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Abstract: The effect of edge interlaminar stresses on strength of carbon/epoxy lami-
nates of different stacking geometry: cross-ply, quasi-isotropic and angle-ply lami-
nates with additional 0° and 90° ply was studied. Coupons with two widths of lami-
nates with an inverse stacking sequence were tested in static tensile tests. The effect
of edge interlaminar stresses on strength was studied, by comparing the values of the
tensile strength of laminate coupons of the same width with an inverse stacking se-
quence, as well as, by comparing the values of the tensile strength of the same lay-up
laminate coupons but of different widths. The edge effects were analysed by observ-
ing failure, identifying the interlayer where axial cracks at the free edge were initi-
ated or inhibited and by computing interlaminar stresses and strains in the interlayer
near the free edge of the coupon. The established edge effect was first correlated to
the sign of the normal edge interlaminar stress. The extent of the edge effect was
then successfully correlated to the edge interlaminar normal stress normalized to the
size of the edge boundary region in which the stress appeared.

Keywords: fibre polymer composites, strength, edge interlaminar stresses, comple-
mentary energy.

INTRODUCTION

In fibre-reinforced laminates subjected to an axial load, normal (o,) and shear
interlaminar (z,) stresses (Fig. 1) arise at their free edges due to a mismatch in the
elastic properties between the plies. Hence, in the region near both free edges of a
coupon, known as the edge boundary region (EBR), highly localized interlaminar
stresses make a fully three-dimensional stress field. This stress filed cannot be ac-
curately predicted by classical lamination theory, only by a variety of suitable ana-
lytical and numerical methods.!-2 The EBR width on one coupon free edge (bggRr)
is equal to the coupon depth,2 bpgr = d.

Edge-induced, interlaminar stresses can play an important role in the initiation of an
axial crack in the interlayer and can lead to delamination and failure of the laminate at
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Fig. 1. Laminate coupon of depth 4 and width b, under load P,, oriented in reference coordinate
system X-Y—-Z.
in-plane loads significantly lower than the loads at which the laminate would fail if only
in-plane fracture was the failure mechanism. As a consequence, the measured effective
strength has a lower value than expected. The edge effects are more or less pronounced
depending on the stacking geometry of the laminate and can sometimes even supress the
initiation of delamination and bring about a strength improvement.

Since the early seventies, numerous investigators have studied the effect of edge in-
terlaminar stresses on the axial strength of fibre-reinforced laminates. Pipes and Paga-
no3# and Rybicki and Schmueser> found that the sign of the transverse, normal edge in-
terlaminar stress determines the edge effect on the tensile strength of cross-play lami-
nates. They also showed that when the interlaminar stress, 0, is of the tensile type, such
as in laminates of (0/90) stracking geometry, 0, is instrumental in precipitating dela-
mination in the 0°%90° interlayer. This leads to subsequent laminate strength degradation.
The compressive edge induced normal interlaminar stress arising in the 90°/0° interlayer
of (90/0)s coupons, inhibiting axial crack appearance, makes the tensile strengths of
(90/0), coupons higher than these of (0/90), ones. Whitney and Browning® interpreted,
in the same way, the results of the tensile strength of (+45/90) and (90/% 45), laminates.
In later papers, attention was paid to a more accurate evaluation of edge interlaminar
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stresses and their distribution,”-8 as well as, to the use of failure criteria, in connection
with stress analysis in the assessment and explanation of the edge effect.?

In this paper, on the basis of the established edge effect and the presence or absence
of interlaminar cracks in interlayers of failed coupons, the edge effect was first related
with the sign of the normal interlaminar stress, as in the pioneering work of Pipes and
Pagano? and in our previous paper.!0 Then, an effort was made to correlate the extent of
the edge-effect with a parameter including both the numerical values of the interlaminar
stress inducing or sustaining crack initiation, and the coupon thickness-to-width ratio
(d/b). By applying such a parameter to the case where edge interlaminar shear stress 7y,
is responsible for crack initiation in a 45°/—45° interlayer, the edge effects in narrow cou-
pons of (0,/£45), and (90,/+45), angle ply laminates were explained.

The coupons of cross-ply, quasi-isotropic and angle-ply laminates with 0° and
90° plies, all with an inverse stacking sequence, were tested on tension. To induce a
more or less pronounced edge effect in the laminates, the tested coupons were of
different widths.11

EXPERIMENTAL

Laminates, obtained using a commercial, Hexcel M39 unidirectional carbon fibre/epoxy resin
prepreg in the following stacking sequence” were studied:

cross-ply laminates quasi-isotropic laminates
(0/90), (90/0)4 (0/90/£ 45), (/£45/0/90)
angle-ply laminates
(£45/05)g (0,/£45), (£45/90,) (90,/£45),

The tensile tests of straight side tabbed coupons were performed on an M 1185 INSTRON Uni-
versal Testing Machine. The dimensions of the coupons with two different widths differed from that
of standard coupons.

Transverse coupon failures, lateral sides of failed coupons with and without interlaminar
cracks, and the main crack surface across the interlayer were observed at low magnifications on an
optical microscope. Failure observation was made in order to establish whether and in which
interlayer the axial crack appeared. The edge-induced interlaminar stresses calculated by the
Kassapoglou and Lagace method,!%!13 based on the complementary energy”” minimization princi-
ple. The interlaminar stress and strain components (0, Ty, €, and y,,) for all interlayers present in
the tested coupons were calculated along the coupon width, up to the free edge (shown in Fig. 2), and
the values of the edge interlaminar stress (o, and y,,) and strain component (¢, and y,,) at the free
edges of the coupon were derived as a function of the 2z/d coordinate (shown in Fig. 3). The proper-
ties of a zero-degree orientation ply used in the calculations were:

*  The ususal notation of the stacking sequence is used: the numbers refer to the ply orientation
(angle between fibre direction and coupon length edge, i.e., between the fibres and the direc-
tion of load application) and the subscript s denotes that the stacking sequence was repeated
symmetrically about the centreline of the laminate.

*%  The definition of the laminate complementary energy, IT,,!! is the sum of the contribution of
n
each of the individual plies (IT= ch(k ) Y115, the complementary energy of the k-ply repre-
k=1
sents the difference between the total ply strain energy and the total ply strain work in the load
direction, both per unit volume IT,0 = X Ue i~ Wy
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E,=168.6GPa E,=9.52GPa G,=3.72GPa v;,=0.298

RESULTS AND DISCUSSION

The edge effects were assessed by comparing the strength values of coupons of dif-
ferent widths of laminates with the same lay-up, as well as by comparing the strength
values of coupons of a given width cut from laminate with an inverse stacking sequence.

For the purpose of correlation, the edge normal interlaminar stress 0 ¢qge
“normalized” to the size of the edge boundary region for all the intelrayers present
was calculated using the expression:

OzEBR — Oz,edgezd/b [MPa] (1)

while for the 45%-45° interlayer, the edge interlaminar shear stress 7, ¢qge “normal-
ized” to the size of the edge boundary region was computed using the expression:

Txz,EBR = sz,edgezd/ b [MPa] (2)
where 2d/b represents the edge boundary region part of the coupon, d is the coupon
depth, and 4 is the coupon width. The computed values of 0, ggr and 7, ggr pa-
rameters, as well as, those of 0, ¢goe and 7y, eqge, are listed in Tables I —IV.

Edge effect in cross-ply laminates

On the basis of the results presented in Table I, it can be stated that the effect of the
edge in (90/0), laminates on their strength is positive and in (0/90), laminates negative,
as has been known for years.# The microscopic and macroscopic evidence of failure
confirms these conclusions. In the (0/90),-failed coupons, an axial crack appeared in
the 0°/90° interlayer, while transverse fracture in (90/0); coupons was neither initiated
nor accompanied by any axial crack through the 90°/0° interlayer.

TABLE I. Tensile strength and edge interlaminar stress and strain of cross-ply laminates with a
(0/90), and a (90/0), stacking sequence

Stacking Coupon Interply  0.%92/MPa ¢ edee x103 0.FBR/MPa  0.®P/MPa
sequence width/mm
(0/90) 15 0/90 16.0 2.63 4.05 766134
6 0/90 14.6 2.43 9.30 722439
(90/0) 15 90/0 -17.8 -1.83 -4.51 815+46
6 90/0 -19.7 -3.97 -12.48 877136

(Coupon depth d = 1.9 mm)

For (0/90); laminates, where a negative edge effect on the laminate strength
was established, the edge interlaminar normal strength o, and strain ¢, are of the
tensile type, while the positive edge effect in (90/0)g laminates is due to compres-
sive interlaminar normal stress and strain (Table I).

The results confirm the known fact that the edge induced, normal interlaminar
tensile stress (Tables I and II), is responsible for the detected negative edge effect
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on the tensile strength of (0/90), laminate, as well as for axial crack initiation and
propagation through the 0°/90° interlayer. However, a study,!4 based on the me-
chanics of linear fracture of delamination growth between orthotropic layers in a
symmetric cross-ply laminate under in-plane normal tensile stress showed a negli-
gible contribution of the Mode I (due to tensile stress) mechanism to delamination
propagation compared with the Mode II (due to shear stress) and Mode III
(antiplan or tearing Mode) mechanisms. This controversy can be understood tak-
ing into account the warping along the interlayer in the edge boundary region,
pointed out by Reddy and Robbins,? as well as the gradient of the interlaminar
stress and strain in the edge boundary region, recognised by the shape of the o, =
f(2y/b) and ¢, = f(2y/D), curves (Fig. 2).

TABLE II. Tensile strength and edge interlaminar stress and strain of quasi-isotropic laminates with
a (0/90+45), and a (£45/0/90), stacking sequence

Stacking Coupon Interply ~ 0,°%¢/MPa ¢ edee x103 0.FBR/MPa 0, P/MPa
sequence width/mm
(0/90/%45), 12.4 90/45 -165.4 -17.39 —26.68 585+45
6 90/45 -155.3 -16.34 -51.77 599+10
(+45/0/90) 12.4 —45/0 180.4 19.60 29.10 548488
6 —45/0 131.4 14.28 43.80 407£32

(Coupon depth d = 1.0 mm)

In quasi-isotropic laminates having a (£45/0/90), stacking sequence, the negative
edge effect on the laminate strength was established and the edge interlaminar normal
strength 0, and strain €, are of the tensile type (Table II). For a (0/90/145); stracking se-
quence, a positive edge effect was detected, which can be attributed to the compressive
interlaminar normal stress and strain values computed for this lay-up. In the failed cou-
pons with the former stacking sequence, the interlaminar cracks were observed in the
—45°/0° interlayer, while failure in the coupons having a (0/90/+ 45), laminate stacking
sequence occurred without any axial crack in the interlayers present.

The extent of the edge effect cannot be correlated with the 0 ¢qge and € ¢qge
values (Tables I and II). However, as can be clearly seen, without exception (Tables
[ and 1II), higher absolute values of the o, ggr parameter were calculated for the
coupons with a more pronounced edge effect, and vice versa. This means that the
parameter 0, ggr can be used as a relative measure of a positive or negative edge
effect on the inhibition or initiation of an axial crack in the interlayer, i.e., on the in-
crease or decrease in the measured laminate strength. By definition — Eq. (1), the
0. gBR parameter includes both the value of the edge interlaminar stress and the
size of the edge boundary region where this stress is induced.
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Edge effect in angle-ply laminates

The strength results obtained for narrow (6 mm) and wide (15 mm) coupons of
angle-ply laminates with (£45/0,) and (£45/90,), stracking geometries (Table III),
imply a negative edge effect in these laminates, because the strength values of the
wider coupons were higher than those of the narrow ones. As in other similar
cases,* 0 the calculated edge interlaminar normal strength o, and strain ¢, are of the
tensile type (Fig. 3). For laminates with these stacking sequences, the extent of the
edge-effect is proportional to the value of the 0, ggr parameter (Table III). The pa-
rameter is a relative measure of the negative edge effect on the strength of lami-
nates with (£45/0,), and (£45/90,), stacking sequences.



CARBON/EPOXY LAMINATES 427

TABLE III. Tensile strength and edge interlaminar stress and strain of angle-ply laminates with a
(+45/0,), and a (+45/90,), stacking sequence

Stacking Coupon Interply ~ 0.°92¢/MPa ¢ cdze 103 0.FBR/MPa  0,°P/MPa

sequence  width/mm

(£45/0,)s 15 —45/0 50.9 4.18 6.79 902452
6 —45/0 48.1 3.95 16.03 853461

(£45/90,), 15 —-45/90 192.4 20.84 25.65 169106
6 —45/90 143.9 15.58 47.97 129+02

(Coupon depth d = 1.0 mm)

The strength values determined for 15 mm wide coupons of (0,/445), and
(90,/%45), laminates (Table IV) are higher than those determined for the same width
coupons of (+45/0,) and (+45/90,), laminates (Table III) This can be explained by
the fact that the interlaminar normal compressive stress in laminates where +45°
plies are near the mid-plane sustains the appearance of axial cracks in the 0°/45° and
90°/45° interlayers. On the contrary, the normal interlaminar tensile stress in lami-
nates with outside +45° plies induced visible axial cracks in the —45°/0° and —45°/90°
interlayers. Harris and Orringer,!5 as well as, Lee!© reported edge delamination in
the —®°/90° interlayer of angle-ply laminates with an additional 90° ply.

TABLE IV. Tensile strength and edge interlaminar stress and strain of angle-ply laminates with a
(0,/£45), and a (90,/+45), stacking sequencetx

Stacking Coupon Interply o,cdge  gedge G EBR 7 edge o edge g EBR 4 exp

sequence width/mm MPa x103 MPa MPa x103 MPa MPa
(0,/£45), 15 0/45 -59 934 787 998+71
45/-45 -103.2 -13.38 -13.76  27.6 17.86 3.68
6 0/45 =515 =815 -17.17 806+12
45/-45 -90.1 -11.7 -30.03  24.1 15.75 8.03
(90,/%45) 15 90/45  —49.0 583 —6.53 21044
45/45 858 -1030 -11.44  25.6 4.80 3.41
6 90/45 351 418 -11.7 143£12

45/-45 614 738 2047 61.4 3.43 20.47
(Coupon depth d = 1.0 mm)

The values of the strength of wide and narrow coupons of (+45/0,); and
(£45/90,)¢ laminates (Table III), which reveal a negative edge effect on the lami-
nate strength, can be fully explained by consideration of the earlier deseribed edge
effect in cross-ply and quasi-isotropic laminates. The lower 0, gggr values of 15
mm coupons compared to those of 6 mm ones correspond to a less pronounced
negative edge effect (higher strength values) in the wider coupons, while the
higher 0, ggR values of the narrow coupons correspond to a more pronounced neg-
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ative edge effect (smaller strength values) in these coupons (Table I1I). This is be-
cause the cracks in these laminates appeared and were observed in the — 45°/0° and
45°/90° interlayers, due to the induced interlaminar normal tensile stress of edges.
However, it is not possible to explain the strength results of the narrower coupons
of (0,/£45), and (90,/+45), laminates by such a consideration. Their strength was
lower than that of the wider coupons (Table IV). The calculated o, and ¢, values in the
interlayers of these coupons are of the compressive type. The wide coupons of
(0p/£45), and (90,/145), angle-ply laminates failed without noticeable axial cracks in
any interlayer, under the recorded normal compressive edge interlaminar stress. How-
ever, in the narrow coupons of (0,/445), and (90,/445), laminates, short axial cracks,
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going from the transverse fracture border, were observed in the 45°-45° interlayer.
Undoubtedly, these cracks were initiated by induced edge interlaminar shear stress.
Pipes, Kaminski and Pagano showed that “the crack initiated in 45°/-45° interlayer
continues to grow through the matrix, propagates into the coupon and initiates prema-
ture ultimate rupture”.17 It makes the strength of these narrow coupons lower than that
of wide ones. Emphasising that the damage growth in (0/£0,), laminates is a complex
process, Wharmby and Ellyin!8 also observed a continuous growth through the matrix
of the crack initiated at the edge of the ®/—® interlayer.

In narrow coupons of (0,/445)s and (90,/45), laminates, the 74, ggr — Eq. (2)
value for the 45°—45° interlayer is higher than that for wide coupons (Table 1V).
This explains why the crack was initiated in the 45°/—45° interlayer of narrow cou-
pons and not in the same interlayer of wide ones. This may be an argument to adopt
the 7, ggr (Eq. (2)) value as a measure of the edge effect when delamination oc-
curs due to edge shear interlaminar stress.

CONCLUSIONS

A positive edge effect, due to edge interlaminar normal compressive stress in the
0°/90° and 90°/45° interlayers, was observed in laminates of (90/0), and (0/90/£45),
stacking sequences. In (0/90), and (+45/0/90), laminates, a negative edge effect was
established due to edge interlaminar normal tensile stress in the 0°/90° and — 45°/0°
interlayers. Laminate coupons, where a positive edge effect was established, failed
without axial cracks through the interlayers, while in those where the edge effect was
negative, premature final failure of the tested coupon was induced near free edges,
by initiation and propagation of axial interlaminar cracks.

The parameter 0, ggr Was found to be a relative measure of the positive or the
negative edge effect on the initiation or inhibition of a crack, i.e., on the measured
value of the laminate strength. It represents the edge interlaminar normal stress
“normalized” to the edge boundary region (EBR) size. It includes the value of the
normal edge interlaminar stress, as well as, the size of the EBR, where the edge
interlaminar stress is induced.

In the tested coupons of angle-ply laminates of (+45/0,)s and (£45/90,), stacking
geometries, a negative edge effect was established, due to the induced edge interla-
minar normal stress and strain of a tensile type. Axial cracks were observed in the
—45°0° and —45°/90° interlayers of the failed coupons of these laminates. The parame-
ter o, pgr Was approved as a relative measure of the negative edge effect for these lam-
inate coupons.

A positive edge effect was observed in wide coupons of (0,/345), and (90,/£45)s
laminates. The calculated edge interlaminar normal compressive stress sustained
the appearance of axial cracks in the 0°/45° and 90°/45° interlayers of these cou-
pons. In narrow coupons of (0,/£45), and (90,/245), laminates, short interlaminar
cracks going from a transverse fracture border were noticed in the 45°/—45°
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interlayer. They were initiated by induced edge interlaminar shear stress in this
interlayer and grew continuously through the matrix. Propagating into the speci-
men, they inteated a premature ultimate rupture. In these laminates, the edge effect
is negative and the parameter 7g, pgRr — the edge shear interlaminar stress in the
45°/-45° interlayer, “normalised” to the relative size of the edge boundary region is
a measure of its magnitude.
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U3BOJ

YTULHAJ UBUYHUX MUHTEPTIAMMHAPHUX HATIPESABA HA YBPCTORY
JIAMMHATA KAPBOH/EITOKCUJ] PASIIMYUTE TEOMETPUIJE CIIATABA

MOMYNJIO CTEBAHOBUh, MUJIAH T'OPIWH, TAHWIEJIA TIEIIMKAH u UCUJJOP HTOPLEBUH

Hnuciuinyi 3a nykaeaprue Hayke "Bunua', ip. ¢. 522, 11000 Beozpao

[IpoyuaBaH je yTuiaj vHTEpIaMUHAPHUX HAaNpe3ama Ha IYBpCTohy TaMuHaTa KapOoH/eno-
KCHUJ| pa3auyuuTe FeOMEeTpHje Cllarama: MONPEeYHO YKPIITECHUX, KBA3UU30TPOIHUX U YTaOHO
VKPUITEHHX JIaMIHATA ca ciojeBuMa opujenTanmje 0°u 90°. Enpysere iBe MIMpUHE TaMUHATA
ca MHBEP3HUM CEKBellaMa cjlarama JaMuHa Cy UCIHUTHUBAHE Y TECTOBUMA 3aTe3ama. Y THIA]
MBUYHUX MHTEPIAMUHAPHUX HAlpe3ama Ha YBpCTOhy je ycTaHOBIbeH nopefehu BpeqHoCTH
uyBpcTohe enpyBeTa UCTe NIMPUHE JJaMUHATAa MHBEP3HUX CEKBEHIU Cllarama ciojeBa, Kao u
nopefeh BpeAHOCTH 3aTe3He YBpCcTohe enpyBeTa pa3inyuTe MIMPUHE TaMUHATA UCTE CEK-
BEHIIe clarama. VIBUuHu epeKTH cy aHaNM3UpaHH IOCMaTpambeM pa3apama, HACHTU(HKO-
BameM Mebycioja y KojeM cy mHUIIMpaHe Wi HHXHOUpaHe aKCHjallHe MyKOTHHE, aKO U IPO-
padyHaBameM BPEJHOCTU MBHYHUX MHTEPJIaMUHAPHUX HANoHA M fedopManyja. Y cTaHOB-
JbeH UBIYHE €(peKaT je Hajupe KOPEINCaH ca 3HaKOM HOPMaJTHOT HHTEPIIaMIaHPHOT HAIMlOHA.
CreneH UBUYHOT eheKTa je 3aTUM YCHEIIHO KOPEeJIUCcaH ca UBUYHUM HOPMaJIHUM UHTepJIa-
MUHApPHMM HallOHOM HOPMAJIM30BaHUM Ha BEJIMUNHY TPAaHUYHE UBUYHE OOJIACTH Y KOjOj HIYE
MHTEPJIaMIHAPHO HAIPE3ame.

(ITpumibeno 22. hebpyapa, peBupupano 22. jyiaa 2005)
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