars: bin width.
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Figure 17. Azimuthal correlation at
√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Leading-track:

2.0 < pT,LT < 4.0 GeV/c. For visualization purposes the ∆φ axis is not centered around 0. Shaded

area in upper plots: systematic uncertainties. Shaded areas in bottom plots: sum in quadrature of

statistical and systematic uncertainties. Horizontal error bars: bin width.
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Figure 18. Azimuthal correlation at
√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Leading-track:

4.0 < pT,LT < 6.0 GeV/c. For visualization purposes the ∆φ axis is not centered around 0. Shaded

area in upper plots: systematic uncertainties. Shaded areas in bottom plots: sum in quadrature of

statistical and systematic uncertainties. Horizontal error bars: bin width.
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Figure 19. Azimuthal correlation at
√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Leading-track:

6.0 < pT,LT < 10.0 GeV/c. For visualization purposes the ∆φ axis is not centered around 0. Shaded

area in upper plots: systematic uncertainties. Shaded areas in bottom plots: sum in quadrature of

statistical and systematic uncertainties. Horizontal error bars: bin width.
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Azimuthal correlations — track pT > 1.0GeV/c.
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Figure 20. Azimuthal correlation at
√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Leading-track:

2.0 < pT,LT < 4.0 GeV/c. For visualization purposes the ∆φ axis is not centered around 0. Shaded

area in upper plots: systematic uncertainties. Shaded areas in bottom plots: sum in quadrature of

statistical and systematic uncertainties. Horizontal error bars: bin width.
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Figure 21. Azimuthal correlation at
√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Leading-track:

4.0 < pT,LT < 6.0 GeV/c. For visualization purposes the ∆φ axis is not centered around 0. Shaded

area in upper plots: systematic uncertainties. Shaded areas in bottom plots: sum in quadrature of

statistical and systematic uncertainties. Horizontal error bars: bin width.
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Figure 22. Azimuthal correlation at
√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). Leading-track:

6.0 < pT,LT < 10.0 GeV/c. For visualization purposes the ∆φ axis is not centered around 0. Shaded

area in upper plots: systematic uncertainties. Shaded areas in bottom plots: sum in quadrature of

statistical and systematic uncertainties. Horizontal error bars: bin width.

Acknowledgments

The ALICE collaboration would like to thank all its engineers and technicians for their

invaluable contributions to the construction of the experiment and the CERN accelerator

teams for the outstanding performance of the LHC complex.

The ALICE collaboration acknowledges the following funding agencies for their support

in building and running the ALICE detector: Calouste Gulbenkian Foundation from Lis-

bon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cient́ıfico

e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Am-
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an: Department of Physics Aligarh Muslim University, Aligarh, India
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CNRS-IN2P3, Institut Polytechnique de Grenoble, Grenoble, France
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cw: Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
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df: Purdue University, West Lafayette, Indiana, United States
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dx: SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
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ej: University of Tokyo, Tokyo, Japan
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ev: Dipartimento di Fisica dell’Universita, Udine, Italy
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Moscow, Russia
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