
Metallurgical and Materials Engineering 

Association of Metallurgical Engineers of Serbia AMES 

Scientific paper 
UDC: 669.245.018.29 

TENSILE PROPERTIES AND FRACTURE MECHANISM OF 

IN-100 SUPERALLOY IN HIGH TEMPERATURE RANGE 

Milan T. Jovanović1, Đorđe Drobnjak2, Ivana Cvijović-Alagić1*, 

Vesna Maksimović1 

1Department of Materials Science, Institute of Nuclear Sciences “Vinča”, 

University of Belgrade, Serbia 
2Faculty of Technology and Metallurgy, University of Belgrade, Serbia 

Received 03.11.2016 

Accepted 11.04.2017 

Abstract 
Tensile properties and fracture mechanism of a polycrystalline IN-100 superalloy 

have been investigated in the range from room temperature to 900 °C. Optical 

microscopy (OM) and transmission electron microscopy (TEM) applying replica 

technique were used for microstructural investigation, whereas scanning electron 

microscopy (SEM) was utilized for fracture study. High temperature tensile tests were 

carried out in vacuumed chamber. Results show that strength increases up to 700  °C, 

and then sharply decreases with further increase in temperature. Elongation increases 

very slowly (6-7.5%) till 500 °C, then decreases to 4.5% at 900 °C. Change in 

elongation may be ascribed to a change of fracture mechanism. Appearance of a great 

number of microvoids prevails up to 500 °C resulting in a slow increase of elongation, 

whereas above this temperature elongation decrease is correlated with intergranular 

crystallographic fracture and fracture of carbides. 
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Introduction 
Nickel-base superalloys, cast and wrought, derive their strength from the 

mechanism of solid-solution hardening and precipitation hardening, singly or in 

combination. Most of superalloys contain 6 to 23 wt.% Cr, primarily for oxidation 

resistance at elevated temperature, but also for solid-solution hardening [1-3]. 

The matrix of the nickel-rich solid solution is designated as . The predominantly 

solid-solution alloys, such as IN-100, contain significant amount of Al, Ti or Nb, added 

to promote formation of the dispersed second phase – notably ’. This phase designated 
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as Ni3(Al,Ti), and  (Ni3Ti) is formed during solidification of alloy. IN-100 is also 

strengthened by dispersion of non-coherent carbides (MC, M6C, M23C6) and the 

addition of refractory metal elements, such as Mo and W, as well as interstitials, such as 

C and B [4-6]. Generally speaking, IN-100 belongs to a group of cast non-heat treatable 

superalloys. The amount of the strengthening phase ’ formed after cooling may be 60% 

at the maximum and cannot be increased by the following heat treatment. That is why 

the amount of Ti and Al in IN-100 is twice higher than in other cast, but heat treatable 

superalloys (see Table 2 in [7]). It should be noted that the turbine blades fabricated 

from IN-100 by investment casting were installed in combustion chamber of Rolls 

Royce jet engines “RR Viper 11“(„G-4 Galeb-4“) and „RR Viper 632“(„G-4 Super 

Galeb“) in as cast condition, i.e. without any previous heat treatment.  

To be true, some kind of heat treatment, called high temperature annealing, is 

performed in the process of coating of IN-100 turbine blades. Coating is performed to 

protect turbine blades against oxidation and corrosion. A two-step coating process is 

performed: slurry spraying of nickel-aluminide and iron-aluminide plus iron-chromium-

aluminum is followed by pack aluminizing. The coated blades were cyclically furnace 

tested in air at 1093 °C for 300 h [8]. 

Formation of the second phase in many of the cast alloys begins in the liquid 

state. Casting conditions (degree of superheating, pouring time, cooling rate and mold 

temperature) largely control microstructure and subsequent properties. In many of the 

casting alloys precipitation of the second phase is practically complete when the casting 

is removed from its mold, and further heat-treatment is often ineffective. Because 

complete re-solution does not occur in cast alloys, the dispersed second phase and its 

strengthening effect are retained in these alloys at high service temperatures [2,6].  

Modern gas turbine engines for aviation applications are generally considered to 

exhibit a high level of reliability, and failure rates are considered low. In reality, 

failures, unfortunately, occur. However, the situation is controlled by the rigid 

inspection of engines are exposed, and undergoes very strictly inspection. This is also to 

ensure that almost all failures are detected in the early stage of exploitation. This also 

ensures that almost all malfunctions are detected in the early stage, and suspected parts 

are removed from service for replacement or refurbishment before failure. 

Turbine blades of jet aircraft engines are working in extremely difficult 

conditions, i.e. they were subjected to the effects of static and dynamic loads, high 

temperatures and corrosive atmospheres. Blade failures can be caused by a number of 

mechanisms under the turbine operating conditions of high rotational speed at elevated 

temperature. In general, blade failures can be grouped into two categories that are 

fatigue; including both high (HCF) and low cycle fatigue (LCF) [9] and the second is 

creep rupture [10]. 

Therefore, the aim of this paper was to investigate the mechanical properties of 

IN-100 superalloy at elevated temperatures and to find out the correlation between these 

characteristics and mechanism of fracture. 

The object of this paper is a polycrystalline nickel based superalloy IN-100, 

which is still used for manufacturing of turbine blades of jet aircraft engines by vacuum 

melting and investment casting into ceramic shell molds. Although this alloy is 

somehow obsolete and new and more advanced alloys are used, it is still applied and is 

not abandoned due to its outstanding high temperature properties. 
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Experimental 

According to the manufacturer (Ross and Catherall, England), the nominal 

composition (wt.%) of IN-100 superalloy was: 5.5 Al, 4.5 Ti, 10 Cr, 15 Co, Mo 3, 1 V, 

0.1 W, 0.05 Zr, 0.015 B, while the rest was nickel. 

A single-chamber “Leybold-Heraeus” vacuum-induction furnace (Fig. 1a) was 

used for melting and casting of screw-type samples for tensile tests. Vacuum during 

melting and pouring was maintained at a level of 2×10−2 mbar. Pouring temperature 

was 1480 °C. Samples were investment (precision) cast into ceramic shell molds (Fig. 

1b) previously prepared with the special procedure applying several layers of different 

grain fractions of zircon-silicate powder. To obtain the best quality of castings surface 

the inner wall of the mold was prepared with the finest powder fraction. The molds were 

preheated at 800 °C before casting. The arrangement of cylindrical samples for tensile 

tests around the central sprue is shown in Fig. 1c. The dimensions of these samples were 

as follows: 25 mm gauge length and 3 mm diameter. 

 

Fig. 1. a) “Leybold-Heraeus” single chamber vacuum-induction furnace;  

b) ceramic shell mold for investment casting; c. arrangement of investment cast  

samples for tensile tests. 

Microstructural investigations were carried out by optical (OM) and transmission 

electron microscope (TEM) applying replica technique, whereas for investigation of 

fracture mechanism scanning electron microscope (SEM) was used. Polished samples 

for OM were etched using Marble’s reagent, i.e. a mixture of 10g CuSO4, 50mL HCl 

and 50mL distilled H2O. The standard replication technique utilizing the vacuum 

evaporation of carbon followed by gold shadowing, was applied to obtain replicas for 

TEM. Tensile tests were carried out in a vacuumed chamber (at 1.33 Pa) in the 

temperature range between room temperature and 900 °C. The total time for each test 

(including heating, dwelling time at corresponding temperature and tensile test) was 

approximately 40min. Concerning that elongation to failure varied with temperature and 

taking into account the strain rate, time to failure at 900 °C was approximately 40 min, 

whereas at 500 °C (the highest elongation) was approximately 45 min. Considering that 

the microstructure of IN-100 is stable even at 900 °C (for shorter period of time), this 

difference has no effect on microstructure. Temperature was controlled by the 
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thermocouple Pt-Pt13%Rh placed just above the sample. Uniaxial tensile tests were 

performed at a strain rate ė = 1.3 × 10−3 s−1. 

Results and discussion 
Microstructure of IN-100 superalloy before tensile tests (OM and SEM) is shown 

in Figs. 2a and b, respectively. Microstructure consists of the matrix, which is the  

phase, small cuboidal intermetallic particles of the ’ phase and blocky MC carbides. 

The kidney-like -’ eutectic (E in Fig. 2) appears as a mixture of the lamellar ’ phase 

(F in Fig. 2) formed inside the  phase. Black dot (T) formed on the surface of MC 

carbide (G) may be seen in Fig. 2a. Huang et al. showed by SEM and electron probe 

microanalysis that black dots, characteristic centers on the surface of some blocky 

carbides, are of TiN origin. TiN serves as nuclei for formation of MC or M(C,N) 

carbides in the melt [11]. 

 

Fig. 2. Microstructure of IN-100 superalloy before tensile tests a. OM and  

b. TEM replica. E - -’ eutectic, F - ’ particles, G - blocky MC carbides, T - TiN. 

Fig. 3 illustrates change in microstructure due to the effect of high temperature 

exposure during tensile tests. Compared to microstructure before tests, the most 

significant changes are visible in eutectics, where lamellae of the ’ phase become 

coarser (at 700 °C, Fig. 3a), or they are nearly completely disintegrated (at 900 °C, Fig. 

3b). 

 

Fig. 3. OM microstructure of IN-100 samples exposed to high temperatures during 

tensile tests: a. at 700 °C; b. at 900 °C. E - -’ eutectic, F - ’ particles, G - blocky MC 

carbides. 
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The effect of temperature on ultimate tensile strength and elongation to failure is 

shown in Fig. 4. Strength increases with temperature up to 700 °C and then suddenly 

decreases. This increase in strength with temperature is somewhat higher than it was 

reported in the literature [12] and there is no adequate explanation for such 

phenomenon. It is possible that dynamic strain aging (DSA), through the interaction of 

mobile dislocations with ’ particles, plays a role in increasing strength up to 700 °C. 

However, for such an explanation there is no direct evidence since the stress-curves 

were smooth, i.e. no serrations were observed. Serrated yielding, or discontinuous 

yielding, is regarded as a clear indication for occurrence of DSA. Elongation increases 

very slowly (from 6 to 7.5%) up to 500 °C, but at higher temperatures elongation drops 

to 4.5% at 900 °C. 

 

Fig. 4. Change of ultimate tensile strength and elongation to failure of  

IN-100 superalloy with temperature. 

SEM microfractographs of IN-100 superalloy at 500 °C, which correspond to 

maximal elongation, are shown in Fig. 5. The mixed fracture mode is operating at this 

temperature, although microvoids prevail on the fracture surfaces. Microvoids (A) 

appear either on the grain boundaries (Fig. 5a) or occupy rather wide area inside the 

grain (Fig. 5b). The ’ phase particles may be seen inside some microvoids (B in Fig. 

5c). Sporadic appearance of blocky carbides fracture occurs by delamination of particles 

(C in Figs. 5a and d). In some rare cases intergranular fracture may be seen (D in Fig. 

5a). 
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Fig. 5. SEM microfractographs of IN-100 superalloy at 500 °C. A - microvoids,  

B - the ’ phase particles inside microvoids, C - fracture of carbides by delamination,  

D - intergranular fracture. 

SEM microfractographs of IN-100 superalloy at 700 and 900 °C corresponding 

to decrease and minimal elongation are shown in Figs. 6 and 7, respectively. 

Intergranular crystallographic fracture together with carbide fracture prevails at both 

temperatures. Intergranular fracture occurs along {111} sliding planes (D in Figs. 6 b-

d), similar to results of high temperature fatigue and tensile tests of some nickel base 

superalloys [13,14] and high temperature test in the hydrogen atmosphere [15].  

Thus, from room temperature to 500 °C the operating fracture mechanism is 

ductile fracture when microvoids prevail on the fracture surface, whereas in the 

temperature region from 600 to 900 °C brittle fracture is predominant fracture 

mechanism distinguished by a mixture of intergranular crystallographic fracture and 

carbide fracture. Carbide fracture is very distinct at 900 °C. 
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Fig. 6. SEM microfractographs of IN-100 superalloy at 700 °C. C - carbide fracture,  

D - intergranular crystallographic fracture. 

 

Fig. 7. SEM microfractographs of IN-100 superalloy at 900 °C. A - area with 

microvoids, Fig. 7d represents higher magnification of fractured carbide in Fig. 7a. 
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The increase of ultimate tensile strength is a consequence of lower mobility of 

dislocations which are blocked by the ’ particles. The strength decreases beyond about 

700 °C when the thermal activation is sufficiently violent to allow the dislocations to 

overcome the obstacles [16].  

Taking into account fracture results, decrease of elongation at temperatures 

above 500 °C is a consequence of changed mechanism of fracture. Actually, in the 

lower temperature interval, i.e. from room temperature to 500 °C, the operating fracture 

mechanism is ductile fracture, whereas for the abrupt decrease of elongation above  

500 °C intergranular crystallographic fracture is responsible. 

Conclusion 
The effect of high temperature during tensile tests on fracture mechanism of a 

polycrystalline IN-100 superalloy was investigated. 

Strength increases with temperature up to 700 °C and then suddenly decreases. 

Values of elongation increase very slowly (6-7.5%) up to 500 °C, when the decrease 

occurs to 4.5% at 900 °C. 

Change in elongation may be ascribed to a change of fracture mechanism. 

Microvoids prevails in the low temperature range up to 500 °C, resulting in a somewhat 

higher elongation, whereas the elongation decrease is correlated with intergranular 

crystallographic fracture and fracture of carbides at temperatures above 500 °C.  
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