
J. Serb. Chem. Soc. 71 (4) 421–431 (2006) UDC 677.494.7+547+311:539.216:539.4.015

JSCS – 3438 Original scientific paper

The effect of edge interlaminar stresses on the strength of

carbon/epoxy laminates of different stacking geometry

MOM^ILO STEVANOVI]*, MILAN GORDI], DANIELA SEKULI] and ISIDOR
DJORDJEVI]

Vin~a Institute of Nuclear Sciences, P. O. Box 522, 11000 Belgrade, Serbia and Montenegro

(e-mail: stem@vin.bg.ac.yu)

(Received 22 February, revised 22 July 2005)

Abstract: The effect of edge interlaminar stresses on strength of carbon/epoxy lami-
nates of different stacking geometry: cross-ply, quasi-isotropic and angle-ply lami-
nates with additional 0º and 90º ply was studied. Coupons with two widths of lami-
nates with an inverse stacking sequence were tested in static tensile tests. The effect
of edge interlaminar stresses on strength was studied, by comparing the values of the
tensile strength of laminate coupons of the same width with an inverse stacking se-
quence, as well as, by comparing the values of the tensile strength of the same lay-up
laminate coupons but of different widths. The edge effects were analysed by observ-
ing failure, identifying the interlayer where axial cracks at the free edge were initi-
ated or inhibited and by computing interlaminar stresses and strains in the interlayer
near the free edge of the coupon. The established edge effect was first correlated to
the sign of the normal edge interlaminar stress. The extent of the edge effect was
then successfully correlated to the edge interlaminar normal stress normalized to the
size of the edge boundary region in which the stress appeared.

Keywords: fibre polymer composites, strength, edge interlaminar stresses, comple-
mentary energy.

INTRODUCTION

In fibre-reinforced laminates subjected to an axial load, normal (�z) and shear

interlaminar (�xz) stresses (Fig. 1) arise at their free edges due to a mismatch in the

elastic properties between the plies. Hence, in the region near both free edges of a

coupon, known as the edge boundary region (EBR), highly localized interlaminar

stresses make a fully three-dimensional stress field. This stress filed cannot be ac-

curately predicted by classical lamination theory, only by a variety of suitable ana-

lytical and numerical methods.1,2 The EBR width on one coupon free edge (bEBR)

is equal to the coupon depth,2 bEBR = d.

Edge-induced, interlaminar stresses can play an important role in the initiation of an

axial crack in the interlayer and can lead to delamination and failure of the laminate at
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in-plane loads significantly lower than the loads at which the laminate would fail if only

in-plane fracture was the failure mechanism. As a consequence, the measured effective

strength has a lower value than expected. The edge effects are more or less pronounced

depending on the stacking geometry of the laminate and can sometimes even supress the

initiation of delamination and bring about a strength improvement.

Since the early seventies, numerous investigators have studied the effect of edge in-

terlaminar stresses on the axial strength of fibre-reinforced laminates. Pipes and Paga-

no3,4 and Rybicki and Schmueser5 found that the sign of the transverse, normal edge in-

terlaminar stress determines the edge effect on the tensile strength of cross-play lami-

nates. They also showed that when the interlaminar stress, �z, is of the tensile type, such

as in laminates of (0/90)s stracking geometry, �z, is instrumental in precipitating dela-

mination in the 0º/90º interlayer. This leads to subsequent laminate strength degradation.

The compressive edge induced normal interlaminar stress arising in the 90º/0º interlayer

of (90/0)s coupons, inhibiting axial crack appearance, makes the tensile strengths of

(90/0)s coupons higher than these of (0/90)s ones. Whitney and Browning6 interpreted,

in the same way, the results of the tensile strength of (�45/90)s and (90/� 45)s laminates.

In later papers, attention was paid to a more accurate evaluation of edge interlaminar
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Fig. 1. Laminate coupon of depth d and width b, under load Px, oriented in reference coordinate
system X–Y–Z.



stresses and their distribution,7,8 as well as, to the use of failure criteria, in connection

with stress analysis in the assessment and explanation of the edge effect.9

In this paper, on the basis of the established edge effect and the presence or absence

of interlaminar cracks in interlayers of failed coupons, the edge effect was first related

with the sign of the normal interlaminar stress, as in the pioneering work of Pipes and

Pagano4 and in our previous paper.10 Then, an effort was made to correlate the extent of

the edge-effect with a parameter including both the numerical values of the interlaminar

stress inducing or sustaining crack initiation, and the coupon thickness-to-width ratio

(d/b). By applying such a parameter to the case where edge interlaminar shear stress �xz

is responsible for crack initiation in a 45º/–45º interlayer, the edge effects in narrow cou-

pons of (02/�45)s and (902/�45)s angle ply laminates were explained.

The coupons of cross-ply, quasi-isotropic and angle-ply laminates with 0º and

90º plies, all with an inverse stacking sequence, were tested on tension. To induce a

more or less pronounced edge effect in the laminates, the tested coupons were of

different widths.11

EXPERIMENTAL

Laminates, obtained using a commercial, Hexcel M39 unidirectional carbon fibre/epoxy resin

prepreg in the following stacking sequence* were studied:

cross-ply laminates quasi-isotropic laminates

(0/90)s (90/0)s (0/90/� 45)s (/�45/0/90)s

angle-ply laminates

(�45/02)s (02/�45)s (�45/902)s (902/�45)s

The tensile tests of straight side tabbed coupons were performed on an M 1185 INSTRON Uni-

versal Testing Machine. The dimensions of the coupons with two different widths differed from that

of standard coupons.

Transverse coupon failures, lateral sides of failed coupons with and without interlaminar

cracks, and the main crack surface across the interlayer were observed at low magnifications on an

optical microscope. Failure observation was made in order to establish whether and in which

interlayer the axial crack appeared. The edge-induced interlaminar stresses calculated by the

Kassapoglou and Lagace method,12,13 based on the complementary energy** minimization princi-

ple. The interlaminar stress and strain components (�z, �xz, �z and �xz) for all interlayers present in

the tested coupons were calculated along the coupon width, up to the free edge (shown in Fig. 2), and

the values of the edge interlaminar stress (�z and �xz) and strain component (�z and �xz) at the free

edges of the coupon were derived as a function of the 2z/d coordinate (shown in Fig. 3). The proper-

ties of a zero-degree orientation ply used in the calculations were:
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* The ususal notation of the stacking sequence is used: the numbers refer to the ply orientation
(angle between fibre direction and coupon length edge, i.e., between the fibres and the direc-
tion of load application) and the subscript s denotes that the stacking sequence was repeated
symmetrically about the centreline of the laminate.

** The definition of the laminate complementary energy, �c,
11 is the sum of the contribution of

each of the individual plies (� = �c

k

k

n

( ) )
�

�
1

�c
(k), the complementary energy of the k-ply repre-

sents the difference between the total ply strain energy and the total ply strain work in the load
direction, both per unit volume �c

(k) = �U�ij – �Wx.



E1 = 168.6 GPa E2 = 9.52 GPa G12 = 3.72 GPa �12 = 0.298

RESULTS AND DISCUSSION

The edge effects were assessed by comparing the strength values of coupons of dif-

ferent widths of laminates with the same lay-up, as well as by comparing the strength

values of coupons of a given width cut from laminate with an inverse stacking sequence.

For the purpose of correlation, the edge normal interlaminar stress �z,edge

“normalized” to the size of the edge boundary region for all the intelrayers present

was calculated using the expression:

�z,EBR = �z,edge2d/b �MPa� (1)

while for the 45º/–45º interlayer, the edge interlaminar shear stress �xz,edge “normal-

ized” to the size of the edge boundary region was computed using the expression:

�xz,EBR = �xz,edge2d/b �MPa� (2)

where 2d/b represents the edge boundary region part of the coupon, d is the coupon

depth, and b is the coupon width. The computed values of �z,EBR and �xz,EBR pa-

rameters, as well as, those of �z,edge and �xz,edge, are listed in Tables I – IV.

Edge effect in cross-ply laminates

On the basis of the results presented in Table I, it can be stated that the effect of the

edge in (90/0)s laminates on their strength is positive and in (0/90)s laminates negative,

as has been known for years.4 The microscopic and macroscopic evidence of failure

confirms these conclusions. In the (0/90)s-failed coupons, an axial crack appeared in

the 0º/90º interlayer, while transverse fracture in (90/0)s coupons was neither initiated

nor accompanied by any axial crack through the 90º/0º interlayer.

TABLE I. Tensile strength and edge interlaminar stress and strain of cross-ply laminates with a

(0/90)s and a (90/0)s stacking sequence

Stacking
sequence

Coupon
width/mm

Interply �z
edge/MPa �z

edge
�103

�z
EBR/MPa �z

exp/MPa

(0/90)s 15 0/90 16.0 2.63 4.05 766�34

6 0/90 14.6 2.43 9.30 722�39

(90/0)s 15 90/0 –17.8 –1.83 –4.51 815�46

6 90/0 –19.7 –3.97 –12.48 877�36

(Coupon depth d = 1.9 mm)

For (0/90)s laminates, where a negative edge effect on the laminate strength

was established, the edge interlaminar normal strength �z and strain �z are of the

tensile type, while the positive edge effect in (90/0)s laminates is due to compres-

sive interlaminar normal stress and strain (Table I).

The results confirm the known fact that the edge induced, normal interlaminar

tensile stress (Tables I and II), is responsible for the detected negative edge effect
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on the tensile strength of (0/90)s laminate, as well as for axial crack initiation and

propagation through the 0º/90º interlayer. However, a study,14 based on the me-

chanics of linear fracture of delamination growth between orthotropic layers in a

symmetric cross-ply laminate under in-plane normal tensile stress showed a negli-

gible contribution of the Mode I (due to tensile stress) mechanism to delamination

propagation compared with the Mode II (due to shear stress) and Mode III

(antiplan or tearing Mode) mechanisms. This controversy can be understood tak-

ing into account the warping along the interlayer in the edge boundary region,

pointed out by Reddy and Robbins,2 as well as the gradient of the interlaminar

stress and strain in the edge boundary region, recognised by the shape of the �z =

f(2y/b) and �z = f(2y/b), curves (Fig. 2).

TABLE II. Tensile strength and edge interlaminar stress and strain of quasi-isotropic laminates with

a (0/90�45)s and a (�45/0/90)s stacking sequence

Stacking
sequence

Coupon
width/mm

Interply �z
edge/MPa �z

edge
�103

�z
EBR/MPa �xz

exp/MPa

(0/90/�45)s 12.4 90/45 –165.4 –17.39 –26.68 585�45

6 90/45 –155.3 –16.34 –51.77 599�10

(�45/0/90)s 12.4 – 45/0 180.4 19.60 29.10 548�88

6 – 45/0 131.4 14.28 43.80 407�32

(Coupon depth d = 1.0 mm)

In quasi-isotropic laminates having a (�45/0/90)s stacking sequence, the negative

edge effect on the laminate strength was established and the edge interlaminar normal

strength �z and strain �z are of the tensile type (Table II). For a (0/90/�45)s stracking se-

quence, a positive edge effect was detected, which can be attributed to the compressive

interlaminar normal stress and strain values computed for this lay-up. In the failed cou-

pons with the former stacking sequence, the interlaminar cracks were observed in the

– 45º/0º interlayer, while failure in the coupons having a (0/90/� 45)s laminate stacking

sequence occurred without any axial crack in the interlayers present.

The extent of the edge effect cannot be correlated with the �z,edge and �z,edge

values (Tables I and II). However, as can be clearly seen, without exception (Tables

I and II), higher absolute values of the �z,EBR parameter were calculated for the

coupons with a more pronounced edge effect, and vice versa. This means that the

parameter �z,EBR can be used as a relative measure of a positive or negative edge

effect on the inhibition or initiation of an axial crack in the interlayer, i.e., on the in-

crease or decrease in the measured laminate strength. By definition – Eq. (1), the

�z,EBR parameter includes both the value of the edge interlaminar stress and the

size of the edge boundary region where this stress is induced.
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Edge effect in angle-ply laminates

The strength results obtained for narrow (6 mm) and wide (15 mm) coupons of

angle-ply laminates with (�45/02) and (�45/902)s stracking geometries (Table III),

imply a negative edge effect in these laminates, because the strength values of the

wider coupons were higher than those of the narrow ones. As in other similar

cases,4–6 the calculated edge interlaminar normal strength �z and strain �z are of the

tensile type (Fig. 3). For laminates with these stacking sequences, the extent of the

edge-effect is proportional to the value of the �z,EBR parameter (Table III). The pa-

rameter is a relative measure of the negative edge effect on the strength of lami-

nates with (�45/02)s and (�45/902)s stacking sequences.
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Fig. 2. Variation of the normal interlaminar
stress (�

z
) and strain (�

z
) through the 0/90 de-

gree interlayer along the coupon of width: a.
(90/0)s laminate; b. (0/90)s laminate.



TABLE III. Tensile strength and edge interlaminar stress and strain of angle-ply laminates with a

(�45/02)s and a (�45/902)s stacking sequence

Stacking
sequence

Coupon
width/mm

Interply �z
edge/MPa �z

edge
�103

�z
EBR/MPa �x

exp/MPa

(±45/02)s 15 –45/0 50.9 4.18 6.79 902�52

6 –45/0 48.1 3.95 16.03 853�61

(±45/902)s 15 –45/90 192.4 20.84 25.65 169�06

6 –45/90 143.9 15.58 47.97 129�02

(Coupon depth d = 1.0 mm)

The strength values determined for 15 mm wide coupons of (02/�45)s and

(902/�45)s laminates (Table IV) are higher than those determined for the same width

coupons of (�45/02)s and (�45/902)s laminates (Table III) This can be explained by

the fact that the interlaminar normal compressive stress in laminates where �45º

plies are near the mid-plane sustains the appearance of axial cracks in the 0º/45º and

90°/45° interlayers. On the contrary, the normal interlaminar tensile stress in lami-

nates with outside �45º plies induced visible axial cracks in the –45º/0º and – 45º/90º

interlayers. Harris and Orringer,15 as well as, Lee16 reported edge delamination in

the –	º/90º interlayer of angle-ply laminates with an additional 90º ply.

TABLE IV. Tensile strength and edge interlaminar stress and strain of angle-ply laminates with a

(02/�45)s and a (902/�45)s stacking sequence��

Stacking
sequence

Coupon
width/mm

Interply �z
edge

MPa
�z

edge

�103
�z

EBR

MPa
�xz

edge

MPa
�xz

edge

�103
�sh

EBR

MPa
�x

exp

MPa

(02/�45)s 15 0/45 –59 –9.34 –7.87 998�71

45/–45 –103.2 –13.38 –13.76 27.6 17.86 3.68

6 0/45 –51.5 –8.15 –17.17 806±12

45/–45 –90.1 –11.7 –30.03 24.1 15.75 8.03

(902/�45)s 15 90/45 –49.0 –5.83 –6.53 210�4

45/–45 –85.8 –10.30 –11.44 25.6 4.80 3.41

6 90/45 –35.1 –4.18 –11.7 143±12

45/–45 –61.4 –7.38 –20.47 61.4 3.43 20.47

(Coupon depth d = 1.0 mm)

The values of the strength of wide and narrow coupons of (�45/02)s and

(�45/902)s laminates (Table III), which reveal a negative edge effect on the lami-

nate strength, can be fully explained by consideration of the earlier deseribed edge

effect in cross-ply and quasi-isotropic laminates. The lower �z,EBR values of 15

mm coupons compared to those of 6 mm ones correspond to a less pronounced

negative edge effect (higher strength values) in the wider coupons, while the

higher �z,EBR values of the narrow coupons correspond to a more pronounced neg-
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ative edge effect (smaller strength values) in these coupons (Table III). This is be-

cause the cracks in these laminates appeared and were observed in the – 45º/0º and

45º/90º interlayers, due to the induced interlaminar normal tensile stress of edges.

However, it is not possible to explain the strength results of the narrower coupons

of (02/�45)s and (902/�45)s laminates by such a consideration. Their strength was

lower than that of the wider coupons (Table IV). The calculated �z and �z values in the

interlayers of these coupons are of the compressive type. The wide coupons of

(02/�45)s and (902/�45)s angle-ply laminates failed without noticeable axial cracks in

any interlayer, under the recorded normal compressive edge interlaminar stress. How-

ever, in the narrow coupons of (02/�45)s and (902/�45)s laminates, short axial cracks,
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Fig. 3. Through-thickness edge interla-
minar stresses (�

z
, �

xz
) and strains (�

z
,

�
xz

) as functions of the 2z/d coordinate

for 15 mm wide coupons of:a. (02/�45)s

laminate; b. (�45/02)s laminate.



going from the transverse fracture border, were observed in the 45º/–45º interlayer.

Undoubtedly, these cracks were initiated by induced edge interlaminar shear stress.

Pipes, Kaminski and Pagano showed that “the crack initiated in 45º/–45º interlayer

continues to grow through the matrix, propagates into the coupon and initiates prema-

ture ultimate rupture”.17 It makes the strength of these narrow coupons lower than that

of wide ones. Emphasising that the damage growth in (0/�	2)s laminates is a complex

process, Wharmby and Ellyin18 also observed a continuous growth through the matrix

of the crack initiated at the edge of the 	/–	 interlayer.

In narrow coupons of (02/�45)s and (902/45), laminates, the �sh,EBR – Eq. (2)

value for the 45º/–45º interlayer is higher than that for wide coupons (Table IV).

This explains why the crack was initiated in the 45º/–45º interlayer of narrow cou-

pons and not in the same interlayer of wide ones. This may be an argument to adopt

the �xz,EBR (Eq. (2)) value as a measure of the edge effect when delamination oc-

curs due to edge shear interlaminar stress.

CONCLUSIONS

Apositive edge effect, due to edge interlaminar normal compressive stress in the

0º/90º and 90°/45° interlayers, was observed in laminates of (90/0)s and (0/90/�45)s

stacking sequences. In (0/90)s and (�45/0/90)s laminates, a negative edge effect was

established due to edge interlaminar normal tensile stress in the 0º/90º and – 45°/0º

interlayers. Laminate coupons, where a positive edge effect was established, failed

without axial cracks through the interlayers, while in those where the edge effect was

negative, premature final failure of the tested coupon was induced near free edges,

by initiation and propagation of axial interlaminar cracks.

The parameter �z,EBR was found to be a relative measure of the positive or the

negative edge effect on the initiation or inhibition of a crack, i.e., on the measured

value of the laminate strength. It represents the edge interlaminar normal stress

“normalized” to the edge boundary region (EBR) size. It includes the value of the

normal edge interlaminar stress, as well as, the size of the EBR, where the edge

interlaminar stress is induced.

In the tested coupons of angle-ply laminates of (±45/02)s and (�45/902)s stacking

geometries, a negative edge effect was established, due to the induced edge interla-

minar normal stress and strain of a tensile type. Axial cracks were observed in the

– 45º/0º and – 45º/90º interlayers of the failed coupons of these laminates. The parame-

ter �z,EBR was approved as a relative measure of the negative edge effect for these lam-

inate coupons.

A positive edge effect was observed in wide coupons of (02/�45)s and (902/�45)s

laminates. The calculated edge interlaminar normal compressive stress sustained

the appearance of axial cracks in the 0º/45º and 90º/45º interlayers of these cou-

pons. In narrow coupons of (02/�45)s and (902/�45)s laminates, short interlaminar

cracks going from a transverse fracture border were noticed in the 45º/–45º
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interlayer. They were initiated by induced edge interlaminar shear stress in this

interlayer and grew continuously through the matrix. Propagating into the speci-

men, they inteated a premature ultimate rupture. In these laminates, the edge effect

is negative and the parameter �sh,EBR – the edge shear interlaminar stress in the

45º/–45º interlayer, “normalised” to the relative size of the edge boundary region is

a measure of its magnitude.
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I Z V O D

UTICAJ IVI^NIH INTERLAMINARNIH NAPREZAWA NA ^VRSTO]U

LAMINATA KARBON/EPOKSID RAZLI^ITE GEOMETRIJE SLAGAWA

MOM^ILO STEVANOVI], MILAN GORDI], DANIJELA PE[IKAN i ISIDOR \OR\EVI]

Institut za nuklearne nauke "Vin~a", pr. f. 522, 11000 Beograd

Prou~avan je uticaj interlaminarnih naprezawa na ~vrsto}u laminata karbon/epo-

ksid razli~ite geometrije slagawa: popre~no ukr{tenih, kvaziizotropnih i ugaono

ukr{tenih laminata sa slojevima orijentacije 0º i 90º. Epruvete dve {irine laminata

sa inverznim sekvecama slagawa lamina su ispitivane u testovima zatezawa. Uticaj

ivi~nih interlaminarnih naprezawa na ~vrsto}u je ustanovqen porede}i vrednosti

~vrsto}e epruveta iste {irine laminata inverznih sekvenci slagawa slojeva, kao i

porede}i vrednosti zatezne ~vrsto}e epruveta razli~ite {irine laminata iste sek-

vence slagawa. Ivi~ni efekti su analizirani posmatrawem razarawa, identifiko-

vawem me|usloja u kojem su inicirane ili inhibirane aksijalne pukotine, ako i pro-

ra~unavawem vrednosti ivi~nih interlaminarnih napona i deformacija. Ustanov-

qen ivi~ni efekat je najpre korelisan sa znakom normalnog interlamianrnog napona.

Stepen ivi~nog efekta je zatim uspe{no korelisan sa ivi~nim normalnim interla-

minarnim naponom normalizovanim na veli~inu grani~ne ivi~ne oblasti u kojoj ni~e

interlaminarno naprezawe.

(Primqeno 22. februara, revidirano 22. jula 2005)
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