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Abstract: In this study, nanochitosan dots (ChiDs) were synthesized using gamma rays and en-
capsulated in bacterial cellulose (BC) polymer matrix for antibiofilm potential in photodynamic
therapy. The composites were analyzed for structural changes using SEM, AFM, FTIR, XRD, EPR,
and porosity measurements. Additionally, ChiD release was assessed. The results showed that the
chemical composition remained unaltered, but ChiD agglomerates embedded in BC changed shape
(1.5–2.5 µm). Bacterial cellulose fibers became deformed and interconnected, with increased surface
roughness and porosity and decreased crystallinity. No singlet oxygen formation was observed,
and the total amount of released ChiD was up to 16.10%. Antibiofilm activity was higher under
green light, with reductions ranging from 48 to 57% under blue light and 78 to 85% under green
light. Methicillin-resistant Staphylococcus aureus was the most sensitive strain. The new photoactive
composite hydrogels show promising potential for combating biofilm-related infections.

Keywords: chitosan nanoparticles; bacterial cellulose; photoactive therapy; antibiofilm; nanocompos-
ite hydrogels; blue light and green light

1. Introduction

The large-scale use of antibiotics (in medicine, veterinary medicine, agriculture, etc.)
has led to the development of antibiotic resistance in bacteria. The biofilm formed by
pathogenic bacteria, consisting of extracellular polysaccharides, extracellular DNA, and
proteins, acts as a barrier for many antibiofilm compounds and is considered an important
resistance mechanism against modern antibiotics [1,2]. They are commonly associated
with medical devices and tissue-related conditions, playing a crucial role in reducing
antimicrobial efficacy and immune responses, thereby leading to persistent and chronic
infections. There is extensive drug resistance in bacteria, even leading to the development
of multi-drug-resistant bacteria [3], whose expansion has become a major challenge in the
development of new antibiotic substitutes [4]. Furthermore, the possibility of the formation
of a bacterial biofilm complicates the medical state of the patients, increasing bacterial
tolerance to antimicrobials, directing evolutionary pressure toward resistant microorganism
strains, and facilitating gene transfer [5], resulting in a significant increase in mortality
and morbidity in patients with wounds [6,7]. Polymicrobial biofilms, in particular, pose
a formidable challenge, making treatment difficult or impossible. Understanding the
composition and mechanisms of the action of biofilms is essential across various fields,
including infection and transmission dynamics, biofouling, and bioenergy. Increasing
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antibiotic doses within maximal therapy levels may not result in antibiofilm effects, and
simultaneously, the biofilm significantly reduces the ability of immune system components
to reach the infection site [8]. In addition, biofilms on abiotic surfaces lead to severe
foodborne and nosocomial infections [9,10].

In bacteria, conventional antibiotic resistance mechanisms like point mutations, en-
zymes, and efflux pumps are often ineffective against biofilm organisms. Instead, various
components within a biofilm cooperate to diminish or completely thwart antibiotic efficacy,
perpetuating resistance. These combined mechanisms enable organisms to survive within
the biofilm despite exposure to high antibiotic concentrations, which is a phenomenon
known as recalcitrance.

Greater awareness of the persistent threat posed by biofilms in the hospital setting and
their role in facilitating the exchange of resistance mechanisms is essential. As antimicrobial
stewardship and infection prevention programs advance, it becomes increasingly crucial to
comprehend the risks associated with biofilms. Preventing the transfer and acquisition of
biofilm-causing organisms can significantly impact the spread of antimicrobial resistance.

Among biofilm-forming bacteria, the most infamous are Staphylococcus aureus, methicillin-
resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Escherichia coli and
due to their resistance to antibiotics and the immune system, they pose a global threat to
public health [11]. In particular, MRSA is among the antibiotic-resistant bacteria posing
the greatest threat to human health [12]. Nanoplatforms with antimicrobial properties
linked to photodynamic and photothermal therapies present promising options for tackling
antimicrobial resistance. These alternative treatments offer non-invasive, antibiotic-free
solutions with dual selectivity and minimal adverse effects in therapeutic procedures [13].
Antimicrobial photodynamic therapy could be an ideal technique for the obliteration of
multi-drug-resistant microorganisms [14,15]. A light source and light-sensitizing agents
(photosensitizers, PSs) are widely used in photodynamic therapy intended to treat various
infections caused by bacteria, fungi, and viruses [16]. Via the absorption of visible light,
PSs are activated to form the excited singlet state. Afterward, they transition to a long-lived
excited triplet state, which, in the presence of oxygen, forms reactive oxygen species that
destroy pathogenic agents. Singlet oxygen, as a very strong oxidant, is the main agent of
photooxidative stress in microorganisms which oxidizes cellular lipids, proteins, DNA,
and RNA, yet it has a high potential to diffuse across cellular membranes into extracellular
compartments [17] like the extracellular components of biofilms actually are.

Antimicrobial photodynamic therapy has distinct advantages over antibiotics. Firstly,
it exhibits triple site-specificity, minimizing systemic toxicity by preferentially targeting
infected cells while sparing non-target cells. Unlike antibiotics, this kind of therapy does
not induce resistance even after repeated treatments due to its short drug–light interval
and lack of dark toxicity [18]. Additionally, bacteria struggle to detect the oxidative stress
caused by PDT, hindering their ability to adapt metabolically [19]. Moreover, photodynamic
therapy damages multiple bacterial sites, making it effective against resistant strains and
offering a minimally invasive treatment option.

Chitosan is a non-toxic, biodegradable, cost-effective, biocompatible, and natural
polymer [20] consisting of partially alkaline-deacetylated chitin arising from the following
two monosaccharides: glucosamine and N-acetyl glucosamine. The nanoparticle forms
of chitosan demonstrate stability at high temperatures and are resistant to microbial and
enzymatic degradation [21]. They are effective in neutral pH environments while retaining
positively charged amino groups [22]. This positively charged characteristic enables chi-
tosan to interact with negatively charged residues on microbial cytoplasmic membranes
(lipids, carbohydrates, and proteins), thereby blocking membrane permeability and leading
to the leakage of the cytoplasmic content, which is the proposed mechanism underlying its
antibacterial activity [23]. In contrast to bacterial prokaryotic cell morphology, eukaryotic
cells have a very different organization; therefore, chitosan and chitosan-based polymers
and nanoparticles are proven to be non-toxic for human tissues [20,24]. Furthermore, they
are favorable in wound healing [25] and even in treating arthritis [26]. There are promising
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results in chitosan-based materials intended for use in sites with a heavy bacterial burden,
such as the oral cavity [27], even for orthodontic composites [28]. To date, only chitosan-
based drug delivery systems have been investigated in photodynamic therapy [29–31].

The objective of this study was to assess the antibiofilm efficacy of nanochitosan dots
(ChiDs) within a hydrogel-based composite containing bacterial cellulose when subjected
to blue and green light exposure. This investigation was prompted by prior research
indicating the photoactivity of ChiDs [25]. In brief, ChiDs emit green luminescent light
and have photoluminescence (PL) at an excitation-emission of 530 nm. Their encapsulation
in bacterial cellulose does not change their PL emission, and their composite shows the
highest PL emission at a 480 nm excitation wavelength. Blue and green light, as a range of
the visible light spectrum, have a wavelength between 400 and 525 nm and 500 and 600 nm,
respectively. Since blue and green light do not penetrate the skin more than 2.5 mm, their
application in photodynamic therapy is limited to open surfaces [32]. The hydrogel as
a carrier of the antimicrobial agent was chosen as one of the ideal materials for topical
use [33]. In our previous studies, bacterial cellulose showed good properties in wound
treatment [34,35]. Also, bacterial cellulose has potential as a coating in many fields [36–38].

In order to measure the antibacterial effect by means of bacterial cell abundance inside
biofilms, a tetrazolium salt-based MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay was developed [39]. Due to bacterial cell respiratory chain processes, the
reduction in MTT to purple formazan occurs, which can be measured by spectrophotometry.
The intensity of the change is proportional to live bacteria cells; thus, this is called the
viability assay, allowing the measurement of quantities of live cells in biofilm [40].

In this study, composite hydrogels of bacterial cellulose and ChiDs were proposed as
photoactive agents in in vitro antibiofilm eradication. Since these hydrogels previously showed
a very good antibiofilm effect in ambient light conditions, exposure to blue and green light
might improve this effect via morphological changes or singlet oxygen formation.

2. Materials and Methods
2.1. Synthesis of Nanochitosan Dots (ChiDs), Bacterial Cellulose (BC) and Preparing Photoactive
Composites BC-ChiD

Nanochitosan dots (ChiDs) were obtained by the following previously described
approach: the gamma irradiation of low-molecular-weight Chi (50–190 kDa, (Merck KGaA,
Darmstadt, Germany) solutions at 60 kGy [25]. Bacterial cellulose (BC) was provided by
the Institute of Molecular Biology and Genetics, Kyiv, Ukraine, sourced from the bacterial
culture Komagataeibacter intermedius IMBG180 (part of the microorganism collection of the
Institute of Molecular Biology and Genetics, Kyiv, Ukraine). The composites, designated as
BC-ChiD, were prepared by immersing BC into 0.2% and 2% ChiD solutions for 48 h. The
composite samples exposed to blue light (470 nm, 3 W, 30 min) and green light (537 nm,
3 W, 30 min) were labeled as BC-ChiD_blue and BC-ChiD_green, respectively. The light
source was at a distance of 20 cm, and no temperature change near the samples or plates
was registered. The composite samples exposed to ambient light were used as a control
(BC-ChiD_control). All samples were lightly blotted on filter paper to remove excess
solution before being subjected to physiochemical and biological characterization. The
samples immersed in 2% ChiD solutions showed better-recognized spectra, peaks, and
surface morphology than composite hydrogels with 0.2% ChiDs; therefore, they were used
for physiochemical methods.

2.2. Characterization Methods
2.2.1. Scanning Electron Microscopy (SEM) Imaging

The surface morphology of air-dried BC-ChiD_control, BC-ChiD_blue, and BC-ChiD_green
composite samples was analyzed by scanning electron microscopy (SEM) using the JEOL
JSM-6390LV microscope (Jeol USA Inc., Peabody, MA, USA), conducted in a vacuum at
room temperature with an accelerating voltage of 25 kV.
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2.2.2. Fourier Transform Infrared (FTIR) Absorption Spectroscopy

In order to assess the structural differences between BC-ChiD_control and BC-ChiD
composites exposed to blue and green light, samples were air-dried, and FTIR measure-
ments were conducted using an infrared microscope, Nicolet iN10 Thermofisher Scientific
(Thermo Electron Scientific Instruments LLC, Madison, WI, USA) operated in the ATR
mode. All measurements were conducted in the air at ambient temperatures in the range
of 400 to 4000 cm−1, with a spectral resolution of 4 cm−1.

2.2.3. X-ray Diffraction (XRD)

The XRD measurements of BC-ChiD_green and BC-ChiD_blue samples were per-
formed using Rigaku Ultima IV (Tokyo, Japan). The X-ray beam was nickel-filtered CuKα1
radiation (λ = 0.1540 nm, operating at 40 kV and 40 mA). The XRD data were scanned at
an angle 2θ between 3◦ and 90◦. To deconvolute the specific region of crystal/amorphous
peaks, we used Origin Lab software (Origin 8.5, OriginLab Corporation, Nrthampton, MA,
USA) based on the assumption of the Gaussian function. The percentage of crystallinity
was determined using the following equation:

XC =
AC
AT

× 100% (1)

where XC is the degree of crystalline in the percentage, AC is an area of the crystalline
region, and AT is the total region under the peak (including crystalline AC and amorphous
Aa area) [41].

Using Scherrer’s equation, the crystallite size of the sample was calculated from the
XRD pattern:

D =
Kλ

βcos θ
(2)

where λ is the X-ray wavelength, β is the full width at half maximum (FWHM), θ is the
Bragg angle for the studied peak, and K is the shape factor.

2.2.4. Atomic Force Microscopy (AFM) Imaging

Due to its high-resolution topography, ability to work under ambient conditions,
and capability to reconstruct 3D images, AFM has proven to be a very powerful tech-
nique for imaging microbial surfaces [42–44]. Pathogenic bacteria biofilms treated with
BC-ChiD_control and BC-ChiD composite samples under blue and green light were fixed
(hot air drying) and analyzed using an AFM Quesant microscope (Ambios Technology,
Santa Cruz, CA, USA) operating in the tapping mode. The AFM measurements were
performed in the air using a silicone T-shaped cantilever with a spring constant of 40 N/m.
All images were obtained at 2 Hz with a 512 × 512 image resolution over different square
areas. Detailed information on the surface topography of all samples was calculated using
Gwyddion software (version 2.61, Czech Metrology Institute, Brno, Czech) [45]. The aver-
age surface roughness and surface area were calculated from several images of 10 × 10 µm2

in square size for each sample and were presented as values ± standard deviations.

2.2.5. Porosity of BC-ChiD_Control, BC-ChiD_Blue and BC-ChiD_Green
Composite Hydrogels

The liquid displacement method was used to determine the porosity of control and
exposed composites [46]. Disc-shaped BC-ChiD samples (11 mm in diameter and 1 mm
in height) were weighed (W1) and immersed in ethanol until saturation. The porosity of
composite hydrogels was calculated by measuring the weight of samples after immersion
(W2) using the following equation:

P =
W2 − W1

ρ V1
(3)
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where V1 is the volume of the sample and ρ is the density of ethanol [47]. The measurements
were conducted in triplicate, and values were statistically analyzed using Student’s t-test.

2.2.6. Electron Paramagnetic Resonance (EPR) Measurements of BC-ChiD_Blue and
BC-ChiD_Green Composites

For EPR measurements, a Spectrometer MiniScope 300, Magnettech, Berlin, Germany,
was used. The microwave power was 3.2 mW with a modulation amplitude of 0.2 mT. The
instrument was operating at a nominal frequency of 9.5 GHz. 2,2,6,6-tetramethylpiperidine
(TEMP) was used as a spin trap to detect singlet oxygen formation (1O2). The BC-ChiD_blue
and BC-ChiD_green composites were dipped in a 30 mM TEMP solution in ethanol and
were irradiated by blue light at 470 nm and green light at 532 nm, respectively, for up to
23 h in the closed and reflective chamber, together with control samples without BC-ChiD
for intensity comparison.

2.2.7. In Vitro Release of ChiD from BC-ChiD_Blue and BC-ChiD_Green Composites

The BC-ChiD composite samples were shaped as 22 mm diameter discs with an aver-
age thickness of 1 mm. The in vitro release of ChiD from BC-ChiD_blue and BC-ChiD_green
composites was monitored in 15 mL PBS (pH 7.4) at 37 ◦C with constant shaking at 100 rpm.
Aliquots of the sample (1 mL) were collected at predetermined time intervals (1, 2, 3, 4, 5,
6, 24, 48, and 72 h), and the released ChiD (as a percentage) in the dissolution media was
determined spectrophotometrically using a Shimadzu spectrophotometer (SHIMADZU
CORPORATION, Kyoto, Japan) at 290 nm. After measuring absorbance, the aliquots
were immediately returned to the dissolution media to maintain a constant volume. All
experiments were performed in duplicate.

2.2.8. Photo-Induced Antibiofilm In Vitro Test

The antibiofilm activity was tested against a set of Gram-positive bacteria: Staphylococ-
cus aureus (ATCC 25923), methicillin-resistant Staphylococcus aureus (MRSA ATCC 43300), as
well as Gram–negative bacteria Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC
700603,) and Pseudomonas aeruginosa (ATCC 27853).

• Biofilm formation and plate preparation

Biofilm was formed in 96-well polystyrene titer plates. Bacterial inoculum was pre-
pared from overnight culture suspension according to ISO 20776-1:2006 Clinical laboratory
testing and in vitro diagnostic test systems—Susceptibility testing of infectious agents and
evaluation of performance of antimicrobial susceptibility test devices—Part 1: Reference
method for testing the in vitro activity of antimicrobial agents against rapidly growing aero-
bic bacteria involved in infectious diseases. International Organization for Standardization:
Geneva, Switzerland, 2006 [48], finally containing 5 × 105 CFU/mL. A sterile flat bottom
polystyrene 96-well microtiter plate (Sarstedt, Nümbrecht, Germany) was filled with 100 µL
CAMHB (BBL, Franklin Lakes, NJ, USA), and 5 µL of bacterial inoculum was incubated at
37 ◦C aerobically overnight. The supernatant was removed from each well, and the plates
were rinsed three times using 100 µL of sterile physiological saline (PS). Subsequently, fresh
medium in a volume of 100 µL was added to each well.

• Antibiofilm test

The composite materials formed in a disc shape (6 mm in diameter, 1 mm thickness)
were immersed in the prepared wells. At this point, plates were exposed to green and blue
light (λ = 537 nm, 3 W, BC-ChiDs_green; λ = 470 nm, 3 W, BC-ChiDs_blue) for 30 min (at a
height of 20 cm) to initiate a potential photoactive effect, and plates exposed to ambient
light were used as a control and blanks. The light cannot pass through the composites,
and the dimensions of the samples are such that they prevent light from directly acting on
the biofilms. After illumination, plates were reincubated at 37 ◦C aerobically overnight.
After incubation, the samples and medium were removed, and each well in the plates
was rinsed three times using 100 µL PS. A 3% solution of 3-(4,5-dimethylthiazol-2-yl)-
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2,5-diphenyltetrazolium bromide (MTT, Sigma) in CAMHB at a volume of 100 µL was
added to each well. The plates were incubated at 37 ◦C aerobically for 2 h. Formazan
crystals were dissolved in 100 µL DMSO (Zorka, Šabac, Serbia), and the absorbance was
determined at 450 nm with a microplate reader. For negative controls (blanks), raw wells
with material were concealed from green or blue light treatment. Wells with bacterial
biofilm without materials but within light treatment were used to assess a possible light
effect bias, with experiment rejection criteria if over a 5% average OD difference under
different light regimes.

The experiment was conducted in duplicates, and the average absorbance was calcu-
lated. The results are presented as percentages. The percentage of biofilm reduction (BR)
was calculated according to the formula [49]:

BR =
OD(blank) − OD(treatment)

OD(blank)
× 100 (4)

3. Results and Discussion
3.1. Surface Morphology of BC-ChiD_Blue and BC-ChiD_Green Composites

Figures 1 and 2 show the surface morphology of BC-ChiD samples under the following
different conditions: ambient, blue, and green irradiation for 30 min. The light source used
(LED, power 3 W) was neither coherent nor polarized, but it was randomly oriented and
incoherent. The irradiation was perpendicular to the samples studied, and the distance
between the light source and the sample surface was 20 cm. From Figure 1b,c, one can
observe the changes in the shape of ChiD agglomerates embedded in a polymer matrix.
After exposure to blue and green light, their size was between 1.5 and 2.5 µm. Our previous
study [25] reported ChiDs’ average diameter of 50 ± 1.5 nm and average height of 1.8 nm.
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Figure 1. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images of
BC-ChiD_control (a,d); BC-ChiD_blue (b,e); and BC-ChiD_green (c,f) samples.

From both SEM (Figure 1a–c) and AFM images (Figure 1d–f), we can notice that blue
and green light influence the morphology of the BC-ChiD samples. The control sample
BC-ChiD (Figure 1a,d) has a pronounced fibrous structure consisting of long and thin fibers
of average width (100 ± 10) nm and lengths in the order of magnitude of ten micrometers.
After exposure to blue and green lights, the bacterial cellulose fibers became deformed
and interconnected, and the surface appeared more wrinkled than fibrous (Figure 1b–e).
The length of the fibers notably decreased to 1–3 µm, while their widths increased to
average (168 ± 15) nm and (219 ± 16) nm after the exposure to the blue and green light,
respectively. Both average surface roughness (RMS) values and the surface area decreased
after exposure to blue and green lights due to the mentioned change in the morphology. The
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average surface roughness (RMS) of BC-ChiD_control, BC-ChiD_blue, and BC-ChiD_green
composites were 94.57 ± 2.88 nm, 77.69 ± 10.09 nm and 74.4 ± 7.25 nm, respectively. The
surface area of BC-ChiD_control, BC-ChiD_blue and BC-ChiD_green composites were
173.42 ± 3.19 µm2, 137.62 ± 6.23 µm2 and 124.87 ± 5.85 µm2, respectively.

3.2. Chemical Composition

Figure 2a presents FTIR spectra of BC-ChiD samples irradiated by ambient, blue,
and green light. From this figure we can detect the following peaks: peaks at 3340 and
3245 cm−1 stem from O-H and N-H vibrations, whereas the peak at 2895 cm−1 belongs to
C-H stretching vibrations; the peak at 1646 cm−1 could be assigned to the C=O stretching
of amide I; the peak at 1563 cm−1 could stem from N-H vibrations and is down-shifted
compared to Chi powder peak at 1597 cm−1, whereas the peak at 1436 cm−1 originates
from CH2 vibrations [50]; the peak at 1326 cm−1 could be assigned to the C-N stretching
of amide III, whereas the peak at 1158 cm−1 was identified as the asymmetric stretching
of the C-O-C bridge. The peak at 1059 cm−1 stems from C-O stretching vibrations. In our
previous studies, we depicted the FTIR spectrum of neat BC samples [25].
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The obtained FTIR spectra indicate that the chemical composition of all investigated
samples did not change upon irradiation by different wavelengths.

Figure 2b shows a comparative analysis of X-ray diffraction (XRD) spectra for samples
BC-ChiD_blue and BC-ChiD_green. In both samples, three distinct peaks appear at approx-
imately 14, 16, and 22.6 2θ, corresponding to the (1–10), (200), and (110) crystal planes of
type I-β cellulose [51]. Additionally, a peak at ~28.8 2θ is evident in the XRD spectra, with
a more pronounced presence in the BC-ChiD_green sample. This specific peak is attributed
to ChiDs [52]. Notably, other ChiD-associated peaks at 11.7, 16.4, 18.4, and 22.3 2θ [49] are
not discernible in the spectrum due to their positions overlapping with the higher-intensity
signals from BC. The degree of crystallinity and crystallite size for each sample are detailed
in Table 1.

Table 1. Crystallite size and crystallinity index comparison among BC-ChiD_green, BC-ChiD_blue,
and BC-ChiD_control samples.

Sample Crystallite Size (nm) Crystallinity Index (%)

BC-ChiD_blue 4.7 30.7
BC-ChiD_green 4.3 32

BC-ChiD_control [25] 2.2 74

In our previous research [25], it was demonstrated that the BC-ChiD_control exhibited
a 74% degree of crystallinity. It is widely acknowledged that neat BC possesses an inherently
high crystallinity index [53]. When synthesized, BC undergoes processing with various
compounds, or when these compounds are introduced into the culture medium, there is a
discernible alteration in the crystalline constituents of BC [54,55], resulting in a subsequent
decrease in the degree of crystallinity [56,57]. This observation aligns with the findings of
the present study.

The reduction in crystallinity, compared to the BC-ChiD_control, is consistent with the
results obtained from scanning electron microscopy (SEM) and atomic force microscopy
(AFM). Evidently, the light treatment exerts an influence on the morphology of BC fibers
within the treated samples, thereby affecting their crystallinity.

3.3. Porosity of BC-ChiD_Control, BC-ChiD_Blue and BC-ChiD_Green Composite Hydrogels

Since the porosity of materials represents one of the important parameters for their
potential usage in medicine [58], the analyses of BC-ChiD_control, BC-ChiD_blue, and
BC-ChiD_green composite hydrogels were conducted. As can be seen from the results of
the BC-ChiD_control, BC-ChiD_blue, and BC-ChiD_green composite hydrogels porosity,
as presented in Figure 3a, the values of composites exposed to blue light were significantly
higher (p < 0.001) compared to the control and composites exposed to green light (p < 0.05).
The results show that exposure to blue and green light significantly increases the pore
dimension due to the specific bonds (NH2, C-N, C=O, and C-O-C) between BC fibers and
ChiDs under different sources of light exposure.
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3.4. EPR Measurement of Singlet Oxygen Formation

Figure 3b shows the TEMP spin trap EPR intensities of BC-ChiD samples illuminated
with blue and green light. TEMP molecules rapidly react with 1O2, forming a stable, EPR-
active product, TEMP-1O2 (TEMPO). Commercially available TEMP spin traps contain
a small amount of TEMPO as an impurity, which contributes to a minor parasitic signal.
However, upon exposure to singlet oxygen, the intensities of the spin trap EPR spectrum
increase significantly, rendering the impurity signal negligible. The BC-ChiD and control
samples were subjected to blue and green light, and no intensity differences higher than
the experimental error were observed. Figure 3b shows intensities after one hour, but the
intensities were followed for 23 h, and no significant changes in intensity were observed.

The results of EPR measurements did not show any singlet oxygen generation, either
after the exposure of the composite samples to blue or green light (Figure 3b). It was
shown [59] that functional groups with N quench singlet oxygen. In our previous study [25],
XPS analysis showed the presence of NCO and NH groups in BC-ChiD composites, which
are responsible for the quenching of singlet oxygen.

3.5. In Vitro Release of ChiD from the BC-ChiD Composite Hydrogels Exposed to Blue and
Green Light

The release of ChiD from BC-ChiD_green and BC-ChiD_blue composites was observed
to be slow and continuous (Figure 4a). At the end of the monitoring period, the total
amounts of ChiD released from composites exposed to green and blue light were 16.10
and 15.20, respectively. The mechanism of released ChiD fitted to the Korsmeyer–Peppas
model. This kinetic model describes drug release from polymeric systems, yielding the
highest R2 value. It uses the following equation:

Mt/M∝ = ktn, (5)

where Mt represents the amount of drug released at time t in hours, M∝ is the total amount
of drug in dosage form, kt is the kinetic constant, and n is the release exponent related
to the mechanism of release. The n values were determined to be 0.335 and 0.412 for BC-
ChiD_green and BC-ChiD_blue, respectively, which are both smaller than 0.5 (Figure 4b).
This indicates that the release of ChiD from BC-ChiD composites can be characterized
as a quasi-Fickian diffusion. The results suggest that the short-term green/blue light
illumination of composites does not affect the release of ChiD.
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3.6. Antibiofilm Activity of BC-ChiD_Blue and BC-ChiD_Green Composite Samples and AFM
Imaging of Pathogenic Biofilms after the Application of BC-ChiD_Blue and BC-ChiD_Green
Composites

The pathogenic bacteria biofilm reduction after the application of BC-ChiD_blue and
BC-ChiD_green composite samples compared to the control samples is shown in Table 2.
The reduction in biofilm under blue light was in the range from 48 to 57%, while under
green light, it was higher, from 78 to 85%. The most sensitive strain under both blue and
green light was MRSA.

Table 2. Microtitre biofilm reduction assay. Pathogenic bacteria biofilm reduction (presented in %)
after the application of BC-ChiD composites exposed to blue and green light. The values 0.2 and 2
refer to the concentration of ChiD solutions used to prepare the composites.

Bacteria
BC-ChiD_Blue BC-ChiD_Green

0.2 2 0.2 2

S. aureus 48 52 81 80
MRSA 57 56 80 85
E. coli 51 51 78 79

K. pneumoniae 47 57 78 79
P. mirabilis 54 45 80 70

P. aeruginisa 54 52 80 70

Changing light conditions alters bacterial growth and metabolism, and it is known
that daylight changes the bacterial microbiomes in households [60]. Further light effects
are described in different bacteria. P. aeruginosa is found to modify pigment and biofilm
biomass production under different light conditions [61]. It was shown that S. aureus,
E. coli, and P. aeruginosa grow well in a green light environment, while blue light is not
as conducive to bacterial growth promotion. This difference results from the presence of
endogenous photosensitizing chromophores in pathogenic microbes, revealing that blue
light imposes a stress condition on bacteria [62]. Blue light has been shown to cause a
reversible decrease in swimming velocity in Escherichia coli as a non-phototrophic bacterium.
The exact mechanism of this phototactic response is still unknown [63].

The antimicrobial blue light inactivation of biofilms has been showed in many stud-
ies [64–67]. In this study, the biofilms of pathogenic bacteria were exposed to blue and
green light for 30 min, a very short time to induce any changes in biofilms themselves but
potentially enough to enhance the activity of the new potential antibiofilm composite agent
BC-ChiD. Compared to our previous research [34], the composites exposed to ambient
light showed a similar antibiofilm effect as BC-ChiD_green against Gram-negative strains
(E. coli, K. pneumoniae, P. mirabilis and P. aeruginosa). The biofilm reduction in Gram-positive
S. aureus was higher after the application of BC-ChiD_green than under ambient and blue
light. Also, the most sensitive to BC-ChiD_green was MRSA, showing higher biofilm reduc-
tion compared to S. aureus. Since MRSA biofilm was not analyzed in our previous study,
but it is biologically the S. aureus species, it can be presumed that the effect of BC-ChiD
under ambient light is probably similar to BC-ChiD_green. All these results show that
Gram-positive strains are more sensitive to BC-ChiD_green than Gram-negative. This is in
correlation with previous research [15] showing that Gram-negative strains are significantly
resistant in the first attempts to photoinactivate bacteria with conventional PSs. Due to
the relatively porous layer of peptidoglycan and lipoteichoic acid of Gram-positive strains,
ChiD penetrates more easily and adheres to their cell wall.

To date, the reported mechanism of antibiofilm activity of chitosan as a polymer is not
as clear as the one against planktonic bacteria. Numerous factors may influence the an-
tibiofilm action: the phase of biofilm formation, molecular weight and deacetylation degree
of chitosan, strain specificity (Gram-negative or Gram-positive), etc. [27,68,69]. When seek-
ing to understand the antibiofilm effect of ChiD, it is evident that they have the capability to
penetrate deeply into biofilms and exert activity [68], particularly those obtained from low-
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molecular-weight chitosan [22]. In this study, it was shown that BC-ChiD_green composites
had very high antibiofilm potential, which is in correlation with their structure, where
ChiDs are distributed mostly on the surface of the composite. Since the charge in ChiD
retains a neutral pH, the proposed mechanism of ChiD action is the interaction between the
positively charged ChiD and negatively charged bacterial cell membrane, which can lead
to the leakage of proteinaceous and other intracellular constituents [22]. This mechanism is
the most prevalent proposed antibacterial activity of chitosan [70]. The initial hypothesis of
this study, that under blue or green light, photoactive ChiD in composites may produce
singlet oxygen and enhance the antibiofilm activity of BC-ChiD composites, is rejected
due to EPR results showing no formation of singlet oxygen. Our FTIR results confirmed
the presence of amine groups in composites that interact with pathogen membranes and,
therefore, lead us to a structure-dependent mechanism of antibiofilm activity. The biofilm
mode of life provides microbial communities with ecological advantages, including resis-
tance to mechanical and chemical stresses. However, under blue and green light conditions,
BC-ChiD composites succeeded in reducing the biofilm.

Figure 5 presents the AFM micrographs of E. coli and MRSA biofilms before and
after the application of BC-ChiD composites irradiated with blue and green light, where a
significant reduction in the biofilm was noticed. The biofilm seemed broken into smaller
domains, and the average surface roughness (Table 3) significantly reduced after the BC-
ChiD_blue and BC-ChiD_green composite application. The surface coverage was also
decreased, which is another confirmation of the reduction in the biofilm mass after the
treatment with BC-ChiD_blue and BC-ChiD_green composites.
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Figure 5. AFM images of E. coli and MRSA biofilms before the application of BC-ChiD composites
((a,d), respectively) and after the application of BC-ChiD under blue ((b,e), respectively) and green
((c,f), respectively) light.

Table 3. Average surface roughness (RMS) and surface area of pathogenic bacteria biofilms (presented
in nm and µm2, respectively) after the application of BC-ChiD_blue and BC-ChiD_green.

Bacteria BC-ChiD_Control BC-ChiD_Blue BC-ChiD_Green

Average surface roughness—RMS (nm)
E. coli 93.46 ± 22.66 16.66 ± 4.46 71.6 ± 16.29
MRSA 138.33 ± 24.96 58.7 ± 8.93 14.43 ± 3.47

Surface area [µm2]
E. coli 144.07 ± 11.95 107.32 ± 1.97 110.41 ± 3.92
MRSA 162.06 ± 6.35 113.08 ± 2.18 104.27 ± 0.68
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The degradation of biofilm structures in Gram-positive and Gram-negative bacteria in
response to external stimuli, such as nanomaterials, antibiotics, heat, and cold plasma, is
largely influenced by their cell wall structure. [71]. For irreversible damage to occur in the
photodynamic inactivation of bacteria, PSs must accumulate significantly within or on the
cytoplasmic membrane of bacteria following irradiation. This process has no effect on E.
coli, which lacks the uptake of membrane-disorganizing agents, unlike S. aureus [72]. The
new photoactive composite BC-ChiD releases a sufficient amount of ChiD, which, in a very
short time of light irradiation, penetrates and accumulates into the biofilms and shows a
high structure-dependent antibiofilm effect.

4. Conclusions

In this study, we investigated the antibiofilm activity of a photoactive composite
hydrogel comprising bacterial cellulose and low-molecular-weight chitosan dots (BC-
ChiD_blue and BC-ChiD_green) under blue and green light exposure, respectively. Our
comprehensive analysis using SEM, AFM, FTIR, XRD, porosity measurements, in vitro
release, and EPR spectroscopy revealed significant structural changes in the BC-ChiD
composites following exposure to blue and green light. Notably, BC-ChiD_green exhibited
a significantly higher antibiofilm effect (78–85%) compared to BC-ChiD_blue (48–57%),
with methicillin-resistant Staphylococcus aureus (MRSA) being the most sensitive strain.
The total amount of released ChiD was up to 16.10%, and the short-term green/blue light
illumination of composites did not affect the release of ChiD.

The absence of singlet oxygen formation suggests a structure-dependent mechanism
of antibiofilm activity, potentially involving the interaction between amine groups of
ChiDs and negatively charged bacterial cell membranes, leading to bacterial destruction.
These findings underscore the potential utility of BC-ChiD_blue and BC-ChiD_green in
eradicating pathogenic biofilms on open surfaces in biomedical applications, including
wound healing and the prevention of foodborne and nosocomial infections.

Moving forward, future research will focus on elucidating the specific molecular mech-
anisms underlying the antibiofilm activity of BC-ChiD composites and further optimizing
their formulation for enhanced efficacy. Additionally, investigating the long-term stability
and biocompatibility of these composites in vivo could provide valuable insights into their
potential clinical applications. Furthermore, exploring alternative light sources and dosing
regimens to maximize antibiofilm activity while minimizing potential side effects could be
beneficial for the development of more effective photodynamic therapy strategies against
biofilm-related infections.
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