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Hyperbolicity or negative curvature of complex networks is the intrinsic geometric

proximity of nodes in the graph metric space, which implies an improved network

function. Here, we investigate hidden combinatorial geometries in brain-to-brain

coordination networks arising through social communications. The networks

originate from correlations among EEG signals previously recorded during spoken

communications comprising of 14 individuals with 24 speaker-listener pairs. We find

that the corresponding networks are δ-hyperbolic with δmax = 1 and the graph diameter

D = 3 in each brain. While the emergent hyperbolicity in the two-brain networks varies

satisfying δmax/D/2 ≤ 1 and can be attributed to the topology of the subgraph formed

around the cross-brains linking channels. We identify these subgraphs in each studied

two-brain network and decompose their structure into simple geometric descriptors

(triangles, tetrahedra and cliques of higher orders) that contribute to hyperbolicity.

Considering topologies that exceed two separate brain networks as a measure of

coordination synergy between the brains, we identify different neural correlation patterns

ranging from weak coordination to super-brain structure. These topology features are

in qualitative agreement with the listener’s self-reported ratings of own experience and

quality of the speaker, suggesting that studies of the cross-brain connector networks

can reveal new insight into the neural mechanisms underlying human social behavior.

Keywords: brain-to-brain coordination networks, hyperbolicity of graphs, algebraic topology, social brain, multi-

brain networks

1. INTRODUCTION

Recent advances in brain imaging techniques resulted in extensive empirical data calling for
interdisciplinary science approaches to reveal hidden features of the structure and function of
the brain. In this regard, a systematic mapping of the imaging data on networks and the use of
objective graph theory analysis [1–3] represents a significant leap. Recently, we have extended this
approach to analyse the multi-brain networks [4]; the underlying data obtained in the original
experiment [5] represent the simultaneous EEG brain imaging in a group of participants during
spoken communications. Mapping the recorded data to a multi-brain graph where each EEG
channel is designated as a node, arranged a fine-grain network suitable for analysis of coordination
between brains. Furthermore, it was demonstrated that the methods of algebraic topology provide
adequate measures of inter-brain coordinations by uncovering the simple geometric descriptors
which arrange themselves into higher organized structures [4]. Referring to this work, Falk et al. in
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recent Feature Review [6] stated that “these approaches pave
the way to understand the manners in which brain network
dynamics in one person might influence or reflect the brain
network dynamics in another.” Social neurology uses the term
social brain to distinguish the brain functions underlying the
social conduct of humans [7, 8]. Platforms for simultaneous
recording of brain functions in pairs or groups of individuals
are being developed generating the appropriate data that allow
study of the social brain structure in various situations [5, 9–
12]. Potentials of these experimental and theoretical approaches
still remain elusive. Some recent studies [13–15] imply that
EEG imaging supplemented by proper nonlinear analysis can
detect changes in the emotional states of the brain that play an
important role in traversing from the social brain functions to
social networking [16].

In the brain networks, the nodes represent brain areas that
have been recognized as functional units, and the anatomical
or functional connections between them represent edges [17].
Currently, a consensus exists among researchers as regards the
anatomical brain network [18]. On the other hand, functional
brain connectivities can be significantly different from the
anatomical structure that underlies them and vary in time
and depending on contents (emotional and cognitive) of the
processing data [13, 15, 19]. In this context, the social brain
is a kind of functional brain network. It consists of processing
information in different dynamically organized brain areas that
allows inference of intentions, thought, feelings that are going on
in the brains of others [7]. The information received continues
to influence the functioning of the receiver’s brain to adapt
social behavior accordingly. Compared to individual brain areas
involved in processing specific information, for instance, distance
and language interpretation [20], the social brain can include
several brain regions. The structure of the social brain can vary
from individual to individual, and depend on the subject and the
way of communications [12, 21].

Based on the set of data from Kuhlen et al. [5] analyzed in our
recent work Tadić et al. [4], here we study hidden geometries of
two-brain coordination networks. In particular, we consider all
speaker-listener pairs in the underlying communication dataset
of Stimulus-1. This Stimulus consists of two superimposed
audiovisual recordings (about 4 min long) where two speakers,
women andmen, are telling two different fairy tales. The Stimulus
is presented at the same time to two groups of six listeners; each
group is instructed to follow a speaker who is first presented
to the group in the first 5 s. For speakers, EEG recording took
place during the narration, while scanning for all listeners is done
simultaneously during the session. For a detailed description of
the experimental set-up and the composition of the Stimuli as
well as the psychology background of the experiment we refer
to the original work [5]. The Stimulus-1 and the signals that we
consider here are also described in Tadić et al. [4].

In these two-brain networks, we analyse the emergent negative
curvature (δ-hyperbolicity) as a signature of the closeness of
nodes in the graph metric space that—as we will show—
is related with the appearance of higher organized structures
between two brain networks. In recent years, the notion
of δ-hyperbolicity [22] has been generalized and studied in

different types of networks [23–28]. It has been shown that
the occurrence of negative curvature has implications on the
navigability and dynamic processes in networks [29, 30]. The
issue of precise mechanisms is still open, perhaps depending
on the type of dynamics. In this context, neural connectivity
represents a more specific example [31]. To contribute to the
efficient flow of information different brain regions continuously
communicate with one another, resulting in synchronous
fluctuations within characteristic frequency intervals. For this
reason, the underlying functional mechanisms can be probed
effectively by coupling functions [32], which accurately describes
the paths to and from the synchronization [33]. In the
case of brain-to-brain coordination networks, the links are
emanating from the dynamics—correlations among EEG signals
in various pairs of channels across two brains [4]. Moreover,
considering neuroanatomy, the brain can be seen as a network
embedded in a hyperbolic space [34]. Here, we will show that
the corresponding single-brain graphs from EEG data are 1-
hyperbolic. Therefore, the emergent negative curvature in two-
brain coordination networks and its difference from the involved
single-brain graphs appears as a geometric measure of the inter-
brain cooperation during the dynamics. Furthermore, for a
comprehensive understanding of these geometric features, we
examine the structure of simplicial complexes in these networks;
these are aggregates of the primary geometric descriptors, i.e.,
triangles, tetrahedrons, and cliques of higher orders that are
present and the ways how they combine making the structure
of two-brain graphs. Thanks to the careful design of the original
experiment [5] which is complemented with a questionnaire
of the listener’s experience, we can compare these topology
findings with the listeners self-rating of the quality of speaker-
listener coordination; the survey was provided with the original
data [5]. Based on the analysis of 24 different speaker-listener
pairs, our findings indicate that the excess topology structure
formed around the channels that have cross-brain connections
directly impacts the emergent hyperbolicity of the two-brain
coordination networks and correlates well with the improved
listeners’ experience.

2. TWO-BRAIN COORDINATION
NETWORKS IN SPOKEN
COMMUNICATIONS DATA

The networks comprising of brain-to-brain coordination in the
above-mentioned spoken communications are subgraphs of the
multi-brain network which is constructed in Tadić et al. [4].
The approach resulting in the adjacency matrix of the studied
multi-brain graph is here illustrated in Figure 1. The correlation
coefficients among all pairs of EEG signals are considered;
for illustration, a pair of such signals is displayed in Figure 1

emanating from two identified channels in different regions on
the scalp, shown in the left part of the Figure. In the experiment
described in Kuhlen et al. [5], these signals were recorded at
63 points on the scalp of each participant—two speakers and
two groups of six listeners. As explained in detail in Tadić
et al. [4], to capture the causal effects between the speaker
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FIGURE 1 | (Left) Single-brain network (speaker S2) with the labels of EEG channels; (Middle) EEG signals originating from the channels F4 in frontal, and P4 in

parietal brain region (lower panel); central part of the histogram of correlations with the marked threshold, and the topological dimension of the simplicial complex vs.

threshold (top panels). (Right) Multi-brain correlation matrix after filtering, see text and Tadić et al. [4] for more details and the data.

and the listener, we determined the time-delayed correlations
between their channels. The exact delay that we apply (6,250 time
units by 500 Hz resolution) was first observed in the original
work [5] and confirmed by psychologists who also designed
this experiment. While the transmission of information within
the brain is much faster (about 100 time units), the apparent
time delay in cross-brain correlations is likely to relate to some
processes relevant to the social brain, such as mentalizing, which
allows the participant to perceive and understand themental state
of the speaker and oneself during communications. Comparably,
the correlations within each brain are practically instantaneous,
as well as the correlations between the two listeners, which are
computed without delay. It should be noted that other ways
developed in the literature to capture the dynamical causality
on different scales for signals originating from physical units are
used to analyse EEG signals but with different objectives, see
for example Friston [31], Stankovski et al. [33], and Staniek and
Lehnertz [35].

Following the standard procedure for mapping multivariate
time series to networks [36, 37], the obtained correlation matrix
is filtered to reduce spurious correlations, and then a threshold
is applied to distinguish stronger correlations that comprise
the adjacency matrix links. It should be noted that, while each
channel has a contribution in all segments of correlations, see
Figure 1 in Tadić et al. [4], the wights of the links within a
brain are generally greater than the weights connecting two
different brains. Therefore, the choice of a threshold is the
appropriate method for determining a multi-brain network. The
chosen threshold satisfies three types of criteria: (i) a formal—
deviation of the histogram from Gaussian fits, (ii) a structural—
stabilization of the topological dimension of the simplicial
complexes, see the image Figure 1 of the middle plates, and (iii) a
neurological—modular decomposition as an essential feature of
functional brain networks in a conscious state [38, 39] above the
threshold. In this mapping, each channel (in total 882) represents
a network node while the signal’s correlation above the applied
threshold indicates that a link occurs between the considered
pair of channels. We keep a unique list of the names of nodes
indicating the channel and the individual participant, e.g., S2−Fz

indicates the channel Fz on the speaker-2 scalp, and L15 − PO4
stands for the PO4 channel related to L15–the listener number
k = 5 in the group g = 1. In the adjacency matrix in Figure 1,
the channels are ordered such that groups of 63 channels belong
to the speaker-1, speaker-2, then the listeners L1k and L2k, k =

1, 2, · · · 6 in groups g = 1, 2, respectively.
In the adjacency matrix in Figure 1 each diagonal block of the

size 63 × 63 nodes represents Single-Brain-Network (SBN), the
connectivity pattern related to the brain activity of a particular
participant. Whereas, two diagonal blocks together with the
points in the off-diagonal block that connects them comprise a
Brain-to-Brain Coordination Network (B2BCN). For this work,
we consider the speaker-listener pairs resulting in 24 different
B2BCN. As it was shown in Tadić et al. [4], the differences in
the topology of SBNs indicate that different activity patterns
occur in the brains of individuals during the communication
process. In the social communication context, the activity of
each brain affects the quality of communication while at the
same time being under the impact from the others. In the
experimental situation that we study, the impact of the speakers
on the listeners occurs, and it is contained in the corresponding
set of B2BCNs. Figure 2 illustrates some examples of SBNs of
particular participants. In the literature, various brain imaging
data suggest that community structure appears as an essential
feature of functional brain networks [38]. In the present context
SBNs exhibit two communities [4] (F–related to channels in
the frontal lobe, and P-related to parietal and occipital lobes)
that are compatible with the conscious state [38, 39]. In the
following, the cross-brain coordination patterns of these and
other speaker-listener pairs will be studied. Four examples of
B2BCN exhibiting characteristic cross-brain linking are shown in
Figure 3.

A detailed analysis of B2BCNs for all speaker-listener pairs in
the dataset indicates that significant differences can occur in the
patterns of cross-brain connections as well as their community
structure. The examples that illustrate four typical patterns
occurring in the considered spoken communications data are
shown in Figure 3. Apart from the differences of connections
among channels in each brain, these B2BCN differ not only in
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FIGURE 2 | Examples of the connectivity patterns occurring during the spoken communications inside individual brains of the listeners (Left to Right) L16, L21,
and L23.

the number of cross-brain connections but also in the brain
areas (channels) that are mutually interconnected across two
brains as well as the structure occurring among these channels.
In the following Section, we quantify these differences with the
precise topology analysis of B2BCNs. Moreover, these differences
can be connected with the self-rated listener’s experience during
the communication and the speaker’s quality, cf. Table A2 in
Appendix.

Here, we briefly describe typical cross-brain connectivity
patterns resulting in different global B2BCN structure. In
Figure 3A, a large number of cross-brain connections among
the listener’s frontal lobe and the speaker’s frontal lobe and
similarly, the listener’s parietal with the speaker’s parietal lobe
results in a “superbrain” community structure. The appearance of
two significant F- and P-communities of the B2BCN resembling
a single-brain pattern is the topological signature of a good
coordination, which also agrees with the listener’s self-rated
experience and the rates of the speaker’s qualities. This example
represents an extrem case of inter-brain synchronization. A
more typical situation is that four communities occur that are
inherited from the two-community structure of each brain.
Consequently, the average rating of the quality of coordination
is lower than in the case of superbrain structure. Two different
patterns can be found, shown in Figures 3B–D. In Figure 3C

the cross-brain connections involve only the channels in the
listener’s frontal lobe linking to both F- and P-channels in
the speaker’s brain. A situation in Figure 3B shows that
a relatively large number of inter-brain connections occur
between the listener’s frontal with speaker’s parietal lobe and
similarly the listener’s parietal with the speaker’s frontal lobe.
The number of connections can vary in the pairs until an
extreme case with only one cross-brain connection, as in
Figure 3D.

In the following, we substantiate on these findings and show
how these cross-brain connectivity features impact the emergent
hyperbolicity and the occurrence of the higher organized
structures between two communicating brains.

3. EMERGENT HYPERBOLICITY IN
BRAIN-TO-BRAIN COORDINATION
NETWORKS

To quantify the emergent hyperbolicity in various B2BCNs we
adopt methodology described in Kennedy et al. [25]; it uses
the 4-point criterion for Gromov δ-hyperbolicity [22] measured
in the shortest path metric space of the graph. According to
Aksoy and Jin [40] there are three equivalent definitions of
the δ-hyperbolicity of the shortest path metric of a graph. In
particular, for an arbitrary four nodes A, B, C, and D, the
distances between all distinct pairs of these nodes are found and
their three combination d(A,B)+d(C,D), d(A,C)+d(B,D), and
d(A,D) + d(B,C) are sorted L ≥ M ≥ S . For instance, the
largest sum corresponds to L = d(A,D)+ d(B,C), the middle to
M = d(A,C)+d(B,D), and the smallest toS = d(A,B)+d(C,D).
The graph is called δ-hyperbolic if there is a fixed value δ > 0 for
which any four nodes of the graph satisfy the 4-point condition

δA,B,C,D ≡
L−M

2
≤ δ , (1)

that is, the difference between the two largest sums does not
exceed 2δ. The upper bound, corresponding to the triangle
equality, implies that (L − M)/2 ≤ dmin, where dmin =

min{d(A,B), d(C,D)} refers to the smaller distance in S .
Therefore, the plot of (L−M)/2 against dmin allows investigating
the worst case growth of the curvature with the graph diameter.

As also pointed in Kennedy et al. [25], the advantage of
the 4-point condition is that the exact path between the pair
of nodes is not required, in contrast to 3-point condition. For
a given network, we first compute the matrix of the shortest-
path distances between all pairs of nodes. Then sampling sets of
distinct four nodes, we compute δA,B,C,D defined in Equation (1)
and the corresponding dmin. Considering a large number (107)
of distinct 4-tuples, we eventually determine 〈δ〉— the average of
all δA,B,C,D at given dmin, and plot it against dmin. The evidence
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FIGURE 3 | Examples of brain-to-brain coordination networks with a “good” speaker (speaker S2) and (A) L23 (superbrain community structure), (B) L24, (C) L21,
and (D) L26.

of the graph’s hyperbolicity is found when this curvature plot
saturates at a small value (constant hyperbolicity), or its growth
is asymptotically slower (weak hyperbolicity) compared with
the graph diameter. We also keep track of the maximum value
δmax ≡ supA,B,C,D{δA,B,C,D} occurring in all 4-tuples.

As mentioned earlier, the networks from EEG data
representing the activity patterns inside each SBN are dense
graphs containing large simplicial complexes that are studied
in Tadić et al. [4]; here we checked that they are 1-hyperbolic
according to the 4-point criterion Equation (1) and have a
small diameter D = 3. While δmax = 1 in all cases, their worst

case average hyperbolicity 〈δ〉 does not exceed 0.257. Then
the hidden geometries of the B2BCN strongly depend on the
edges established between two individual brain networks, as
we show in the following. Figure 4 displays histograms of the
shortest-path distances in all studied B2BCN while Figure 5

shows the corresponding curvature plots.
In the majority of speaker-listener pairs, the distances between

nodes in B2BCN are limited to d ≤ 5 with the most probable
distance d = 2, in the cases when the listener’s group form
a network with the appointed speaker (S1L1k and S2L2k), or
d = 3, when the speaker is not appointed to the group. The
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FIGURE 4 | Histograms of the shortest-path distances between nodes in

brain-to-brain coordination networks of different listeners (indicated in the

legend) with the speaker S1 (Top) and S2 (Bottom) panels.

FIGURE 5 | Curvature plots of B2BCN of all speaker-listener pairs: (Top) all

listeners with speaker S1 and (Bottom) all listeners with speaker S2 (legend).

In each panel, lower curves refer to the average hyperbolicity 〈δ〉 and upper

curves to δmax found in the entire network, plotted against dmin.

exceptions are the pairs S1L26 and S2L26 where only a few cross-
brain links occur, cf. Figure 3D. Consequently, larger distances
are observed between certain pairs of nodes (channels) in the
two brains and the histogram of the distances exhibits a second
peak at d = 4 or d = 5. The appearance of short distances
between the channels across the two brains suggests a rather
rich structure of connections between the two brain networks.
These structures also manifest in the curvature plots in Figure 5.
Specifically, for the majority of B2BCN, we find a small value for
〈δ〉 ≤ 0.5. Here, the exceptions are the pairs S2L16 and S2L25
with the speaker S2, and the pair S1L24, with S1. In all cases,
we find that the reference distance dmin does not exceed 3 and

that the δmax ≤ 2. Apart from the pairs mentioned above with
the small number of cross-brain links, where small δ directly
refers to the individual SBN, the small values of 〈δ〉 in B2BCN
correlate well with the richness of the cross-brain structure.
Therefore, to further elucidate the origin of hyperbolicity in
B2BCN, in the following we examine the occurrence of simplicial
complexes in these networks as well as their parts formed
immediately around the channels that make these cross-brain
connections.

4. STRUCTURE OF SIMPLICIAL
COMPLEXES IN BBRAIN-TO-BRAIN
COORDINATION NETWORKS

The appearance of higher-order structures, i.e., simplicial
complexes, in networks is suitably studied by Q-analysis [41–43]
based on the algebraic topology of graphs [44–46]. In the clique
complex method [47, 48] that we use here, the elementary
geometrical descriptors of the network structure are identified as
cliques of different orders q = 0, 1, 2 · · · qmax, i.e., nodes, links,
triangles, tetrahedra and higher-order cliques up to the largest
size qmax + 1 that occurs in the network. Moreover, the method
identifies the nodes that make a particular clique, which allows
determining the ways that different cliques interconnect with
each other via shared faces—cliques of the lower order, to form a
simplicial complex. Consequently, based on Q-analysis [41–43],
these combinatorial topologies are adequately quantified by the
structure vectors of the graph, specifically:

• The first structure vector (FSV) whose components {Qq}

represent the number of q-connected classes;
• The second structure vector (SSV) components {nq} are the

number of cliques of the order q and higher;
• The third structure vector (TSV) components derived as Q̂q =

1 − Qq/nq are used [49] to describe the connectivity among
cliques at each topology level.

Here, we compute these structure vectors for each of 24 brain-
to-brain coordination networks of speaker-listener pairs. The
results are shown in Figure 6. For better comparisons, pairs with
the speaker S1 and speaker S2 are displayed in two separate
figures, Figures 6A,B, respectively. Also, the results involving the
listeners in group-1 are separated (left panels) from the group-2
(right panels in each figure).

We recall that the structure of each B2BCN consists of two
individual SBNs and the cross-brain connections. The topology
of the SBNs was studied in detail in Tadić et al. [4]. The observed
topology measures, cf. Figure 6, show that networks of the pairs
of brains exhibit a richer structure compared to the sum of
the two independent brains, suggesting a synergy effect due to
coordination between the brains. It is indicative that the new
features in the topology vectors of B2BCN are more likely in
the speaker-listener pairs involving the appointed speaker than
with the other speaker (cf. left panels in the figure A, for the S1,
and right panels in the figure B, for the S2). For instance, SSV
exhibits considerable values at high q levels for the pairs S2L23
and S2L24, that are missing in the attached left panel. Similarly,
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SSV has significant value for q > 12 for the pair S1L16, in contrast
to the associated right panel. Consequently, the components of
the FSV and TSV have large values at these topology levels. The
variations of SVs for other speaker-listener pairs are smaller or
limited to the lower values of q. Note that some SBNs, such
as L11 and L25 exhibit stronger connectivity (seen in TSV) but
they do not appear to contribute to the synergy effects in the
respective SSV.

Next, we analyse the origin of these synergy effects. At
the level of FSV, whose components are additive, we can
decompose the contributions for each participating SBN from
the combined B2BCN. The results for all speaker-listener pairs
depicted in Figure 7 indicate the difference of the corresponding
components of the FSV along the topology levels. Again,
top panels refer to S1 and listener in two groups and lower
panels to S2 with the same listener groups. The deviation
of a curve from zero indicates the excess topology, due to
the brain-to-brain connections, that does not exist in any
one of the participating brains. Again, the diagonal panels
(each listener group with the appointed speaker) exhibit more
complex extra structure than the off-diagonal panels. The above
mentioned pairs S2L23 and S2L24 show particularly large new
structure for q > 14. Note that these findings agree with
the networks in Figures 3A,B. In the same spirit, but a bit
weaker structure refers to the pair S1L16. All other pairs show
smaller excess structures, mostly limited to lower topology
levels. An exception is the pair S1L21, with a structure at the
level q = 10, cf. top right panel in Figure 7. Overall, the
synergy between the group-2 with the speaker S2 is stronger
compared to the group-1 with the speaker S1. It is interesting
to point out that these topology findings compare well with
the listener’s rating of the speaker’s attributes (see Table A2 in
Appendix).

The pattern of cross-brain connections varies from pair to
pair both in the number of nodes (channels) that have links
to channels in the other brain as well as in the identity of
these channels. Here, we identify all channels that are connected
across two brains and find out how they are connected to
themselves making a sub-graph in the corresponding two-brain
network, here termed cross-brain connectivity network (XBCN).
In Figure 8 we show some of these cross-brain connection
patterns that are related to the excess topology in pairs mentioned
above. Table A1 in Appendix lists the graph metric and the
hyperbolicity parameters of the XBCN for the pairs in the two

FIGURE 7 | Excess topology beyond the sum of two separated brains in the

brain-to-brain coordination networks for all speaker-listener pairs, measured by

the difference of the components of the first structure vector at each topology

level q and plotted against q. The symbols and colors correspond to Figure 6.

FIGURE 6 | The components of the structure vectors plotted against the topology level q for B2BCN of various speaker-listener pairs. (A) Is for the speaker S1 paired

with the listeners in group-1, left panels, and group-2, right panels. (B) Shows the corresponding vectors for same groups of listeners with the speaker S2.
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FIGURE 8 | Examples of cross-brain connectivity patterns corresponding to the largest excess topology in Figure 7: (A) S2L23–superbrain, (B) S1L16, (C) S2L24,
and (D) S1L21.

groups with their appointed speaker. For comparisons, for each
pair, we also list the average rates of the listener’s own experience
and the speaker’s quality, derived from the empirical data (see
Table A2 in Appendix). The normalized hyperbolicity of all 24
speaker-listener pairs is summarized in Figure 9 both the XBCN
and the corresponding entire B2BCN.

The number of channels that take part in the cross-brain
coordination is high in the case of super-brain In Figure 8A,
comprising close to 75% of all links; it gradually decreases
in other three cases, in agreement with the excess topology
features in Figure 7. Above a plausible threshold 15% for
the cross-brain connectivity, in Figure 9 we immediately find
that: (i) the number of pairs with the appointed speaker is
higher than the pairs with the non-appointed speaker; the
pairs with the speaker S2 have better connectivity than with
the speaker S1. (ii) Few pairs with the non-appointed speaker,
namely, S2L11, S2L12 and S1L21 also appear above the threshold
connectivity; they also exhibit a nontrivial excess topology in

Figure 7. Interestingly, these listeners reported relatively good
own experience, see Table A1 in Appendix. The pair S2L13 is
not far in the connectivity plot. For the experimental data under
consideration, the thresholds show how topological measures can
be translated into the people’s estimates of the quality of their
own experience. Among other pairs exhibiting the cross-brain
connectivity below 10% the differences in topology between the
pairs with the appointed and non-appointed speaker are less
clear.

5. DISCUSSION AND CONCLUSIONS

Following the algebraic topology approach developed for the
multi-brain network in Tadić et al. [4] which is based on the
aggregate EEG data measured during spoken communications
experiment in Kuhlen et al. [5], we have here analyzed
the structure of cross-brain connections in the different
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FIGURE 9 | Hyperbolicity δmax/D/2 normalized by the half diameter D of the

corresponding network for the brain-to-brain coordination networks (B2BCN)

and their cross-brain subgraphs (XBCN) are plotted against the fraction xconn
of links in XBCN relative to the entire B2BCN of various speaker-listener pairs.

Large symbols are for the groups with the corresponding appointed speaker,

while different triangles indicate the pairs with the not-appointed speaker. Full

line at the top is the theoretical limit, while the dotted line indicates the

hyperbolicity of single-brain networks.

speaker-listener pairs. As topological signatures of brain-
to-brain coordination, we have studied the appearance of
higher organized geometries in the corresponding two-brain
coordination networks and their emergent hyperbolicity. Our
analysis reveals that the brain activity pattern in each single-
brain network is 1-hyperbolic with δmax/D/2 = 0.66. Whereas,
hidden geometry in two-brain coordination networks varies
within the theoretical limits δmax/D/2 ≤ 1, strictly depending
on the connections between brains. In this regard, the key
structure is the cross-brain connectivity network, a subgraph
containing the channels that have correlations with the channels
in the other brain and the direct links between them in both
brains. We have identified and analyzed these networks for
24 different speaker-listener pairs related to the stimulus-1 in
the experiment mentioned above. The cross-brain connectivity
network embodies the synergy of each pair; it can be quantified by
the occurrence of an excess topology of the simplicial complexes
that are not present in the sum of the two separate single-
brain networks along different topology levels. We find that
the geometrical complexity of these cross-brain connectivity
networks (higher excess topology) improves the hyperbolicity
of the two-brain coordination networks. On the other hand,
the emergence of surplus topologies closely matches a positive
assessment by the listeners of both their own experience and the
quality of the speaker.

A particular outcome depends on the number of channels that
correlate across the pair of brains (connectivity level) as well as
the location of these channels in each brain. The topology features
are clear when the cross-brain connectivity is above a plausible
threshold, say 10% of all links. In this situation, the listeners make
a better coordination with the appointed speaker, in agreement
with the statistical analysis in Kuhlen et al. [5]. The pairs with the

speaker S2 exhibit more complex topology than those with the
speaker S1. Interestingly, their average rates <rSQ> = 5.05 for
S1, and <rSQ> = 2.05 for S2, agree with this bias. A few pairs
with non-appointed speaker also have a comparable topology
measures. In these cases, the listener’s self-rating experience is
also favorable.

Considering the type of channels involved in cross-brain
topologies, we find several prototypal patterns that are described
below, cf. Figure 8.

• (a) Super-brain topology patterns consists of a large number of
cross-brain connections predominantly between the channels
in the listener’s frontal area and the speaker’s frontal area
(FL−FS) and also parietal-to-parietal (PL−PS). The structure is
1-hyperbolic and exhibits two super-brain communities in full
analogy to single-brain networks. In these empirical data, an
excellent example is the pair of speaker S2 with the listener L23,
the network is shown in Figure 3A; in this case, the listener’s
rates of the speaker’s quality as well as own experience are high
(1.33), see Table A2 in Appendix, and the graph features in
Table A1 (Appendix).

• (b) FL−PS patternswith the connections between the channels
in different segments of the scalp; it involves a smaller number
of channels and a simpler structure, cf. Figure 8B. The density
of the cross-brain connections is lower compared to own-brain
connections, which results in four communities inherited from
the corresponding single-brain graphs, see Figure 3 for the
case S2L24. The listener’s rating, in this case, indicates good
speaker quality (2.33) however, listener concentration, interest
and understanding is average (3.00). A similar structure of
channels but a somewhat simpler structure is found in the pair
S1L16 (shown in Figure 8C). In this case, the listener’s rating
of own experience is average (3.00) while the speaker’s quality
average rate is lower (3.66). The pairs S1L13, S1L14, and S1L11
also have the elements of this pattern.

• (c) FL − PS&FS patterns connects the channels in the listener’s
frontal area to both the speaker’s frontal and parietal wheres
the listener’s parietal region practically does not have cross-
brain connections, cf. Figure 3C of the pair S2L21. The
listener’s interest in the story was low (4.00) while the average
speaker’s rate is competent (2.00). Note that the listener
L21 also shows an excess topology measure in the pair
with the speaker S1, cf. Figure 7 (top right panel) and the
corresponding cross-brain graph in Figure 8D.

• (d) Vanishing excess-topology patterns appear in the situations
with a few cross-brain links established or, otherwise, the inter-
brain correlations are weaker compared to other participants
such that they are removed by the filtering on the multi-
brain network level. Consequently, the topology of two-
brain network is reducible to two independent single-brain
networks; the low hyperbolicity parameter δ refers to two
single-brain networks. Two extreme examples are involving
the listeners L15 and L26 with both speakers, cf. Figures 3D, 7.
However, their ratings differ considerably, for instance, L15
ratings show the listener’s low interest in the story and low
rates for the speaker, while L26 has rather good ratings of
the speaker as well as own experience. The deviation from
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other systematic patterns suggests that these data need further
inspection.

In summary, we have demonstrated that the patterns of cross-
brain coordination during spoken communication recorded by
EEG can be revealed in great details by topology analysis of the
corresponding two-brain networks. The occurrence of higher
organized structures detectable by algebraic topology methods
and with them related emergent hyperbolicity of two-brain
graphs is a signature of the quality of brain-to-brain coordination
in agreement with the listener’s self-rating scores and statistics.
Specifically, a good coordination results in the excess topology
around the cross-brain connector channels that is not reducible
to the patterns observed in the two brains considered
separately.

These results show that an appropriate topological analysis
of brain activity networks can reveal building blocks of human
experience at the level of the individual brain and social
brain. Therefore, one may expect that the study of brain-
to-brain coordination networks can reveal new insights into
the neural mechanisms on which self-awareness and social
behavior is based. Among the interesting issues to explore are
the changes in topology that follows the shifts in attention
and understanding of the content and the possible impact of
emotions on interactive communications. This study is still
at the beginning, and the amount of data on brain imaging
during social communication is continuously increasing. The
methodology is not limited to networks that originate directly
from the signals of the brain. It is applicable for various
types of graphs that result from the actions of individuals
controlled by the conscious activity of the brain with possible
emotional undercurrents, such as the use of words in textual
web communications [50]. In networks that map different types
of texts [51–53], the syntactic dependencies of the words and
the writing style of each individual are subtle factors that can
contribute to the appearance of a local structure with simplicial
complexes and a specific hyperbolic geometry. Potentials for
the quantification of mental processes by which we detect the
information and state of the mind of others and ourselves can

initiate further research into the dynamics and topology of
particular cross-brain links and can encourage the psychologist
to design new experiments, for example, suitable for exploring
the relevance of specific contents and emotions in human
interactions.
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APPENDIX

TABLE A1 | Properties of the subgraphs formed by the cross-brain connector nodes, cf. Figure 8, in different Speaker-Listener pairs in group one (top part) and group

two (lower part).

S-L pair E(2BN) nc E(nc) < k > D < ℓ > ρ < δ > δmax δmax/D/2 < rSQ >∗ < rLE >∗

S1L11 1907 52 151 2.39 4 2.01 0.019 0.331 1.0 1/2 4.33 2.33

S1L12 1698 1 1 – – – – – – – 5.33 3.33

S1L13 1751 59 470 7.46 4 1.98 0.063 0.378 1.5 1.5/2 5.66 4.00

S1L14 1732 49 317 5.03 4 2.13 0.040 0.355 1.5 1.5/2 5.66 5.66

S1L15 1662 1 1 – – – – – – – 5.66 3.66

S1L16 1878 54 588 9.33 5 2.42 0.075 0.107 1.0 1/2.5 3.66 3.00

S2L21 1796 48 93 1.48 8 2.74 0.012 0.363 2 2/4 2.00 2.66

S2L22 1754 20 76 1.21 3 1.45 0.011 0.142 1 1/1.5 2.00 2.33

S2L23 2326 102 1742 27.65 4 1.94 0.221 0.319 1.5 1.5/2 1.33 1.66

S2L24 2054 73 892 7.08 4 2.26 0.080 0.293 1.5 1.5/2 2.33 3.00

S2L25 1836 41 307 4.87 4 1.19 0.039 0.079 1 1/2 3.33 2.00

S2L26 1748 2 1 – – – – – – – 1.33 1.66

E(2BN), the number of links in the entire two-brain networks of 126 nodes, given for comparisons; nc, the number of cross-brain connector nodes; and E(nc), the number of links
among them. < k >, the average degree; D, graph diameter; < ℓ >, average length of the shortest path; ρ, the graph density. The average and maximum hyperbolicity < δ > and δmax

and the ratio δmax/D/2 are gien for these cros-brain connecting graphs. The listener’s self-rating (in the span from 1–high to 7–low): average rate for the Speaker’s quality < rSQ > and
the average rate for the Listener’s experience < rLE >; ∗derived from the questionnaire (see Table A2 in Appendix), provided as a part of the experimental data [5].

TABLE A2 | Results of the Questionnaire provided with the original data [5]: Listeners, the first column, self-rating experience (concentration, interest, understanding) of

an unknown story, and sympathy to the appointed speaker and the speaker’s attractiveness and goodness.

Listener Concentration Interest Understanding Sympathy Attractiveness Goodness Speaker

L11 3 2 2 3 5 5 S1

L12 5 2 3 5 6 5 S1

L13 3 4 5 5 6 6 S1

L14 6 5 6 5 7 5 S1

L15 3 6 2 5 6 6 S1

L16 3 3 3 3 4 4 S1

L21 2 4 2 2 3 1 S2

L22 2 3 2 2 2 2 S2

L23 2 1 1 1 2 1 S2

L24 3 3 3 3 2 2 S2

L25 1 4 1 3 4 3 S2

L26 3 1 1 1 2 1 S2

Rates: 1-high, 7-low.
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