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Abstract:   

Due to pozzolanic characteristics, fly ash is commonly used as a cement replacement 
in construction composites. Addition of natural clays with sorption ability (i.e. zeolite 
and bentonite) in to the fly ash based construction materials is of both scientific and 
industrial interest. Namely, due to the application of sorptive clay minerals, it is 
possible to immobilize toxic heavy metals from the composite structure. The thermal 
compatibility of fly ash and zeolite, as well as fly ash and bentonite, within the 
composite was observed during sintering procedure. The starting components were 
used in 1:1 ratio and they were applied without additional mechanical treatment. The 
used compaction pressure for the tablets was 2 t·cm-2. The sintering process was conducted at 
1000 ºC and 1200 ºC for two hours in the air atmosphere. The mineralogical phase 
composition of the non-treated and sintered samples was analyzed using X-ray diffraction 
method. Scanning electron microscopy was applied in the analysis of the microstructure of 
starting and sintered samples. The thermal behavior was observed via DTA method. The 
influence of temperature on the properties of fly ash-zeolite and fly ash-bentonite composites 
was investigated.  
Keywords: Sintering; Thermal behavior; Density; DTA; XRD; SEM; Construction composite. 
 
 
 
1. Introduction 
 

Construction composites such as mortar and concrete are fundamental 
constituents of structural units within various civil-engineering objects from the 
residential and business facilities [1-4] to complex structures like bridges [5,6] or 
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dams [7, 8], and even high-temperature operating plants [9]. The improvement of the 
construction composites inclines towards the increasing of the structural materials’ 
defiance to deterioration. The other goal is lightening of the structures through 
reduction in raw materials quantity all the while the structure retains the same or 
even achieves improved performances [10]. In light of such actions, it is common to 
use the secondary raw materials with specific properties to replace the main 
components such as cement or fillers. In addition to that, there is a growing concern 
regarding topics related to the environmental protection [11,12]. The fly ash, as one 
of the most commonly utilized cement and/or filler replacements was extensively 
investigated in our previous studies [13-15]. 

Today, the application of coal combustion products is in accordance with 
ecological and environmental requirements provided in actual international standards 
and the fly ash is no longer regarded as hazardous waste, instead it is recognized as a 
secondary raw material. However, the presence of toxic heavy metals in fly ash 
composition cannot be ignored even though their abundance is minor [16,17]. 
Pollution induced by heavy metals is a global problem since these pollutants are non-
degradable and accumulative. These minor compounds represent latent environmental 
threat, especially in ashes that were landfilled without additional treatment. It is their 
leaching tendency that might induce secondary pollution of the groundwater 
following the fly ash application in monolithic structures. Recently, much attention 
has been paid to the investigation of cost-efficient sorbents such as zeolite and 
bentonite [18, 19]. Owing to their sorption properties, natural clay materials can 
develop the ability to immobilize heavy metals and other toxic or hazardous 
substances within the microstructure of a composite material.  

Zeolites are minerals with crystalline structure characterized by a framework 
of linked tetrahedra. Each tetrahedron consists of four oxygen atoms that surround a 
cation. This framework contains open cavities shaped as channels and cages. These 
voids are usually occupied by H2O molecules and extra-framework cations that are 
commonly exchangeable. The channels are large enough to allow the passage of 
guest species [20, 21]. Due to variations in structure-directing agents and Si/Al ratio 
there is a wide multitude of zeolites. The two natural zeolites that found the most 
extensive application in ion-exchange uses and as sorbents are clinoptilotite and 
mordenite[20].  

Bentonites are naturally occurring clay mineral mixtures that are mainly 
composed of smectite, i.e. montmorillonite clay (at least 70 wt.%). Three types of 
bentonite are distinguished: (1) sodium/high-swelling, (2) calcium/low-swelling and 
(3) intermediate (containing both sodium and calcium ions)/moderate-swelling [22]. 
Bentonites are expanding type sheet silicates composed of one octahedral layer 
situated between two tetrahedral layers. They have a high cationic exchange capacity 
(Na, K, Ca, and Mg) and high specific surface area. Also, they are able to absorb 
interlayer water molecules by increasing the basal length [18]. The quality of 
bentonitic raw materials depends on a number of parameters such as chemical 
composition and stability, rheological and exchange characteristics, swelling 
behavior and adsorption abilities [23]. Due to high cation exchange capacity and high 
specific surface area, bentonite has been predominantly studied in terms of 
environmental protection as a sealing material in various landfill liners and adsorbent 
of toxic heavy metals and/or radionuclides [18,22-24]. Regarding its application in 
composite materials, bentonite can be used as a natural pozzolan and it also plays an 
important role in sorption of toxic elements and possibly radionuclides. The 
application in construction materials is justified by high content of swelling clay -
montmorillonite, low permeability, good stability in comparison to other sorbents, 
and high sorption ability for many toxic substances and radionuclides [24]. 
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In this paper, the compatibility of fly ash and zeolite and/or bentonite in 
construction composites was investigated regarding their sintering behavior and the 
high-temperature characteristics. 

 
 

2. Experimental procedure 
 

The composites were prepared as 1:1 ratio mixtures of fly ash and zeolite 
(composite labeled as ZLK), i.e. fly ash and bentonite (composite labeled as BLK). 
The chemical compositions of starting materials are given in Tab. I. The atomic 
emission spectroscopy technique performed by a PinAAcle 900 atomic absorption 
spectrometer (Perkin Elmer, USA) and X-ray fluorescence method (XRF 
spectrophotometer ED 2000 - Oxford) were applied in the chemical analyses. The loss of 
ignition (LoI) content was determined by the weight difference between room temperature 
and 1000 °C. 

 
Tab. I Chemical composition of componential materials. 

Oxide (%) Fly ash Zeolite Bentonite 
SiO2 58.32 66.4 60.21 
Al2O3 18.88 12.8 15.25 
Fe2O3 6.75 1.62 3.21 
TiO2 0.57 0.11 0.15 
CaO 8.71 3.33 4.04 
MgO 2.30 1.11 2.00 
P2O5 0.025 - - 
SO3 1.29 - - 
Na2O 0.50 0.85 1.88 
K2O 1.16 - - 
MnO 0.026 - - 
CO2 0.11 - - 
LoI 1.84 13.55 12.46 

 
The binder-free powdery mixtures (0.5 g of powder per mixture) were pressed 

into cylindrical “Tablets” using the uniaxial double action compression process in an 
8 mm diameter tool. The tablets were produced via laboratory hydraulic press 
(hydraulic press RING P-14, VEB THURINGER). The pressure used in the 
experiment was 2.0 t·cm-2 (196 MPa).  

The prepared tablets were placed in an alumina boat and heated in a tube 
furnace (Lenton Thermal Design, Type 1600), and afterwards isothermally sintered at 
two temperatures: 1000 ºC and 1200 ºC. The sintering was conducted in the air 
atmosphere for 120 minutes with a 10 ºC/min heating rate. The density of specimens 
was calculated from the measurements of the tablets’ diameter, height, and mass. 

The X-ray powder diffraction measurements were performed on the 
composites before and after thermal treatment on a Philips PW 1050 X-ray powder 
diffractometer using Ni-filtered CuKα1,2 (λ=1.54178 Å) radiation and the Bragg–
Brentano focusing geometry. Measurements were conducted at room temperature (25 
°C) over the 2θ range of 10–90° with a scanning step width of 0.05° and a counting 
time of 1 s per step.  

The thermal behavior was determined by simultaneous TG–DTA (Setsys, 
SETARAM Instrumentation, Caluire, France) in the temperature range between 25 °C 
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and 1000 °C in argon or air flow, in an alumina pan at a constant heating rate of     
10 °C/min. 

The morphology of the obtained composites before and after heating was 
characterized by scanning electron microscopy (JEOL JSM-6390 LV). The tablets 
were crushed and covered with gold in order to perform these analyses.  

 
 

3. Results and discussion 
 

The results obtained on the fly ash (LK), fly ash-zeolite (ZLK), and fly ash-
bentonite (BLK) tablets before thermal treatment and after sintering are presented in 
Tab. II. The density values of the observed specimens showed increasing with the 
applied temperature. The highest densities were obtained after sintering procedures 
conducted at 1200 °C. Also, densities of the BLK and ZLK samples were higher than 
those of the samples made of fly ash (LK).  

 
Tab. II Density (apparent density ρa) and dimensional change (h) of composite 

specimens obtained before and after thermal treatment. 
T 

(°C) 
ρLK 

(g·cm-3) 

ρZLK 
(g·cm-3) 

ρBLK 
(g·cm-3) 

hLK  
(mm) 

hZLK  
(mm) 

hBLK 

 (mm) 
20 1.248 1.308 1.603 7.73 7.63 6.6 

1000 1.265 1.416 1.698 7.60 7.12 6.05 
1200 1.622 1.667 1.938 7.07 6.11 4.95 

 
The apparent porosity (Pa) was determined as: 
 

100
12

1 ⋅
−
−

=
mm
mmPa ,%                                                                                               (1) 

 
Where: m is the mass of a dry sample (g); m1 is the mass of the water saturated sample (g), 
and m2 is the mass of the saturated sample measured in water (g). 

The apparent porosities and total porosities (calculated as the ratio of pores 
volume and the volume of specimen) of the ZLK and BLK samples obtained at ambient 
temperature and after thermal treatments at 1000 °C and 1200 °C are presented in Tab. III.  
Total porosity (P) is calculated as given in Eq. (2):  
 

1001 ⋅⎟⎟
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ρ
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The density (ρ) is determined by pycnometer method and calculated as follows: 
 

( )
( ) ( ) liqmmmm

mm
ρρ ⋅

−−−
−

=
321

1 ,g·cm-3                                                                                   (3) 

 
Where: m is the mass of the dry pycnometer (g); m1 is the mass of the sample and the 
pycnometer, (g); m2 is the sum of the masses of pycnometer with water, (g); and m3 is the 
mass of the pycnometer with sample and water, (g).  
 
The degree of sintering is determined as: 
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ρ
ρaSD = ,%                                                                                                               (4) 

The calculated sintering degree for ZLK sample treated at 1000 °C was 0.470 %. 
After treatment at 1200 °C the SD of the ZLK sample reached 0.533 %. The calculated SD 
values for the BLK composite were: 0.539 % and 0.737 % at 1000 °C and 1200 °C, 
respectively. The higher degree of sintering was obtained at higher temperatures, as it was 
expected. The BLK composite showed higher sintering degree than ZLK.  

 
Tab. III Apparent porosity (Pa), total porosity (P), and sintering degree (SD) of 

composite specimens obtained before and after thermal treatment. 
T 

(°C) 
Pa ZLK 
(%) 

Pa BLK 
(%) 

PZLK 
(%) 

PBLK 
(%) 

SDZLK  
(%) 

SDBLK 

 (%) 
20 18.21 15.25 26.39 22.32 - - 

1000 16.51 11.36 20.15 18.42 0.470 0.539 
1200 10.21 9.05 15.24 11.57 0.533 0.737 

 
The XRD patterns obtained on the fly ash-zeolite (ZLK) and fly ash-bentonite (BLK) 

samples at ambient temperature (a), and after sintering procedures that lasted two hours at 
1000 °C and 1200 °C (b and c) are given in Figs. 1 and 2. 

The crystalline phases that appeared in the mineralogical compositions of both 
composites (ZLK and BLK) were quartz (SiO2) and mullite (Al6Si2O13), and they are 
characteristic for the fly ash. Both of these phases are able to sustain high temperatures. 
Calcite, magnetite, hematite, fluorite, and anhydrite were present in negligible, almost 
untraceable amounts, and they also originate from the ash [17]. The most of the peaks that 
belong to these phases were ether too low for identification or they were mutually overlapped 
and/or covered by peaks that belong to other phases. The mineralogical structure of the fly 
ash, regarded as the base of the investigated composite, consists of both crystalline phases and 
certain amount of amorphous phase (aluminosilicate glass) [13,17]. The glassy phase is 
characterized by the baseline arch situated between 10° and 40° in all X-ray spectrums that 
illustrated in Fig. 1 and 2. Furthermore, the baselines of ZLK and BLK samples’ 
diffractograms obtained both at ambient temperature and after sintering are elevated. 
The elevated baseline indicates the presence of certain amount of amorphous 
material. In ZLK and BLK samples, the position of baseline is not changing with 
temperature, namely it remains positioned at approximately 100-150 counts on the 
diagrams a), b) and c). This means that the increase of the temperature does not 
induce melting and creation of additional amount of glassy phase.  

As it can be seen in Fig. 1a, at the ambient temperature ZLK sample contains the fly 
ash mineral crystalline phases (quartz and mullite), and the most prominent zeolite phases: 
clinoptilolite, mica, anorthite and carbonates. Clinoptilolite, which represents the basic zeolite 
mineral, is the most abundant mineral phase in the investigated sample. Clinoptilolite 
represents a microporous arrangement of silica and alumina tetrahedra with a complex 
formula: (Na,K,Ca)2-3Al3(Al,Si)2Si13O36·12H2O [25]. It is shaped as a group of monoclinic 
tectosilicate crystals [26]. Melting point of clinoptilolite is at approximately 1300 °C; 
therefore it is identified on the diffractograms at both sintering temperatures. The content of 
zeolitic mineral phases is at least 40 % of all crystalline phases (the starting zeolite sample 
had zeolitic mineral content over 75 %). Small amounts of mica that were found in the ZLK 
composite (Fig. 1a) originate from the zeolite. Melting point of mica is usually situated in the 
interval from 700 °C to 1000C °C, thus mica is not present in the sintered samples (Fig. 1b 
and 1c). Carbonates (i.e. various calcites) were present in low amounts at ambient 
temperature. Anorthite, as a form of feldspar, is also present only at ambient temperature. At 
725 °C anorthite transforms into zoisite, kyanite and liqid + vapor or quartz [27]. The quartz 



А. Terzić et al. /Science of Sintering, 48 (2016) 23-37 
___________________________________________________________________________ 

 

 

28 
 

 

was identified in the ZLK sample treated at 1000 °C (Fig. 1b). At approximately 1200 °C 
quartz transforms into cristobalite (Fig. 1c). 
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Fig. 1. XRD patterns of the fly ash-zeolite samples: a) at ambient temperature, b) after 

sintering at 1000 °C, and c) after sintering at 1200 °C. 
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Fig. 2. XRD patterns of the fly ash-bentonite samples: a) at ambient temperature, b) after 

sintering at 1000 °C, and c) after sintering at 1200 °C. 
 

Quartz and mullite that originate from fly ash are also present in BLK 
samples at all temperatures (Fig. 2). The original bentonite sample contained 
smectite minerals (mostly montmorillonite), quartz and feldspars.  

The montmorillonite structure in the samples is preserved up to 850-900 °C, where it 
is swiftly lost during a short temperature interval of approximately 50 °C [28]. The first high 
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temperature phase that succeeds montmorillonite is β-quartz. Beta quartz appears between 
approximately 900 °C and 1000 °C. It develops during temperature interval that is 50-125 °C 
higher than that during which the loss of the montmorillonite structure occurred. During the 
mentioned transition interval the samples show no X-ray diffraction effects [28]. The beta 
quartz develops rapidly. The increase in the quartz diffraction intensity is noticable. Namely, 
the diffraction data for quartz indicate that the peaks promptly increase (Fig. 2b). Beta 
cristobalite usually appears abruptly at 1100 °C and from that point this mineral phase 
develops rapidly [28]. The beta quartz phase disappears as the cristobalite develops, 
indicating a phase inversion. In the BLK sample (Fig. 2c), the development of cristobalite 
began during 1000-1200 °C interval, namely it was initiated before quartz completely 
disappeared. Cordierite normally appears at 1200-1300 °C. At the very same temperature 
cristobalite begins to disappear. The cordierite diffraction effects increase in intensity as those 
of cristobalite decrease. Small cordierite peaks are registered in the Fig. 2c, i.e. during 
investigation of the BLK sample sintered at 1200 °C. Based on the crystalline phases that 
were identified after sintering at 1200 °C, the investigated ZLK and BLK composites are 
expected to fuse above 1300 °C.  

0 100 200 300 400 500 600 700 800 900 1000

93

94

95

96

97

98

99

100

101

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

TG
 (%

)

ZLK

H
eat Flow

 (m
V

/g)

 

Temperature (oC)

475oC

 
Fig. 3. DTA/TGA curve of the ZLK sample. 
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The processes that took place in the ZLK and BLK composites during thermal 
treatment up 1000 °C were identified by means of DT and TG methods. The DTA and TGA 
curves obtained for the ZLK and BLK samples are presented in the Figs. 3 and 4. 

The DTA curves of the investigated ZLK (Fig. 3) and BLK (Fig. 4) samples 
show a constant increase during heating up to approximately 500 °C, which is 
characteristic for zeolite, i.e. bentonite based materials [26,28]. When fly ash was solely 
submitted to the differential thermal analysis [17], it showed a small peak at approximately 
200 °C. Such peak corresponds to the volatilization of the water that was mechanically 
bonded in form of H2O molecule in the fly ash sample. However, this effect located at around 
200 °C is only scarcely visible in ZLK and BLK samples. The sequences of thermal reactions 
are causing a complete elimination of the hydration water within the investigated composites 
during thermal interval from 100 °C to 450 °C. The adsorbed water within zeolite is being 
removed by heating up to temperature 500 °C, without significant decomposition of the 
structure taking place [30]. The ash structure is also preserved at this temperature. The 
percentage of water that is lost from the structure of zeolitic material during heating is a 
primary measure of its adsorptive capacity. The void volume that is left by the departed water 
becomes available for the adsorption of other molecules [30]. Since the bentonite is also 
natural clay sorber, the bentonite based composite BLK shows similar thermal behavior as 
ZLK sample, i.e. the similarities of their DTA curves up to 450 °C are evident in Fig. 3 and 4. 
The peak on the DTA curve of ZLK sample (Fig. 3) appearing at 475 °C is exothermic. The 
exothermic effect occurring at about 500 °C can be explained by initiation of the polymorphic 
transformation of β-quartz into α-quartz [31]. The quartz polymorphs detected by XRD on the 
ambient temperature and after sintering at 1000 °C (Fig. 1) in ZLK sample confirm this 
assumption. The BLK sample which exhibited approximately the same thermal behavior as 
ZLK up to 450 °C (Fig. 4.), shows no peak in 450-500 °C interval.  The quartz polymorphic 
transformation is not registered in BLK sample due to the changes in montmorillonite 
structure which is predominant mineral in bentonite based material [28]. Furthermore, the 
ZLK exhibits a broad endothermic effect between 500 °C and 600 °C which corresponds to 
the loss of hydroxyl water. This effect is absent in BLK sample (Fig. 4). Above 600 °C, both 
curves are increasing into a broad exothermic formation that probably corresponds to the 
mutual effect of transformation of organic matter incorporated in all starting materials, 
decomposition of CaCO3 and the burning of residual coal present in the fly ash [32-34]. The 
wide exothermic hump that is located at approximately 800 °C is additionally intensified by 
further transformation of beta quartz. In the BLK sample, the curve’ slope goes into an 
endothermic effect starting from 850 °C, which is the temperature when the structure of the 
montmorillonite starts to decompose. The results of DT analysis led to the conclusion that 
composites were thermally stable at temperatures up to 1000 °C and that applied 
componential materials are compatible. The changes that occurred above 900 °C, point out to 
the structural rearrangements and the initiation of sintering process.  

The most of the effects detected on the TGA diagrams are related to the loss of 
humidity. The first dimensional changes registered by TG analyses are located between room 
temperature and approximately 300 °C. For the ZLK sample, the zone of the first dimensional 
changes comprises wider interval (Fig. 3) than for the BLK sample (Fig. 4). Namely, the fly 
ash contains certain additional amount of moisture that evolves during the heating procedure. 
This is also typical for zeolite minerals [35].  

The TG curves showed more or less a continuous weight loss during heating up to 
~700 °C due to the loss of water. As it can be deduced from Figs. 3 and 4, several smaller 
mass loss steps have been obtained in the temperature range from 25 °C to 700 °C: 1) 25 to 
100 °C - the weight loss due to the hygroscopic water desorption; 2) 100 to 200 °C - the rapid 
weight loss of the ZLK sample documented by the steep slope of the TG curve which is 
attributed to the loss of loosely bonded water. During this interval the line of the BLK 



А. Terzić et al. /Science of Sintering, 48 (2016) 23-37 
___________________________________________________________________________ 

 

 

32 
 

 

diagram is almost horizontal, i.e. the mass of the sample remains unchanged; 3) 200 to 300 °C 
– the weight loss of the ZLK sample is smaller which is indicated by the slighter slope of the 
TG curve. BLK sample shows no mass change; 4) 300 to 400 °C – a gradual weight increase 
is present in both samples; 5) 400 to 500 °C - the slope of the TG curve regains light decrease, 
i.e. ZLK and BLK samples show weight loss; 6) 500 to 700 °C – period when remaining 
water is gradually removed [26, 35]. The TG curve obtained on the BLK sample shows an 
endothermal effect near 100 °C which may be due to water that is adsorbed onto the external 
surface and/or coordinated to exchangeable interlayer cations and adsorbed between the clay 
mineral layers [36]. The exothermal hump around 400 °C (Fig. 4) can be correlated with 
structural rearrangements that are typical for smectite minerals (i.e. montmorillonite) [37]. 
The effect on the TG curve of ZLK sample (Fig. 3) located between 700-850 °C is strong 
indication of structural rearrangement, and it can be correlated for example with mica and/or 
carbonates decomposition. 

Fig. 5 shows the SEM micrographs of the fly ash-zeolite (ZLK) composites 
before and after applied thermal treatment. 

 

a)   

b) 
Fig. 5. SEM images of the ZLK composites: a) before sintering, b) after sintering at 1200 °C. 

 
The fly ash-zeolite composite (Fig. 5a) is a mixture of a variety of particles that are 

characterized by different sizes and different shapes. Diversity in particles’ appearance is a 
consequence of participation of different inorganic phases in the mineralogical structure of the 
composite. The fly ash grains are mainly spherical and hollow. The superficial porosity of all 
ash grains is accented. The visible pores are commonly round shaped. The fly ash grains 
consist of particles of different shapes, sizes, and textures. Namely, large part of particles are 
spherical, however irregularly shaped particles are also present. The fly is, together with 
zeolite mineral grains, forming clusters and agglomeration of particles. Mullite needle like 
particles, and quartz and cristobalite irregularly shaped particles are immersed in the mass of 
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ash-zeolte mixture. Due to the compression applied to ZLK tablets it is hard to distinguish 
actual grains, but from the SEM image analysis it can be said that pseudospheres (spherical 
particles composed of various layers of solid matter and numerous external and internal pore 
channels and voids) belong to fly ash, while the rectangular particles (Fig. 6) are characteristic 
for the zeolite mineral – clinoptilolite.  
 

 
Fig. 6. SEM image of ZLK sample detail with visible clinoptilolite particles (after 

sintering at 1200 °C). 
 

Fig. 7 shows the SEM micrographs of the fly ash-bentonite (BLK) composites 
before and after applied thermal treatment. 

 

a)   

b) 
Fig. 7. SEM images of the BLK composites: a) before sintering, b) after sintering at 1200 °C. 
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Same as the ZLK composite, the fly ash-bentonite sample (Fig. 7a) is a mixture of 
grains and particles that are characteristic for ash and for clay as the two main constituents of 
the mixture. Aggregates and clusters that are formed within the mixture during preparation of 
the testing tablets contain various regularly and irregularly shaped particles of different 
inorganic origin. The structure of BLK sample observed at the ambient temperature show 
high resemblance to ZLK sample due to the presence of similar mineral phases (quartz, 
mullite, and feldspar/anorthite). The stacks of plate-like platelets in montmorillonite 
incorporated with larger irregularly shaped quartz particles and pore spaces can be seen in 
SEM image of the BLK sample (Fig. 8.). 
 

 
Fig. 8. SEM image of a detail of BLK sample (at ambient temperature). 

 
With increasing temperature the powdery particles of both composites (Fig. 5b and 

7b) are getting closer, forming thicker and more solid agglomerations. It is clearly visible that 
samples sintered at 1200 °C

 
have more solid base structure and an increased number of 

mutual contacts. The pores widened and the shapes of single particles are not so distinctly 
visible any longer. The BLK sample sintered at 1200 °C has lower porosity than ZLK sample 
which is in consistency with calculated results of porosity and sintering degree. The BLK 
sample has more solid structure and it appears that it has sintered more rapidly. Also, at 1200 
°C there are neither glassy inclusions nor particle cluster delaminations which highlights that 
the used materials (i.e. fly ash, zeolite and bentonite) are thermally compatible and can be 
applied in a construction composite exposed to the influence of high temperature.  

 
 

4. Conclusions  
 
The results of this study showed that fly ash and zeolite and/or bentonite applied 

in the construction composites were compatible regarding their sintering behavior 
and the high-temperature characteristics. The obtained results are presented below:  

The composites density values increased with the elevation of the assigned thermal 
treatment temperature. The highest densities were obtained after sintering at 1200 °C. The 
BLK had higher density than ZLK composite. The apparent porosities of the samples 
decreased with increasing temperature. The higher degree of sintering was obtained at higher 
temperatures. The BLK showed higher sintering degree than ZLK.  

The XRD analysis has shown a different mineral phase composition of the samples at 
ambient temperature and in the sintered samples. The quartz phase (including its temperature-
dependent polymorphs) is the dominant phase in both composites. Clinoptilolite originating 
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from zeolite was characteristic for the ZLK sample. The montmorillonite appeared in BLK 
sample at room temperature. At 1200 °C montmorillonite already started its transformation 
into cordierite. Mullite which gives micro-reinforcement and adds the strength to the material 
structure with its needle-like particles was present in both composites. 

The most of the effects detected on the DTA/TGA diagrams are related and explained 
by loss of humidity. Only the effects located at higher temperatures, i.e. above 700-850 °C are 
giving indication of structural rearrangement that is correlated to transition and/or 
decomposition of mineral phases. 

The SEM micrographs indicated that with increasing temperature the powdery 
particles of both composites are getting closer, forming thicker and more solid 
agglomerations. The samples sintered at 1200 °C

 
have more solid base structure and an 

increased number of mutual contacts, than samples observed at room temperature. The BLK 
sample has more solid structure than ZLK and it appears that it has sintered more rapidly.  

Regarding the fact that at 1200 °C there are no glassy inclusions or particle cluster 
delaminations, it can be assumed that fly ash, zeolite and/or bentonite are thermally 
compatible and they can be used as a base material for construction composites exposed to 
influence of the temperature.  
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Садржај: Захваљујући својим порцеланским својствима, летећи пепео је данас 
најчешћа замена за цемент у конструкционим композитима. Додавање природних 
глина које показују сорпциона својства (нпр. зеолит и бентонит) у грађевинске 
материјале на бази летећег пепела је од великог научног и индустријског 
значаја. Наиме, захваљујући примени сорптивних глинених минерала, могуће је 
имобилизовати токсичне тешке метале из структуре композита. Термичка 
компатибилиност летећег пепела и зеолита, као и летећег пепела и бентонита, 
у самој структури композита изучавана је у току процеса синтеровања. 
Полазне компоненте су примењене у односу 1:1 и то без додатног механичког 
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третмана. Примењен је притисак од 2 t·cm-2 за припрему таблета за исспитивање 
композита. Синтеровање је обављено на 1000 ºC и 1200 ºC у трајању од 2 сата, у 
атмосфери ваздуха. Минерални фазни састав нетретираних и синтерованих узорака 
је анализиран помоћу X-ray дифракционе методе. Скенирајућа електронска 
микроскопија  примењена је у анализи микроструктуре полазних и синтерованих 
узорака. Термичко понашање праћено је помоћу DTA методе. Испитиван је утицај 
температуре на својства композита на бази летећег пепела и зеолита, односно 
летећег пепела и бентонита. 
Кључне речи: Синтеровање; термичка својства; густина; DTA; XRD; SEM; 
конструкциони композити. 
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