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a b s t r a c t

It is shown that there exists a companion formula to Srivastava’s formula for the
Lipschitz–Lerch Zeta function [see H.M. Srivastava, Some formulas for the Bernoulli and
Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000)
77–84] and that together these two results form a discrete Fourier transform pair. This
Fourier transform pair makes it possible for other (known or new) results involving the
values of various Zeta functions at rational arguments to be easily recovered or deduced in
a more general context and in a remarkably unified manner.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction and definitions

Srivastava’s formula [1, p. 81, Eq. (3.9)] reproduced here in (2.2) below, which provides a relationship between the values
of the Lipschitz–Lerch and Hurwitz Zeta functions, has been used in several recent papers (see [2, p. 298, Eq. (39)], [3, p. 821,
Eq. (23)] and [4, p. 806, Eq. (18)]). In this note we obtain its companion formula and show that together these two results
would form a discrete Fourier transform (DFT) pair. For more details regarding the discrete Fourier transforms, the reader
is referred to such standard text on the subject as the book by Weaver [5].
A general Hurwitz–Lerch Zeta functionΦ(z, s, a) defined by [6, p. 121 et seq.]

Φ(z, s, a) :=
∞∑
n=0

zn

(n+ a)s
(a ∈ C \ Z−0 ;Z

−

0 := {0,−1,−2,−3, . . .})

(s ∈ C when |z| < 1; R(s) > 1 when |z| = 1)

(1.1)

contains, as its special cases, not only the Lipschitz–Lerch Zeta function [6, p. 122, Eq. 2.5(11)]:

φ(ξ, a, s) :=
∞∑
n=0

e2nπ iξ

(n+ a)s
= Φ(e2π iξ , s, a)(

a ∈ C \ Z−0 ;R(s) > 0 when ξ ∈ R \ Z; R(s) > 1 when ξ ∈ Z
) (1.2)
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and the Hurwitz (or generalized) and the Riemann Zeta functions:

ζ (s, a) :=
∞∑
n=0

1
(n+ a)s

= Φ(1, s, a) and ζ (s) = Φ(1, s, 1), (1.3)

but also other functions such as the Lerch Zeta function [6, p. 122, Eq. 2.5(11)]:

`s(ξ) :=

∞∑
n=1

e2nπ iξ

ns
= e2π iξΦ(e2π iξ , s, 1) (ξ ∈ R; R(s) > 1) (1.4)

and the Legendre Chi function χs(z) (see, for instance, [7,8]):

χs(z) :=
∞∑
n=0

z2n+1

(2n+ 1)s
=
1
2s
zΦ

(
z2, s,

1
2

)
(|z| 5 1; R(s) > 1) . (1.5)

Finally, the classical Bernoulli polynomials Bn(x) and the classical Bernoulli numbers Bn are defined by (see, for details, [6,
p. 61 et seq.]; see also a recent work [9]):

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π) and Bn := Bn(0)

(n ∈ N0 := N ∪ {0}; N := {1, 2, 3, . . .}). (1.6)

2. The main results and their proofs

We begin by observing that, in what follows, we set an empty sum to be zero and it is assumed that p, r and q are positive
integers. Ourmain results in this section are stated and proved as follows. As indicated above, (2.2) is Srivastava’s formula [1],
while (2.1), (2.3) and (2.4) are presumably new.

Theorem. Suppose that s and a are complex numbers, s 6= 1 and a 6∈ Z−0 . Then ζ (s, a) andφ(ξ, a, s) form the following DFT pair:

ζ

(
s,
p+ a− 1
q

)
=
1
q

q∑
r=1

qsφ
(
r
q
, a, s

)
exp

(
−
2π i(r − 1)p

q

)
(p = 1, . . . , q) (2.1)

and

φ

(
r
q
, a, s

)
=
1
qs

q∑
p=1

ζ

(
s,
p+ a− 1
q

)
exp

(
2π i(p− 1)r

q

)
(r = 1, . . . , q). (2.2)

Proof. Assume that R(s) > 1. We first note that Srivastava [1] gave a simple and elegant proof of (2.2) (see, for details, [1,
p. 81]). Our proof of (2.1) requires each of the following results:
(a) Simpson’s Series Multisection Formula (see, for instance, [10, p. 131]). Let

f (z) =
∞∑
k=1

akzk

and let q be fixed. Then, for any p (1 5 p 5 q), we have

q
∞∑
k=0

ap+qkzp+qk =
q∑
s=1

ω−spf
(
ωsz

) (
ω = exp

(
2π i
q

))
. (2.3)

(b) Abel’s Theorem (see [11, p. 148]). Let

f (z) =
∞∑
k=1

akzk.

If the series
∞∑
k=1

ak
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converges, then

lim
z→1−
{f (z)} =

∞∑
k=1

ak. (2.4)

Now, the assertion (2.1) of the Theorem follows immediately uponmaking use of Simpson’s Series Multisection Formula
(2.3) and Abel’s Theorem (2.4) on the defining series (1.1) forΦ(z, s, a).
We next show that the relations in (2.1) and (2.2) form a discrete Fourier transform pair. Indeed, upon substituting from

(2.1) into (2.2) and using the corresponding orthogonality property, we have

φ

(
r
q
, a, s

)
=
1
q

q∑
p=1

q∑
r=1

φ

(
r
q
, a, s

)
exp

(
−
2π ir
q

)
· exp

(
2π ip
q

)

= φ

(
r
q
, a, s

)
(r = 1, . . . , q). (2.5)

Thus the proposed transform relations (2.1) and (2.2) are established forR(s) > 1.
Lastly, it is clear that the above formulas (2.1) and (2.2)may be extended by applying the principle of analytic continuation

on s as far as possible. It is well known that ζ (s, a) is a meromorphic function in s ∈ C, with a single simple pole as s = 1. If
ξ is not an integer, φ(ξ, a, z) is an entire function in s ∈ C. Moreover, for an integer ξ , the entire function φ(ξ, a, z) reduces
to ζ (s, a). In other words, the formulas (2.1) and (2.2) are valid for any complex s (s 6= 1). �

Corollary. Suppose that n is a positive integer and that a ∈ C\Z−0 . Then, in terms of Bn(x) and φ(ξ, a, s), the following DFT pair
holds true:

−
1
n
Bn

(
p+ a− 1
q

)
=
1
q

q∑
r=1

q1−nφ
(
r
q
, a, 1− n

)
exp

(
−
2π i(r − 1)p

q

)
(p = 1, . . . , q), (2.6)

and

φ

(
r
q
, a, 1− n

)
= −

1
nq1−n

q∑
p=1

Bn

(
p+ a− 1
q

)
exp

(
2π i(p− 1)r

q

)
(r = 1, . . . , q). (2.7)

Proof. The above Corollary follows from our Theorem in conjunction with the following familiar relationship [6, p. 85, Eq.
(17)]:

ζ (1− n, a) = −
Bn(a)
n

(n ∈ N), (2.8)

where Bn(x) are the Bernoulli polynomials defined by (1.6). �

Remark. Yet another immediate consequence of the Theorem is a pair of new transform relations which could be deduced
by simultaneous use of (2.8) and Apostol’s formula (cf., e.g., [2, p. 299, Eq. (46)]):

φ(ξ, a, 1− n) = −
Bn(a; e2π iξ )

n
(n ∈ N), (2.9)

Bn(x; λ) being the Apostol–Bernoulli polynomials (see, for instance, [2, p. 291, Eq. (5)]).

3. A set of interesting special cases

We note that the main results in two papers by Cvijović and Klinowski (see [12,8]), which were also proved to be DFT
pairs, are special cases of the above Theorem. The first result of Cvijović and Klinowski [12, p. 48, Theorem]:

ζ

(
s,
p
q

)
=
1
q

q∑
r=1

qs`s

(
r
q

)
exp

(
−
2π ırp
q

)
(p = 1, . . . , q) (3.1)

and

`s

(
r
q

)
=
1
qs

q∑
p=1

ζ

(
s,
p
q

)
exp

(
2π ıpr
q

)
(r = 1, . . . , q) (3.2)
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can be recovered by setting a = 1 in (2.1) and (2.2) and making use of the definition (1.4) of the Lerch Zeta function `s(ξ).
The second result of Cvijović and Klinowski [8, p. 1625, Theorem] would follow similarly by setting a = 1

2 and making use
of the definition (1.5) of the Legendre Chi function χs(z). For various more than two dozen formulas, most of which being
previously unknown, which were established as a consequence of these pairs of results, the interested reader is referred to
the aforecited papers by Cvijović and Klinowski (see [12,8]).
Clearly, in the same way as detailed above, two more pairs of results can be obtained from the above Corollary, but we

choose only to record, in the following Example, the case when a = 1. The formula (3.3) below is essentially the same as
the result which was derived, by using markedly different arguments, by Wang [13, p. 12, Theorem D]. In addition, many
new formulas involving the values of various Zeta functions at rational arguments can be easily deduced by appealing to the
relations mentioned in the above Remark.

Example. If n ∈ N, then it is easily seen that

−
1
n
Bn

(
p
q

)
=
1
q

q∑
r=1

q1−n`1−n

(
r
q

)
exp

(
−
2π irp
q

)
(p = 1, . . . , q) (3.3)

and

`1−n

(
r
q

)
= −

1
nq1−n

q∑
p=1

Bn

(
p
q

)
exp

(
2π ipr
q

)
(r = 1, . . . , q). (3.4)
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