
NUMERICAL SIMULATION OF COLD AIR JET ATTACHMENT TO NON 

ADIABATIC WALLS 

 
 

Nikola Mirkov1, Žana Stevanović1, and Žarko Stevanović1 

Institute of Nuclear Sciences “Vinča”, Laboratory for Thermal Engineering and Energy, 
Belgrade, Republic of Serbia 

 

 

 

ABSTRACT 

A jet of cold air is denser then ambient air but it 
adheres to the ceiling of the room over the given 
distance when it is blown horizontally close to it. 
Such behaviour of fluid jets is well-known as Coanda 
effect and it is widely used in practice like in the case 
of ventilation and air-conditioning of rooms. This 
phenomenon is not sufficiently known both in terms 
of mechanism and quantitative effects. The 
complexity is arising in the case of non-adiabatic 
ceiling that is common practice in real building 
structures, since the cold air jet, attachment distance 
is strongly influenced by heat flux thought the 
ceiling. The aim of this paper is to propose an 
algorithm of numerical simulation of fluid flow and 
heat transfer in the room and ceiling simultaneously, 
known as conjugate heat transfer problem. Using 
proposed model, uncertainty of heat transfer 
coefficient determination is avoided integrating the 
same general transport equation for fluid flow and 
heat transfer over the whole computational domain 
including both air movements in the room and ceiling 
solids.  

INTRODUCTION 
When a cold air jet is issued into quiescent 
surroundings bellow a ceiling parallel to the axis of 
the jet discharge, the so-called Coanda effect forces 
the jet to deflect towards the wall boundary and 
attach to the ceiling wall. After the jet impinges on 
the wall, the flow redevelops in the wall jet region.  
This type of flow is often called wall attaching offset 
jet and it occurs in many engineering applications 
other then air-conditioning such as environmental 
discharges, heat exchangers, fluid injection systems, 
cooling of combustion chamber wall in a gas turbine 
and others. 
From a computational perspective, airflows in the 
rooms are very complex. Due to this characteristics, 
they present a great challenge for the available 
numerical models. 
Fig. 1 shows the scheme of room model where the 
regions of interest are depicted including diffuser 
exhaust and ceiling wall. Due to the entrainment of 
fluid between the jet and the upper wall, there is a 
reduction of pressure in this region forcing the jet to 
deflect towards the boundary and eventually attach 

with it. Along the attachment length fluid jet and 
solid wall thermally interact. 
 

 
 

Figure 1 Scheme of Room Model 

Legend: 

R1-R2-R3-R4: First Cross-Section of Room (15m x 

3m x 2.25m) 

R2-S1-S2-R3: First Cross-Section of Wall (Ceiling: 

(15m x 3m x 0.25m)) 

F1-F2-F3-F4: Exhaust of Rectangular Diffuser 

(0.5m x 0.25m) 

M1-M2: Central-Vertical Line on x/H=5 

M2-M3: Central-Vertical Line on x/H=10 

M2-M3: Central-Vertical Line on x/H=20 

 

The present study is aimed at investigating the tri-
dimensional turbulent fluid flow of wall attaching jet 
and conjugate heat transfer characteristics of fluid 
flow and solid wall. 
A conjugate heat transfer problem occurs when the 
fluid regime is coupled with the conducting solid 
wall of finite thickness. 
There have been numerous studies on wall jets, one 
study of cold air jet attachment to walls is presented 
in Marchal (1999). Kanna and Das (2005a) have 
studied the conjugate heat transfer of laminar plane 
wall jet and reported a closed-form solution for the 
interface temperature, local Nusselt number and 
average Nusselt number. The conjugate heat transfer 
of a laminar incompressible offset jet is reported in 
other paper by Kanna and Das (2005b). The ideas of 
conjugate heat transfer as they were presented here 
appear in Patankar (1980). 
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MATHEMATICAL MODEL 
System of partial differential equations describing 
conservation of mass, mommentum and energy, 
together with two transport equations for turbulence 
kinetic energy and turbulence kinetic energy 
dissipation rate constituting Chen-Kim 
k ε− turbulence model, has following form: 
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Which is uniquely defined with additional relations: 
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Carefully looking at equations at this system we can 
observe that they have the same form of general 
equation of conservation of field, which was 
expected. Difference appears in  additional terms on 
right hand side. If we generally name them source 
terms and denote with ΦS , then we can alternatively 

write one represenative transport equation instead of 
writting system of equations (1). This equation will 
have the form: 
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First term on left hand side represents local change of 
variable Φ , then follows a convective term, and 
third  term defines a diffusion of variable Φ . The 
form of general transport coefficient ΦΓ  depends on 

physical meaning of general variable Φ . This 
general form has significant adventage in defining 
numerical model because we need to define identical 
numerical algorithms for solving all partial 
differential equations of conservation. 
Integrating system of partial differential equations (1) 
coupled with additional realtions (2), with defined 
initial and boundary conditions for each case 
separatly, we attain required solution field of 
physical parameters of fluid in defined space and 
time domain. 
On the other hand this algorithm didn’t solve the 
problem of heat transfer between fluid and solid wall, 
and problem of heat conduction in solid wall. Later 
problem is governed by well known equation of heat 
conduction in solids: 
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Where mT  stands for temperature of material, mc  

and  mλ  represent specific heat capacity and heat 

conduction coefficient of solid body respectively. 

Classical approach in solving problem of heat 
transfer between fluid and solid wall is aplication of 
Newton’s law of heat transfer. 

 ( )w fq T Tα= −                      (5) 

Where wT  is the solid wall temperature which is in 

contact with the fluid of temperature fT , and  α  

represents heat transfer coefficient. According to 
above relations it is clear that we need to know the 
value of the heat transfer coefficient and temperature 
distributions in order to determine the ammount of 
heat exchanged between the solid wall and the fluid. 
Equation (5) has simple form but is very complex in 
the essence. Heat transfer coefficient is a function of 
several variables. In the first place it depends of 
thermophysical characteristics  of fluid, velocity of 
fluid flow, flow character (laminar or turbulent) and 
heat exchange surface geometry. As a consequence 
of these characterictics coefficient of heat transer has 
attributes of local variable. 
Previous theoretical and engineering practice of 
solving this problem have mostly been based on 
determing average coefficient of heat transfer - a 
process which leeds to reduction of solution 
accuracy. Most popular form of determing average 
coefficient of heat transfer is derived from criterial 
analysis trough Nusselt number: 
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Where L represents characteristic scale of flow field. 
On the other side Nusselt number is a function of 
Prandtl and Reynolds number, in general form this 
function has following form: 

b c
Nu a Pr Re= ⋅                      (7) 

Where a, b, and c are empiricaly determined. 
Shown classical way of solving this problem brings 
us to conclusion that even if the fields of physical 
parameters in flow field and solid wall are given in 
differential form, empirism in determing coefficient 
of heat transfer faces us with uncertanity of solution 
accuracy. 
Quality of solution of partial differential equations of 
turbulent heat transfer and mommentum in fluid (1) 
and differential equations of heat conduction in solid 
wall (4) cannot be neglected, especially because 
equation (4) itself has the form of general transport 
equation (3). This is the main reason for searching 
alternative idea for the solution of given problem by 
discarding empirism connected with Newton’s law. 

Conjugate differential model of  heat transfer in 

fluid and solid  

The idea of conjugate differential model of heat 
transfer in fluid and solid lays in the possibility to 
treat the fluid and solid wall as a unique „flow 
space“. In order to present this model in detail certain 
mathematical manipulations are executed on equation 
(4) so it is being recasted in the form of general 
transport equation and then added to the system of 
partial differential equations (1). Intergrating such 
system, empirical determination of heat transfer 
coefficient is avoided and the solution is obtained 
both for the fluid and solid wall domain. 
Equation (4) can be rewritten in following form: 
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 Where it can be written that /m m m mcρ λΓ = . 

Second, convective term is written intentionaly 
although it doesn’t exist bacause we are dealing with 
solid domain. Therefore, if we somehow manage to 
define that part of flow space as belonging to solid, 
set velocity field equal to zero, and if we translate 
transport coefficient mΓ  and material density mρ  to 

coresponding equivalent which holds for fluid, 
obatined differential equation will be valid for fluid 
space, and we have means to add it to system of 
partial differential equations (1). Equation (8) will 
undergo mathematical transformations. First it will 
be multiplied by mρρ /  getting: 
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And then adjusting transport coefficient we get: 
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Knowing that relation for the transport coefficient in 

fluid is expressed by PT c
m

/ρλΓ = , equation (10) 

becomes: 
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Final step in obtaining differential equation of 
interest is introducing porosity of integational cell 
coefficient. 
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Finally we can conclude the procedure of 
transforming equation (4) which now has the form of 
equation valid for fluid flow domain. 
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where TVTm
ΓβΓ = . 

Formally and essentially equation (13) represents 
energy equation of system (1), so the number of 
equations in system (1) remained the same. 
Integrating energy equation is simultanious for fluid 
and solid domain, while it is necesary to define 
following conditions in order to have succesful 
integration. 

1. Set velocity field to zero in domain of flow 
space which belongs to solid wall. 

2. Introduce new dependant variable – the 
porosity coefficient Vβ  and set it to one in fluid part 

of domain, and having value of λλ mpm cc /  flow 

space which belongs to solid wall. 

NUMERICAL SETUP AND BOUNDARY 
CONDITIONS 
In this study mathematical model has been solved 
numerically using PHOENICS software. 
For that purpose physical domain is divided by 75 x 
40 x 50 cells where 75 x 40 x 10 cells cover the solid 
wall. The flow is resolved down to viscous sub-layer 
and logarithmic wall functions are used for the first 
row of the cells. Numerical grid at central X-Z plane 

is shown in Figure 2.  
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Three cases have been considered with difference in 
flow speed at diffuser exhaust. Velocities are equal to 
1, 1.5, and 2 m/s respectively. Temperature of issuing 
jet is 15 

o
C  in all three cases. It is important to stress 

that wall surface temperature is not a boundary 
condition, it is calculated from the inner region. For 
the other side of the wall it is assumed that there are 
no heat sources or sinks. Brick is specified as a wall 
material. 
 

 
 

Figure 2 Numerical grid at central X-Z plane (75 x 

40 x 50 = 150000 total number of cells, where 75 x 

40 x 10 = 30000 cells cover the solid wall) 

PRESENTATION OF RESULTS 
Two sets or results are presented, first concerning 
flow field, where attaching the air jet to the ceiling 
due to Coanda effect becomes apparent, and second 
concerning temperature distribution in central 
vertical plane and in horizontal cross section of the 
wall placed five centimetres above the fluid-solid 
interface.  
Horizontal component of velocity at central x-z plane 
for all three respective cases is shown in Fig. 3. 
Temperature distribution in central vertical plane and 
in horizontal cross section of the wall placed five 
centimetres above the fluid-solid interface are shown 
in Figures 4, 5 and 6.  
For the convenience of presenting the results in fluid 
flow, in order to comprise three-dimensional effect of 
flow, we chose to visualise the fictive surfaces with 
equal temperature (temperature iso-surface).  Fig. 7, 
8 and 9 show contours of the cold air jet by 
temperature iso-surfaces with value of 16 

o
C, just one 

degree above the temperature of air jet at diffuser 
exhaust.   
Finally temperature distributions along central lines 
going trough both fluid and solid domain are shown 
on Fig. 10, Fig. 11. and Fig. 12 for each separate case 
respectively.  

CONCLUSION 
Our basic objective has been description of 
methodology for simultaneous computation of 
temperature distribution in room and surrounding 
walls. Principal idea and benefit of suggested 
procedure is elimination of uncertainty in determing 

coefficient of heat transfer and empirical relations 
connected to Re and Nu numbers. Practically, 
manipulating differential equation of thermal energy 
conservation and prescribing special boundary 
conditions in solid, model allows simultaneous 
integration of complete differential model in fluid 
and solid. 
This paper doesn’t have intention to verify 
quantitative results yet to present the methodology. 
As an adequate example, one that has certain 
complexion related with it, ceiling attaching wall jet 
exhibiting Coanda effect is simulated for different 
velocities of air flow. 
Results shown in previous section are illustrative and 
clearly display good properties of suggested 
procedure. 
One of the main disadvantages of the procedure is 
ability to be carried out only in case of differential 
model and corresponding numerical integration with 
available software of this class. In this paper we used 
FLAIR - special HVAC module of general code 
PHOENICS (www.cham.co.uk). 
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NOMENCLATURE 
  G Volumetric production rate of  k  
  k  Turbulence kinetic energy 
  ε  Turbulence dissipation rate 
  Re Reynolds number 
  Nu Nusselt number 

mΓ  Transport coefficient 

mλ  Heat conduction coefficient 

mc  Specific heat capacity 

fT  Fluid temperature 

wT  Wall temperature 

α  Teat transfer coefficient 

Vβ  Integrational cell porosity 
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Figure 3 Air Flow Field: U-velocity at central x-z plane (Top: Case 1, inlet velocity equal to 1 m/s, Middle: Case 

2,  inlet velocity equal to 1.5  m/s, Bottom: Case 3, inlet velocity equal to 2 m/s) 

 

 

 
 

 
Figure 4 Temperature Field for Case 1 (Top: Central x-z plane; Bottom: solid x-y plane at z=2.3m) 
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Figure 5 Temperature Field for Case 2 (Top: Central x-z plane; Bottom: solid x-y plane at z=2.3m) 

 
 
 
 

 

 
 

Figure 6 Temperature Field for Case 3 (Top: Central x-z plane; Bottom: solid x-y plane at z=2.3m) 
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Figure 7 Temperature Iso-Surface of 16 
o
C  for Case 1. 

 
 

 
 

Figure 8 Temperature Iso-Surface of 16 
o
C  for Case 2. 

 
 

 
 

Figure 9 Temperature Iso-Surface of 16 oC  for Case 3. 
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Figure 10 Temperature distribution at central line M1-M2. 
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Figure 11 Temperature distribution at central line M3-M4. 

1.00

1.25

1.50

1.75

2.00

2.25

2.50

15 16 17 18 19 20

x / H = 20

 U = 1.0 m/s

 U = 1.5 m/s

 U = 2.0 m/s

 

 

Temperature [ 
o
C ]

R
o
o
m

 H
e

ig
h
t 

[ 
m

 ]

Room - Air

Wall - Solid

 
Figure 12 Temperature distribution at central line M5-M6. 
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