

11th International Conference on Renewable Electrical Power Sources

PROCEEDINGS

Editor Milica Vlahović

Belgrade, November 02-03, 2023

11th International Conference on Renewable Electrical Power Sources

DOIEE

PROCEEDINGS 11th International Conference on Renewable Electrical Power Sources

Chamber of Commerce and Industry of Serbia, Belgrade, November 2 and 3, 2023

Publisher

Union of Mechanical and Electrotechnical Engineers and Technicians of Serbia (SMEITS) Society for Renewable Electrical Power Sources Kneza Miloša str. 7a/II, 11000 Beograd

President to the Society for Renewable Electrical Power Sources within the SMEITS Prof. dr Zoran Lazarević

Editor

Dr Milica Vlahović, Full Research Professor University of Belgrade Institute of Chemistry, Technology and Metallurgy National Institute of the Republic of Serbia

> Tiraž 100 primeraka

CD umnožava MT-KOMEX doo, Beograd

ISBN

978-86-85535-16-1

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

502.171:620.9(082)(0.034.2)

INTERNATIONAL Conference on Renewable Electrical Power Sources (11; 2023; Beograd)

Proceedings [Elektronski izvor] / 11th International Conference on Renewable Electrical Power Sources, Belgrade, November 02-03, 2023 ; [editor Milica Vlahović]. - Beograd : Union of Mechanical and Electrotechnical Engineers and Technicians of Serbia SMEITS, 2023 (Beograd : BEOŽivković). - 1 elektronski optički disk (CD-ROM) ; 12 cm

Sistemski zahtevi: Nisu navedeni. - Nasl. sa naslovne strane dokumenta. - Tiraž 100. - Apstrakti. - Bibliografija uz svaki rad. ISBN 978-86-85535-16-1

а) Енергетски извори -- Одрживи развој -- Зборници

COBISS.SR-ID 129137161

Organizer

Savez mašinskih i elektrotehničkih inženjera i tehničara Srbije (SMEITS), Društvo za obnovljive izvore električne energije

Co-organizer Institut za arhitekturu i urbanizam Srbije, Beograd

Privredna komora Srbije, Beograd

Sponsors

Interplast, Greece

MS Kablovi, Paraćin

Endorsement MT-KOMEX, Beograd

Održavanje 11. MKOIEE finansijski je pomoglo Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije

International Scientific Committee

Prof. Dr. Mohamed Salah Aggoun, Algeria Prof. Dr. Slađana Alagić, Serbia Dr. Ana Alil. Serbia Assist. Prof. Dr. Marina Aškrabić, Serbia Dr. Valentin Birdeanu, Romania Prof. dr Gordana Broćeta, Bosnia and Herzegovina Prof. Dr. Oleksandr Bondarenko, Ukraine Dr Aleksandar Devečerski, Serbia Dr. Silvana Dimitrijević, Serbia Dr. Stevan Dimitrijević, Serbia Dr. Nataša Đorđević, Serbia Prof. Dr. Mirko Gojić, Croatia Dr. Miroslav Ignjatović, Serbia Dr. Aleksandar Ivančić, Spain Prof. Dr. Revathi Karunanithi. India Prof. Dr. Borut Kosec, Slovenia Prof. Dr. Zoran Lazarević, Serbia Dr Filip Ljubinković, Portugal Prof. Dr. Nikolay Mihaylov, Bulgaria Dr. Marina Nenković-Riznić, Serbia Dr. Jovana Perendija, Serbia Dr. Sanja Petronić, Serbia Prof. Dr. Olena Ponomaryova, Ukraine Dr. Mila Pucar, Serbia Prof. Dr. Nikola Rajaković, Serbia Prof. Dr. Ivan Rajšl, Croatia Prof. Dr. Aleksandar Savić, Serbia Prof. Dr. Zoran Stević, Serbia Prof. Dr. Valeriy Sytnikov, Ukraine Prof. Dr. Dejan Tanikić, Serbia Prof. Dr. Dragan Tasić, Serbia Prof. Dr. Kong Fah Tee, Saudi Arabia Dr. Nataša Tomić, United Arab Emirates Dr. Milica Vlahović, Serbia (president)

Organizing Committee

Borjan **Brankov** Vladan **Galebović** Dr Stevan **Dimitrijević** Dr Sanja **Petronić** Dr Mila **Pucar** Ilija **Radovanović** Assoc. Prof. Dr Aleksandar **Savić** (predsednik) Prof. dr Zoran **Stević** Žarko **Ševaljević** Dr Milica **Vlahović** Milica **Živanović**

FOREWORD

The conditions created by the development of technologies in which modern man lives have led to a complex and paradoxical effect: that by removing obstacles on the way to a more comfortable, simpler, faster and more efficient life and way of working, man also generates numerous misfortunes, attracting dark clouds of threats to the survival of the planet and humanity. The question that concerns and affects all of us - all people, all living beings, systems in which life takes place, large and small, strong and weak - boils down to the problem of the negative impact of man on the environment; this issue invites us to an urgent solution by looking at the causes, proposing solutions, evaluating them, changing approaches and ways of thinking, as well as drawing correct conclusions. Simply put, by adapting nature to one's own needs, man threatens and damages it. That is why, with the joint efforts of all of us, individuals, organizations and states, it is necessary to take all possible measures to immediately prevent the negative effects that are ahead of us.

The importance of renewable sources of electricity, which this international conference focuses on, is noticeable from two angles: the first - it is certain that fossil fuels as a resource will disappear and it is necessary to find alternative sources, the second - the use of renewable energy sources by its essence implies "clean" technology that significantly contributes to reducing CO₂ emissions and thus mitigating climate change and reducing pollution, while encouraging social and economic development in all spheres of life.

The 11th International Conference on Renewable Electrical Power Sources is organized by the Society for Renewable Electrical Power Sources (DOIEE) at SMEITS, with co-organizers: The Institute of Architecture and Urban & Spatial Planning of Serbia (IAUS) and the Chamber of Commerce and Industry of Serbia, with the support of the Ministry of Science, Technological Development and Innovation of the Republic of Serbia.

The registered participants designed their papers according to the given conference topics: - Energy sources and energy storage;

- Energy efficiency in the context of use of renewable energy sources (RES);
- Environment, sustainability and policy;
- Applications and services.

Eminent authors - scientists, teachers, experts in this field from fifteen different countries: Algeria, Belgium, Bosnia and Herzegovina, China, Croatia, Greece, Hungary, India, Portugal, Saudi Arabia, Serbia, Slovenia, Spain, the United Arab Emirates, and Ukraine, contributed to the conference through sixty-nine papers that were reviewed by the Scientific Committee of the Conference, and after the review process were accepted for presentation at the conference and for publication in the proceedings.

At the end of this short message and at the beginning of the proceedings I believe that it can be proudly said that scientists, researchers, policy makers and industry experts gathered in one place, in order to exchange experiences and knowledge with the aim of promoting scientific and professional ideas and results of research, technology improvement for the use of RES, promoting the rational use of electricity, affirming and proposing inventive solutions in the field of sustainable sources of electricity.

Belgrade, November 2023 Milica Vlahović

SADRZAJ / CONTENTS

Plenarna predavanja:

1.	IZAZOVI U ELEKTROHEMIJSKOM SKLADIŠTENJU ENERGIJE CHALLENGES IN THE ELECTROCHEMICAL ENERGY STORAGE Branimir N. GRGUR
2.	POLIANILIN: PROVODNI POLIMER U UREĐAJIMA ZA SKLADIŠTENJE ENERGIJE POLYANILINE: CONDUCTIVE POLYMER IN ENERGY STORAGE SYSTEMS Aleksandra JANOSEVIC LEZAIC
3.	ISPITIVANJE KVALITETA EKSPLOZIVNO ZAVARENOG SPOJA RAZNORODNIH METALA ZA POTENCIJALNU PRIMENU U OBNOVLJIVIM IZVORIMA ENERGIJE TESTING THE QUALITY OF EXPLOSIVELY WELDED JOINTS OF DISSIMILAR METALS POTENTIALLY APPLICABLE IN RENEWABLE ENERGY SOURCES Ana ALIL, Milos LAZAREVIC, Danica BAJIC, Nada ILIC, Tihomir KOVACEVIC, Bogdan NEDIC23
	METODE BEZ RAZARANJA I UNAPREĐENJE POUZDANOSTI RADA KULE ZA HLAĐENJE, KAO ASPEKT TEMATIZACIJE OBNOVLJIVIH IZVORA ENERGIJE NON-DESTRUCTIVE METHODS AND IMPROVEMENT OF THE COOLING TOWER OPERATION RELIABILITY, AS AN ASPECT OF RENEWABLE ENERGY SOURCES THEMATIZATION Marko JARIC, Sanja PETRONIC, Nikola BUDIMIR, Zoran STEVIC, Suzana POLIC
	ELEKTRIČNA SVOJSTVA TANKIH FILMOVA GO I GO/WPA NA INTERGDIGITALNIM ELEKTRODAMA ELECTRICAL PROPERTIES OF GO AND GO/WPA THIN FILMS ON INTERDIGITAL ELECTRODES Zeljko MRAVIK, Milica PEJCIC, Sonja JOVANOVIC, Darija PETKOVIC, Misa STEVIC, Zoran STEVIC, Zoran JOVANOVIC
2.	MODELOVANJE I SIMULACIJA UREĐAJA ZA NAVODNJAVANJE KAP-PO-KAP MODELING AND SIMULATION OF A DEVICE APPLIED FOR LOW-FLOW DRIP IRRIGATION Noureddine BENSEDIRA, Abdessmad MILLES, Mohammed-Salah AGGOUNE
3.	UTICAJ SENKE USLED DENIVELACIJE KROVA NA PROIZVODNJU KROVNE SOLARNE ELEKTRANE IZLAZNE SNAGE 400KW THE INFLUENCE OF THE SHADOW CAUSED BY THE SLOPE OF THE ROOF ON THE PRODUCTION OF A ROOF-TOP SOLAR POWER PLANT WITH AN OUTPUT POWER OF 400KW Marko S. DJUROVIC, Zeljko V. DESPOTOVIC

4.	PROJEKTOVANJE I IZVOĐENJE SOLARNE ELEKTRANE IZLAZNE SNAGE 400KW NA KROVU FABRIČKE HALE "EP BELT"-LOZNICA DESIGN AND REALISATION PV ROOF-TOP POWER PLANT 400KW IN THE FACTORY "EP BELT"-LOZNICA Zeljko V. DESPOTOVIC, Marko S. DJUROVIC
5.	PRENAMENA NAPUŠTENIH ILI STARIH NAFTNIH POLJA ZA IZGRADNJU GEOTERMALNIH ELEKTRANA THE CONVERSION OF ABANDONED OR MATURE OIL FIELDS INTO GEOTHERMAL POWER PLANT LOCATIONS Ivan RAJSL, Sara RAOS
6.	POBOLJŠANJE SPOSOBNOSTI SAMOIZLEČIVANJA I ŽILAVOSTI MIKROKAPSULA SA TUNG ULJEM DODATKOM GRAFENSKIH NANOPLOCICA I NJIHOVA PRIMENA U EPOKSI SISTEMU THE IMPROVEMENT OF SELF-HEALING CAPABILITY AND TOUGHNESS OF MICROCAPSULES WITH TUNG OIL BY THE ADDITION OF GRAPHENE NANOPLATELETS AND THEIR APPLICATIONS IN EPOXY SYSTEM Natasa TOMIC, Abdullah MUSTAPHA, Maitha ALMHEIRI, Mohamed Nasr SALEH
7.	MODEL SOLARNOG PANELA SA SOLARNIM TRAGAČEM, UPRAVLJAN POMOĆU ARDUINO UNO MODULA MODEL OF THE SOLAR PANEL WITH SOLAR TRACKER CONTROLLED BY THE ARDUINO UNO BOARD Ivan TODORIC, Djordje DIHOVICNI, Dragan KRECULJ, Sanja JEVTIC, Nada RATKOVIC KOVACEVIC
8.	TERMOELEKTRIČNI EFEKAT KAO IZVOR ENERGIJE U PRUŽNIM ŽELEZNIČKIM APLIKACIJAMA THERMOELECTRIC EFFECT AS A SOURCE OF ENERGY IN RAILWAY TRACKSIDE APPLICATIONS Sanja JEVTIC, Milesa SREĆKOVIĆ, Dragan KRECULJ, Nada RATKOVIĆ KOVACEVIC
9.	POREĐENJE RAZNOVRSNIH TIPOVA ENERGIJE OD POKRETNIH VODA COMPARISON OF VARIOUS TYPES OF ENERGY FROM MOVING WATERS Djordje DIHOVICNI, Dragan KRECULJ, Olga JAKSIC, Nada RATKOVIC KOVACEVIC
10.	ISPITIVANJE LIF/B SISTEMA KORIŠĆENJEM NEGATIVNOG MODA LDI MS: MOGUĆI SISTEM ZA SKLADIŠTENJE VODONIKA INVESTIGATION OF LIF/B SYSTEM USING THE NEGATIVE MODE LDI MS: A POSSIBLE HYDROGEN STORAGE SYSTEM Filip VELJKOVIC, Bojan JANKOVIC, Ivana STAJCIC, Milovan STOJILJKOVIC, Marija JANKOVIC, Djordje KAPURAN, Suzana VELICKOVIC
11.	UŠTEDA ENERGIJE PRILIKOM ELEKTROLITIČKOG DOBIJANJA VODONIKA-POREĐENJE DVOKOMPONENTNIH I TROKOMPONENTNIH JONSKIH AKTIVATORA ENERGY SAVINGS IN ELECTROLYTIC HYDROGEN PRODUCTION – COMPARISON OF BINARY AND TERNARY ACTIVATORS Sladjana MASLOVARA, Dragana VASIC ANICIJEVIC, Snezana BRKOVIC, Vladimir NIKOLIC, Milica MARCETA

12.	KINETIKA TERMALNE DEGRADACIJE LIGNOCELULOZNOG OTPADA NA BAZI KOŠTICA BRESKVE THERMAL DEGRADATION KINETICS OF LIGNOCELLULOSIC PEACH STONE WASTE Zorica LOPIČIĆ, Anja ANTANASKOVIĆ, Slobodan CVETKOVIC, Vladimir ADAMOVIC, Tatjana SOSTARIC, Jelena AVDALOVIC, Mirjana KIJEVCANIN
13.	THERMAL PROPERTIES OF RAPIDLY SOLIDIFIED Cu-Al-Ni-Mn SHAPE MEMORY ALLOY Borut KOSEC, Milan BIZJAK, Mirko GOJIC, Ales NAGODE, Ivana IVANIC, Blaž KARPE
14.	PROCENA POTENCIJALA POLJOPRIVREDNO-FOTONAPONSKIH SISTEMA U SRBIJI ASSESSMENT OF THE AGRIVOLTAIC POTENTIAL IN SERBIA Aleksandar IVANCIC, Melita ROGELJ, Bora OBRADOVIC, Slaviša JELISIC
En	ergetska efikasnost u kontekstu primene RES:
1.	ULOGA KUPCA-PROIZVOĐAČA (PROZJUMERA) U PRIMENI OIEE U SRBIJI: PRE-PREKE I MOGUĆNOSTI THE ROLE OF THE BUYER-PRODUCER (PROSUMER) IN THE IMPLEMENTATION OF RES IN SERBIA: OBSTACLES AND OPPORTUNITIES Marina NENKOVIC-RIZNIC, Borjan BRANKOV, Mila PUCAR, Ana STANOJEVIC
2.	PRIMENA SERIJSKE VEZE KOMPONENTI FREKVENTNO ZAVISNIH KOMPONENTI ISTOG TIPA U SISTEMIMA SA OBNOVLJIVIM IZVORIMA ENERGIJE APPLICATION OF A SERIES CONNECTION OF THE SAME TYPE BANDPASS FREQUENCY DEPENDENT COMPONENTS IN SYSTEMS WITH RENEWABLE ENERGY SOURCES Tykhon SYTNIKOV, Igor PEREKRESTOV, Andrey CHMELECSKY, Pavlo STUPEN, Valerii SYTNIKOV
3.	SMANJENJE GUBITAKA U DISTRIBUTIVNOJ MREŽI UVAŽAVAJUĆI NESIGURNOST SNAGE OPTEREĆENJA I DISTRIBUIRANE PROIZVODNJE IZ OBNOVLJIVIH IZVORA REDUCTION OF LOSSES IN THE DISTRIBUTION NETWORK CONSIDERING THE UNCERTAINTY OF LOAD AND RENEWABLE DISTRIBUTED GENERATION POWER Nikola KRSTIC, Dragan TASIC, Teodora DENIC
4.	TEHNOLOGIJE ZA PRAĆENJE POLJOPRIVREDNIH ZASADA POMOĆU BESPILOTNIH LETILICATECHNOLOGIES FOR MONITORING AGRICULTURAL CROPS USING UAVNjegos DRAGOVIC, Milovan VUKOVIC, Snezana UROSEVIC173
5.	MIKRO STEP ELEKTROMOTORNI POGON KONTROLISAN MIKROKONTROLEROM MICRO STEP ELECTRIC DRIVE CONTROLLED BY MICROCONTROLLER Misa STEVIC, Zoran STEVIC, Predrag STOLIC, Ilija RADOVANOVIC, Dejan ILIC, Zoran JOVANOVIC
6.	SMART MATERIJALI I SAVREMENI KONTEKST ZA FUNKCIONALIZACIJU OBNOVLJIVIH IZVORA ENERGIJE U GALERIJSKOM PROSTORU SMART MATERIALS AND CONTEMPORARY CONTEXT FOR THE FUNCTIONALIZATION OF RENEWABLE ENERGY SOURCES IN THE GALLERY SPACE Suzana POLIC, Sanja PETRONIC, Marko JARIC

7.	BLOCKCHAIN I RANE VIZUELIZACIJE KORIŠĆENJA ENERGIJE VETRA U MUZEJSKIM KOLEKCIJAMA BLOCKCHAIN AND EARLY VISUALIZATION OF THE USE OF WIND ENERGY IN MUSEUMS COLLECTIONS Suzana POLIC
8.	ENERGETSKA EFIKASNOST U ELEKTRIČNIM VOZILIMA – PREGLED ENERGY EFFICIENCY IN ELECTRIC VEHICLES – AN OVERWIEW Zoran STEVIC, Ilija RADOVANOVIC, Predrag STOLIC, Sanja PETRONIC, Marko JARIC, Misa STEVIC, Dejan ILIC
9.	TOPOLOGIJE NEIZOLOVANIH DC-DC KONVERTORA SA POBOLJŠANIM KARAKTERISTIKAMANON-ISOLATED DC-DC CONVERTERS TOPOLOGIES WITH IMPROVED CHARACTERISTICSOleksii YAMA, Zoran STEVIC, Oleksandr BONDARENKO209
10.	MOGUĆNOST PRIMENE ULTRAZVUČNE KAVITACIJE U PROCESU PRERADE INDUSTRIJSKIH OTPADNIH VODA POSSIBILITY OF USING ULTRASONIC CAVITATION IN THE PROCESS OF INDUSTRIAL WASTEWATER TREATMENT Sladjana JEZDIMIROVIC, Marina DOJCINOVIC
11.	ZNAČAJ DISTRIBUCIJE TOPLOTE U SAVREMENIM ENERGETSKI EFIKASNIM ELEKTRIČNIM VOZILIMA IMPORTANCE OF HEAT DISTRIBUTION IN MODERN ENERGY EFFICIENT ELECTRICAL VEHICLES Zoran STEVIC, Borivoje BEGENISIC, Dušan MURGASKI, Luka STAJIC, Sanja PETRONIC, Ilija RADOVANOVIC, Suzana POLIC
12.	PRIMERI PRIMENE VIŠEKRITERIJUMSKOG ODLUČIVANJA U OBLASTI OBNOVLJIVIH IZVORA ENERGIJE EXAMPLES OF THE APPLICATION OF MULTI-CRITERIA DECISION-MAKING IN THE FIELD OF RENEWABLE ENERGY SOURCES Zoran STIRBANOVIC, Dragiša STANUJKIC, Jovica SOKOLOVIC
Životna sredina, održivost i politika:	
1.	RAZMATRANJE PRISUSTVA FENANTRENA U OPŠTINI BOR NA BAZI NJEGOVOG SADRŽAJA U LIŠĆU I STABLJIKAMA HEDERA HELIX L. A CONSIDERATION OF PHENANTHRENE PRESENCE IN BOR'S MUNICIPALITY BASED ON ITS CONTENT IN LEAVES AND STEMS OF HEDERA HELIX L. Aleksandra D. PAPLUDIS, Slađana C. ALAGIC, Snezana M. MILIC, Jelena S. NIKOLIC, Dragana V. MEDIĆ, Zoran M. STEVIC, Vesna P. STANKOV JOVANOVIC

3.	ULOGA SINERGIJE RUDARSKIH I RAČUNARSKIH TEHNOLOGIJA U PROCESU TRANZICIJE KA OBNOVLJIVIM IZVORIMA ELEKTRIČNE ENERGIJE
	THE ROLE OF THE SYNERGY OF MINING AND COMPUTER TECHNOLOGIES IN
	THE PROCESS OF TRANSITION TO RENEWABLE ELECTRICAL POWER SOURCES
	Predrag STOLIC, Ilija RADOVANOVIC, Zoran STEVIC, Dejan PETROVIC
4.	ODRŽIVOST REŠENJA ZASNOVANIH NA OBNOVLJIVIM IZVORIMA ELEKTRIČNE ENERGIJE – INFORMATIČKI PRISTUP SUSTAINABILITY OF SOLUTIONS BASED ON RENEWABLE SOURCES OF ELECTRICITY - ICT APPROACH
	Predrag STOLIC, Ilija RADOVANOVIC, Zoran STEVIC
5.	CHATGPT, MATERIJALI I OBNOVLJIVI IZVORI ENERGIJE: JEDAN NEELABORIRANI PROSTOR CHATGPT, MATERIALS AND RENEWABLE ENERGY SOURCES: ONE UNREALIZED SPACE Suzana POLIC, Sanja PETRONIC, Marko JARIC
6.	ANALIZA STRUKTURE OŠTEĆENJA GRAĐEVINSKIH KONSTRUKCIJA NA OSNOVU ODREĐIVANJA FRAKCIONOG SASTAVA OSTATAKA ANALYSIS OF THE STRUCTURE OF BUILDING STRUCTURE FAILURES BASED ON THE DETERMINATION OF THE FRACTIONAL COMPOSITION OF DEBRIS Valeriia CHORNA, Elena PONOMARYOVA, Sergey SHATOV, Liliia DRUZHININA
7.	UTICAJ EFEKTA STAKLENE BAŠTE NA KLIMATSKE PROMENE THE INFLUENCE OF THE GLASS GARDEN EFFECT ON CLIMATE CHANGES Sladjana JEZDIMIROVIC, Marina DOJCINOVIC
8.	PRIMENA TEHNOLOGIJE 3D ŠTAMPE BETONA U REPUBLICI SRBIJI APPLICATION OF 3D CONCRETE PRINTING TECHNOLOGY IN SERBIA Stefan Z. MITROVIC, Ivan IGNJATOVIC
9.	ULOGA VODOPROPUSNIH PROIZVODA U POPLOČAVANJU URBANIH SREDINA U SVETLU ODRŽIVOG KORIŠĆENJA RESURSA THE ROLE OF PERMEABLE PRODUCTS IN THE PAVING OF URBAN ENVIRONMENT IN THE LIGHT OF SUSTAINABLE USE OF RESOURCES Marina ASKRABIC, Aleksandar RADEVIC, Aleksandar SAVIC
10.	OTPADNO STAKLO KATODNIH CEVI U PRIPREMI BETONA – POVEĆAVANJE ODRŽIVOSTI CATHODE RAY TUBE WASTE GLASS IN CONCRETE PREPARATION – INCREASING SUSTAINABILITY Ivana JELIĆ, Aleksandar SAVIC, Tatjana MILJOJCIC, Marija SLJIVIC-IVANOVIC, Marija JANKOVIC, Slavko DIMOVIC, Dimitrije ZAKIC, Dragi ANTONIJEVIC
11.	DOPRINOS STUDIJI VEGETACIJSKOG POKRIVAČA: STUDIJA SLUČAJA ZELENIH POVRŠINA
	U GRADU HRAOUA (ALŽIR) CONTRIBUTION TO THE STUDY OF VEGETATION COVER: A CASE STUDY OF GREEN SPACES IN THE CITY OF HRAOUA (ALGERIA) Mostafia BOUGHALEM, Mourad ARABI, Abdoulkadri TOURE,
	Khadidja BOUKAROUBA, Farida OUZAL

12.	TRANZICIJA KA OBNOVLJIVIM IZVORIMA ENERGIJE, DEKARBONIZACIJA I PROMENE U
	ENERGETSKOM SEKTORU KOJE UTIČU NA RADNIKE U TRADICIONALNIM INDUSTRIJAMA
	TRANSITION TO RENEWABLE ENERGY SOURCES, DECARBONIZATION, AND CHANGES IN
	THE ENERGY SECTOR AFFECTING WORKERS IN TRADITIONAL INDUSTRIES
	Miloš CURCIC

<u>Aplikacije:</u>

1.	IMPLEMENTACIJA SOLARNE ELEKTRANE SNAGE 200 KWP NA RAVNOM KROVU U PARAĆINU IMPLEMENTATION OF 200 KWP SOLAR POWER PLANT ON A FLAT ROOF IN PARAĆIN Bosko IVANKOVIC, Zoran LAZAREVIC, Ilija RADOVANOVIC, Misa STEVIC, Predrag STOLIC, Dejan ILIĆ, Zoran STEVIC
2.	FIZIČKO-HEMIJSKA KARAKTERIZACIJA ŠTAMPANIH PLOČA PHYSICO-CHEMICAL CHARACTERIZATION OF PCBs Silvana B. DIMITRIJEVIC, Aleksandra T. IVANOVIC, Srdjana MAGDALINOVIC, Stefan S. DJORDJIJEVSKI, Stevan P. DIMITRIJEVIC
3.	DEALLOYING PDNI5 LEGURE U 0.5M SULFATNOJ KISELINI DEALLOYING OF PDNI5 ALLOY IN 0.5M SULFURIC ACID Stevan P. DIMITRIJEVIC, Silvana B. DIMITRIJEVIC, Aleksandra T. IVANOVIC, Renata KOVACEVIC 341
4.	SAGOREVANJE OTPADNOG TERMOBARIČNOG EKSPLOZIVA POD KONTROLISANIM USLOVIMA KAO IZVOR ENERGIJE COMBUSTION OF WASTE THERMOBARIC EXPLOSIVE UNDER CONTROLLED CONDITIONS AS A SOURCE OF ENERGY Danica BAJIC, Mirjana KRSTOVIC, Mladen TIMOTIJEVIC, Bojana FIDANOVSKI
5.	INTERAKCIJE LASERA OD INTERESA ZA MATERIJALE U SISTEMIMA I KOMPONENTAMA U TRANSFORMACIJI ENERGIJE U LINEARNOM I NELINEARNOM OPSEGU LASER INTERACTION OF INTEREST FOR MATERIALS IN SYSTEMS AND COMPONENTS IN ENERGY TRANSFORMATION IN LINEAR AND NONLINEAR RANGES Milesa SRECKOVIC, Aleksandar BUGARINOVIC, Milanka PECANAC, Zoran KARASTOJKOVIC, Milovan JANIĆIJEVIC, Aleksander KOVACEVIC, Stanko OSTOJIC, Nenad IVANOVIC
6.	DETEKCIJA MELASE LAŽNIH DATULA INFRACRVENOM SPEKTROSKOPIJOM PRIMENOM HIJERARHIJSKE KLASIFIKACIJE DETECTION OF DATE MOLASSES ADULTERATED BY INFRARED SPECTROSCOPY USING ASCENDING HIERARCHICAL CLASSIFICATION Samir CHERIGUI, Ilyes CHIKHI, Hadj FAYÇAL DERGAL, Ferial CHELLALI, Hanane CHAKER
7.	DETEKCIJA FALSIFIKOVANJA MELASE GROŽĐA FIZIKO-HEMIJSKIM PARAMETRIMA DETECTION OF ADULTERATION OF GRAPE MOLASSES BY PHYSICOCHEMICAL PARAMETERS Samir CHERIGUI, Ilyes CHIKHI, Hadj FAYÇAL DERGAL, Ferial CHELLALI, Hanane CHAKER
8.	SENZOR SALINITETA ZASNOVAN NA HEKSAGONALNOM FOTONOM KRISTALNOM VLAKNU SALINITY SENSOR BASED ON A HEXAGONAL PHOTONIC CRYSTAL FIBER Ilhem MIRED. Hicham CHIKH-BLED

9.	NAPREDAK U FOTONSKIM KRISTALNIM VLAKNAMA: METODE PROIZVODNJE I PRIMENA ŠIROKOG SPEKTRA ADVANCEMENTS IN PHOTONIC CRYSTAL FIBER: FABRICATION METHODS AND BROAD-SPECTRUM APPLICATIONS Mohammed DEBBAL, Hicham CHIKH-BLED, Mouweffeq BOUREGAA, Mohammed CHAMSE EDDINE OUADAH
10.	ENERGETSKA EFIKASNOST PREDIZOLOVANIH PLASTICNIH CEVI ENERGY EFFIENCIES OF PRE-INSULATING PLASTIC PIPES Vasilis ZOIDIS
11.	STATISTIČKO MODELOVANJE NEKIH EKOLOŠKI PRIHVATLJIVIH LEGURA NA BAZI BAKRA STATISTICAL MODELING OF SOME ENVIRONMENTALLY-FRIENDLY COPPER-BASED ALLOYS Aleksandra T. IVANOVIC, Silvana B. DIMITRIJEVIC, Stevan P. DIMITRIJEVIC, Branka B. PETKOVIC 403
12.	SPEKTROSKOPSKA ANALIZA NATRIJUM KARBONATA SPECTROSCOPY ANALYSIS OF ACTIVATED SODIUM CARBONATE Natasa DJORDJEVIC, Milica VLAHOVIC, Slavica MIHAJLOVIC, Nenad VUSOVIC, Srdjan MATIJASEVIC
13.	ANALIZA PERFORMANSI KRUŽNOG FOTONSKOG KRISTALNOG VLAKNA ZA TERAHERC APLIKACIJE PERFORMANCE ANALYSIS OF CIRCULAR PHOTONIC CRYSTAL FIBER FOR TERAHERTZ APPLICATIONS Mohammed CHAMSE EDDINE OUADAH, Mohammed DEBBAL, Assia AHLEM HARRAT, Hicham CHIKH-BLED, Mouweffeq BOUREGAA
14.	POSTUPAK IZRADE POLIMERNOG KALUPA ZA ISPITIVANJE NA ISTEZANJE BIOKOMPOZITNIH MATERIJALA POLYMER MOULD MANUFACTURING FOR TENSILE TESTING OF BIOCOMPOSITE MATERIALS Marija BALTIC, Milica IVANOVIC, Igor STAMENKOVIC, Miloš VORKAPIC, Aleksandar SIMONOVIC
15.	HABANJE TI-6AI-4V NANOKOMPOZITA SA DISPERGOVANIM ZrO2 DOBIJENOG MEHANIČKIM LEGIRANJEM I SPARK PLAZMA SINTEROVANJEM WEAR BEHAVIOR OF ZrO2 DISPERSED TI-6AI-4V ALLOY NANOCOMPOSITES PREPARED BYMECHANICAL ALLOYING AND SPARK PLASMA SINTERING R. KARUNANITHI, M. PRASHANTH, M. KAMARAJ, S. SIVASANKARAN
16.	PROIZVODNJA NISKOLEGIRANOG Cr-Mo-Ni ČELIKA U ELEKTROLUČNOJ PEĆI PRODUCTION OF LOW ALLOY Cr-Mo-Ni STEEL IN ELECTRIC ARC FURNACE M. GOJIC, M. DUNDJER, S. KOZUH, I. IVANIC, D. DUMENCIC
17.	NUMERIČKA SIMULACIJA I DIZAJN SPOJNICA OD FOTONSKIH KRISTALNIH VLAKNA ZA SEPARACIJU TALASNIH DUŽINA NUMERICAL SIMULATION AND DESIGN OF A PHOTONIC CRYSTAL FIBER COUPLER FOR WAVELENGTH SEPARATION Assia AHLEM HARRAT, Mohammed CHAMSE EDDINE OUADAH, Mohammed DEBBAL

18.	FOTOKATALITIČKA DEGRADACIJA KONGO CRVENE BOJE KORIŠĆENJEM KOMPOZITA UIO-66 METALO-ORGANSKIH MREŽNIH STRUKTURA I METALNIH OKSIDA PHOTOCATALYTIC DEGRADATION OF CONGO RED DYE USING UIO-66 MOF-METAL OXIDES COMPOSITES Dimitrije PETROVIC, Marija EGERIC, Radojka VUJASIN, Yi-nan WU, Fengting LI, Ljiljana MATOVIC, Aleksandar DEVECERSKI
19.	EKSPERIMENTALNA OPTIČKA ANALIZA OTPORNOSTI NA LOM NERĐAJUĆEG ČELIKA EXPERIMENTAL OPTICAL ANALYSIS OF STAINLESS STEEL FRACTURE BEHAVIOUR Katarina COLIC
20.	OPTIMIZOVANI PRORAČUN ČELIČNIH HALA NA DEJSTVO POŽARA OPTIMIZED FIRE DESIGN FOR STEEL PORTA-FRAMED SHEDS Filip LJUBINKOVIĆ, Luís LAÍM, Aldina SANTIAGO
21.	HIDROFOBIZACIJA KALCITA STEARINSKOM KISELINOM MOKRIM POSTUPKOM HYDROPHOBIZATION OF CALCITE BY WET METHOD USING STEARIC ACID Slavica MIHAJLOVIC, Nataša DJORDJEVIC, Vladan KASIC, Srdjan MATIJASEVIC
22.	INDEX ZA PROCENU STRUKTURALNE EFIKASNOSTI ČELIČNIH RAMOVA INDEX FOR THE ASSESSMENT OF STRUCTURAL EFFICIENCY OF STEEL PORTAL FRAMES Filip LJUBINKOVIC, Luís Simões da SILVA
23.	RAZVOJ APARATURE ZA IN SITU ISPITIVANJE ANKERA NOSACA SOLARNIH PANELA DEVELOPMENT OF THE APPARATUS FOR IN SITU TESTING OF SOLAR PANEL RACKING ANCHORS Gordana BROCETA, Aleksandar SAVIC, Milica VLAHOVIC, Sanja MARTINOVIC, Tatjana VOLKOV HUSOVIC
24.	POVEĆANJE EFIKASNOSTI DOBIJANJA BIOGASA I NJEGOVOG KORIŠĆENJA U POSTROJENJU ZA TRETMAN KOMUNALNIH OTPADNIH VODA INCREASING THE EFFICIENCY OF BIOGAS PRODUCING AND ITS UTILIZATION IN THE MUNICIPAL WASTEWATER TREATMENT PLANT Darja ZARKOVIC, Milica VLAHOVIC, Bilyana ISZITY
25.	ISPITIVANJE MORFOLOGIJE SUMPOR-POLIMERNOG KOMPOZITA MORPHOLOGY INVESTIGATION OF SULFUR-POLYMER COMPOSITE Milica VLAHOVIC, Kong FAH TEE, Aleksandar SAVIC, Nataša DJORDJEVIC, Slavica MIHAJLOVIC, Tatjana VOLKOV HUSOVIC, Nenad VUSOVIC
26.	PRIMENA VARENJA, TVRDOG I MEKOG LEMLJENJA U IZRADI SOLARNIH SISTEMA APPLICATION OF WELDING, BRAZING AND SOLDERING IN SOLAR SYSTEMS MANUFACTURING Zoran KARASTOJKOVIC, Milesa SRECKOVIC, Misa STEVIC
27.	ŠTETNI EFEKTI LEGURA ZA LEMLJENJE IZ ŠTAMPANIH KOLA PRILIKOM ZAJEDNIČKOG TOPLJENJA SA GVOZDENIM I ČELIČNIM DELOVIMA HARMFULL EFFECTS OF SOLDERING ALLOYS FROM PRINTED CIRCUITS WHEN MELTED TOGETHER WITH IRON&STEEL COMPONENTS Zoran KARASTOJKOVIC, Ognjen RISTIC, Misa STEVIC

OTPADNO STAKLO KATODNIH CEVI U PRIPREMI BETONA – POVEĆAVANJE ODRŽIVOSTI

CATHODE RAY TUBE WASTE GLASS IN CONCRETE PREPARATION – INCREASING SUSTAINABILITY

Ivana JELIĆ, University of Belgrade, Vinča Institute of Nuclear Sciences, Belgrade, Serbia, ivana.jelic@vin.bg.ac.rs

Aleksandar SAVIĆ*, University of Belgrade, Faculty of Civil Engineering, Belgrade, Serbia, savic.alexandar@gmail.com (*Correspondence)

Tatjana MILJOJČIĆ, University of Belgrade, Vinča Institute of Nuclear Sciences, Belgrade, Serbia,

tatjana.miljojcic@vin.bg.ac.rs

Marija ŠLJIVIĆ-IVANOVIĆ, University of Belgrade, Vinča Institute of Nuclear Sciences, Belgrade, Serbia,

marijasljivic@vin.bg.ac.rs

Marija JANKOVIĆ, University of Belgrade, Vinča Institute of Nuclear Sciences, Belgrade, Serbia,

marijam@vin.bg.ac.rs

Slavko DIMOVIĆ, University of Belgrade, Vinča Institute of Nuclear Sciences, Belgrade, Serbia,

sdimovic@vin.bg.ac.rs

Dimitrije ZAKIC, University of Belgrade, Faculty of Civil Engineering, Belgrade, Serbia,

dimmy@imk.grf.bg.ac.rs

Dragi ANTONIJEVIC, University of Belgrade, Innovation Center of Faculty of Mechanical Engineering, Belgrade, Serbia, dantonijevic@mas.bg.ac.rs

Apstrakt. Građevinski sektor je odgovoran za približno 39% potrošnje energije i emisija ugljendioksida vezanih za date procese. Mešanje otpadnih materijala u beton, kao zamena za cement i/ili agregat, povećava energetsku efikasnost i održivost uopšteno. Pored toga, smanjuje se i pritisak na životnu sredinu smanjenjem eksploatacije prirodnih sirovina. S druge strane, brzi napredak elektronske industrije doveo je do stvaranja velike količine električnog otpada pre isteka njegovog životnog veka. Odlaganje starih monitora i TV ekrana, odnosno njihovih katodnih cevi (CRT), predstavlja veliki problem za životnu sredinu pošto je otpad od CRT-a klasifikovan kao opasan usled visokog sadržaja olova. Ovaj rad se bavi pregledom istraživanja o korišćenju CRT otpada u cementnim materijalima u cilju povećanja održivosti i podsticanja cirkularne ekonomije u građevinskom sektoru.

Ključne reči: cement; sirovine; energetska efikasnost; životna sredina

Abstract. The construction sector is responsible for approximately 39% of energy use and processrelated carbon dioxide emissions. Mixing waste materials into concrete, as a substitute for cement and/or aggregate, increases energy efficiency and sustainability in general. Additionally, pressure on the environment is decreasing by reducing the amount of exploitation of natural raw materials. On the other hand, the rapid progress of the electronic industry has led to the generation of a large amount of electrical waste before the end of its useful life. Disposal of old monitors and TV screens, i.e. their cathode-ray tubes (CRT), represents a major problem for the environment because CRT waste is classified as hazardous due to its high lead content. This paper deals with an overview of investigations on CRT waste utilization in cement materials in order to increase sustainability and encourage a circular economy in the construction sector.

Key words: cement; raw materials; energy efficiency; environment

1 Introduction

Construction, as an economic branch with a significant impact on the environment, is changing, under the trends that guide sustainable development. Based on statistical research, the overall industry accounts for 33-35% of energy consumption [1], where transportation, residential, and commercial sectors complement this amount. Still, the buildings and construction sector alone are responsible for approximately 36% of final energy use [2]. Additionally, up to 39% of energy and process-related carbon dioxide emissions also take place in the buildings and construction sector, 11% of which results from manufacturing building materials and products such as steel, cement, and glass [2]. Nevertheless, there is also a lower bound estimation of 24% greenhouse gas emissions by the industry sector, calculated for the 2020 year [3]. Therefore, it is quite realistic to estimate that the most prominent themes that would aid the circular economy, improve the building industry sector, and enable better effect on the environment, are the following: switching to renewable energy sources and energy-efficient approaches, improving building design, use of naturebased and traditional solutions, and improvement in materials in terms of their environmental impact. Likewise, the use of recyclable and recycled materials is a very important segment in this approach. Following the Sofia Declaration [4] on the Green Agenda for Western Balkan 2021–2030 which endorses the European Union (EU) Green Deal strategy and the New Circular Economy, the legislation is being taken from EU on waste management (National Assembly of the Republic of Serbia, 2018) and landfill disposal (Government of the Republic of Serbia, 2010), waste categories, (Government of the Republic of Serbia Ministry of Environmental Protection, 2021) and waste statistics.

Sustainable development of the construction industry has become a growing concern. It is estimated that the worldwide annual production of concrete, as the most prominent construction material, is approximately 20 billion tones [5]. Concrete is the most used construction material after water, requiring large quantities of cement. However, cement production is an energy-intensive process that consumes large quantities of thermal energy. The production process requires heating to high-temperature levels, e.g. up to 1500° C in the kiln, and therefore requires thermal energy from fossil fuels combustion enhancing the greenhouse effect. Consequently, cement production accounts for about 7% of the total CO₂ emissions worldwide, and this industry is considered one of the main problems of environmental degradation and the cause of climate change and global warming [6]. The total volume of cement production in the world in 2022 was about 4.1 billion tons, and it was estimated that it would exceed 6 billion tones by 2025 [6]. For comparison, the total world cement production was only 1.4 billion tons in 1995 [7].

Mixing recycled and waste materials into concrete, as a substitute for cement and/or aggregate, increases energy efficiency and sustainability in general [8]. Additionally, pressure on the environment is decreasing by reducing the amount of exploitation of natural raw materials.

The rapid advancement of technology has led to the generation of a large amount of electrical waste (e-waste) and its disposal before the end of the product's life, making it a special waste stream with the fastest growing rate globally [9]. A large part of this waste can be recycled; however some types of it, such as TV screens and computer monitors with cathode ray tubes (CRT), are hazardous waste due to the content of toxic components, primarily lead. By developing new types of screens, e.g. displays with liquid crystals (Liquid-Crystal Display, LCD), displays with light-emitting diodes (Light-Emitting Diode, LED), and plasma displays, the demand for new CRT devices does not exist, and landfills worldwide are facing the problem of accumulating outdated devices (Figure 1) [10].

Figure 2. Collected CRT waste [10]

Considering that new CRT devices are no longer produced, the so-called Closed-loop recycling, which includes the production of new devices from old ones, is no longer possible. As a result, Open-loop recycling remained the only possible way of recycling when planning the reuse of old CRT glass. Data from the last few years from the e-waste collection and pretreatment market indicate that approximately 50,000 to 150,000 million tons of CRT glass are collected annually in the European Union (EU), and are not expected to decrease in the coming years [11]. It is believed that the amount of waste CRT glass will continue to grow until the mid-thirties of this century [12].

Waste CRT glass has a high potential for further reuse in sustainable concrete production due to its chemical composition, availability, and cost-effectiveness. Partial substitution of cement or sand with finely ground or crushed CRT glass reduces the amount of their consumption, increasing the sustainability level through the production of sustainable cement-based materials. The leaching results show that lead concentrations leached into the environment are often below the permissible limits depending on the proportion of CRT glass due to the encapsulation in the mortar matrix. Also, numerous studies have confirmed that this waste behaves like a pozzolanic material and has a positive effect on the mechanical properties of mortar and concrete. This paper deals with an overview of investigations on CRT waste utilization in cement materials. Accordingly, the overall future project is adopted to preserve the environment and sustainability through increasing energy efficiency, waste reduction, raw materials preservation, climate change, and global warming prevention, as well as directing the e-waste stream to circular principles.

2 CRT Glass

The first CRT was designed by the German physicist Ferdinand Braun in 1897, and serial production of TV devices began in Germany in 1934. In the middle of the 20th century, color CRTs appeared, and at the end of the 1970s, the production of computer monitors with CRTs began [13].

CRT is a vacuum tube consisting of non-glass and glass parts (Figure 2). In a CRT, electrons are focused and fall on a fluorescent screen, producing a visible spot on it [13]. The cathode heats up and emits electrons, which are accelerated to the anode.

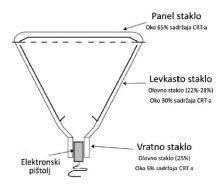


Figure 2. CRT scheme [12]

In monochromatic (e.g. black and white) CRTs, there is one system for accelerating electrons, called an electron gun. In color CRTs, there are three electron guns, each for a specific color (red, green, and blue). Electrons accelerated in this way are passed through the so-called deflection plates, where they turn left-right or upside-down. The screen is covered with a phosphorus material that glows when is stricken by an electron [14]. By moving the focus point on the screen surface, it is possible to produce an image made up of individual dots, or pixels. In this way, the image on the screen is obtained.

The three basic glass elements of the CRT screen are: the neck, the funnel, and the panel, and their mass shares are different and amount to 1%, 33%, and 66%, respectively. The neck, although the least represented by mass in the monitor, contains about 25% lead, the most of all glass parts. The funnel is the largest part of the CRT and contains about 20% lead. The panel is the front, visible part of the CRT that contains almost no lead (0 - 3%) but is coated with layers of barium and strontium that have the role of protecting the user from the harmful effects of UV and X radiation generated by electron guns [14]. As can be concluded, all three types of glass are very different in chemical composition. However, although CRT glass has different chemical contents, its main component is silicon dioxide.

Due to the content of lead, barium, and strontium, CRT glass is hazardous waste according to the Waste Catalog and belongs to the following waste categories: 16 02 13*, 16 02 15*, and 16 03 03* [15]. The chemical composition of CRT glass makes its further recycling, that is, its application in the production of another product, very difficult. Its chemical composition is such that the recycling process must meet the special conditions that apply to waste labeled as "hazardous". Illegal disposal of old monitors and TV screens, i.e. their CRTs, represents a major problem for the environment due to the potential leaching of harmful metals. Glass with lead impurities, such as CRT glass, according to legislation, cannot be recycled before the lead is separated. In case there are no suitable smelters, it is exported, representing a financial burden for the operators.

3 An overview of recent research

Previous investigations indicate the possibility of CRT glass utilization in the production of various types of bricks, ceramic tiles, and special rooms for the disposal of nuclear waste. A review of investigations related to the use of glass CRT waste in cement-based concrete and mortar until 2021 [16] showed that recycling this type of waste, as a substitute for sand, improves some properties of mortar and concrete. CRT glass waste usage in such materials enhances their consistency due to smoother surfaces and particularly lower water absorption. In some cases, it improves both compressive and flexural strength. When used in mortar or concrete, CRT glass waste reduces drying shrinkage and water absorption. The addition of fly ash or metakaolin reduces the risk of alkalisilicate reaction (ASR) in concrete containing CRT glass. The authors concluded that lead leaching can be mitigated by various techniques, including acid treatment, but also by encapsulation using biopolymers, adding fly ash, or encapsulation in the mortar matrix itself, limiting the amount of CRT glass in the mixture. In general, the authors assessed that CRT glass waste can be a valid component in the production of sustainable cement-based materials [16].

Other authors examined the possibilities of combined application of recycled aggregate with CRT waste, with a reduced percentage of CRT glass in order to avoid the possibility of leaching harmful elements into the environment (Figure 3) [17]. The mechanical properties of the materials and the potential contamination were examined. The results showed that the addition of CRT glass, in an amount of 10%, reaches a satisfactory level of compressive strength of the pavement substructure. Also, all mixtures were classified as inert waste, and it was concluded that the mentioned materials could be used in civil engineering.

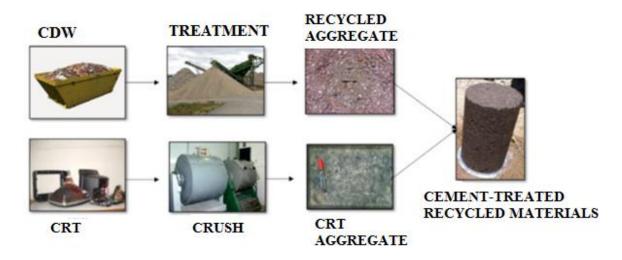


Figure 3. Use of Cathode Ray Tube Glass (CRT) and Recycled Aggregates for Road Sub-Bases [17]

In another study [18] the reference sample was made of quartz sand, while the other product was a mixture of quartz sand and CRT glass (50%). The glass was ground to a fraction corresponding to the fineness of the quartz sand. Water absorption, freeze-thaw resistance, and flexural strength were tested. It was concluded that the addition of CRT glass does not increase water absorption or reduce the flexural strength below the values prescribed by standards EN 1338 and EN 1339 for paving blocks. In another study, the same authors [18] investigated the potential for using finely ground CRT glass as an additional cementitious material while investigating the resistance of such concretes to sulfate action. The percentage of replacement of cement with CRT glass was 5%, 10%, 15%, 20% and 35%. The assessment of the durability of concrete to the effect of sulfate was done by visual examination of concrete, as well as the examination of variations in compressive strength of concrete samples aged 3, 6, 12, and 36 months. After immersing the samples in a 5% Na₂SO₄ solution for 36 months, concrete samples with 15% and 20% cement replacement with finely ground CRT glass showed satisfactory compressive strength and sulfate resistance at the same time, and it was concluded that this range of cement replacement with finely ground CRT glass can recommend for practical use.

In addition, a group of authors [19] studied CRT glass utilization as a fine aggregate in a geopolymer composite based on fly ash and slag. They examined the compressive strength, ASR, and leaching of lead from geopolymer mortars, and the results showed that the hardening mechanism of such geopolymers involves not only physical encapsulation but also chemical binding of lead. As the silica modulus increases, the compressive strength and ASR first increase and then decrease, while the leached lead concentration decreases significantly. The increased modulus of silica has been shown to improve the chemical binding of lead ions by forming lead silicate. Additionally, increasing the silica modulus significantly improves overall porosity, resulting in better physical performance of Pb ion encapsulation.

4 Conclusion

This paper deals with an overview of investigations on sustainable CRT waste utilization in cement materials. Considering construction is an activity that is harmful to the environment in multiple ways, there is plenty of room for implementing the principles of sustainable development. The buildings and construction sector alone are responsible for approximately 36% of final energy usage. Additionally, up to 39% of energy and process-related carbon dioxide emissions also take place in the buildings and construction sector, 11% of which results from manufacturing building materials and products such as steel, cement, and glass. The most prominent themes that would aid the circular economy, improve the building industry sector, and enable better effect on the environment, are the following: switching to renewable energy sources and energy-efficient approaches, improving building design, use of nature-based and traditional solutions, and improving in materials in

terms of their environmental impact. Mixing recycled and waste materials into concrete, as a substitute for cement and/or aggregate, increases energy efficiency and sustainability in general.

CRT represents three types of glass that are very different in chemical composition. Due to the content of lead, barium, and strontium, CRT glass is hazardous waste. This chemical composition of cathode glass makes its further recycling, that is, its application in the production of another product, very difficult. However, numerous studies have confirmed that CRT glass behaves like a pozzolanic material and that it has a positive effect on the mechanical properties of mortar and concrete. Partial substitution of cement or sand with finely ground or finely crushed CRT glass reduces the amount of their consumption, increases energy efficiency, and enhances the level of sustainability of the process. By reviewing the literature, it is concluded that the use of CRT glass improves the specific properties of concrete depending on the proportion of waste raw materials. The results of leaching show that the concentrations of lead leached into the environment could be in some cases below the permissible limits depending on the proportion of CRT glass and, often, thanks to the encapsulation in the mortar matrix.

5 Acknowledgement

The research presented in this paper was completed with the financial support of the Ministry of Science, Technological Development and Innovation of the Republic of Serbia, with the funding of scientific research work at the University of Belgrade, Vinča Institute of Nuclear Sciences (Contract No. 451-03-47/2023-01/200017), the University of Belgrade, Faculty of Civil Engineering (Contract No. 200092), and the University of Belgrade, Innovation Centre of Faculty of Mechanical Engineering (Contract No. 451-03-47/2023-01/200213).

6 References

- [1] U.S. Energy Information Administration, Monthly Energy Review, USA, 2022
- [2] Birol, F., Andersen, I. Global Status Report for Buildings and Construction, International Energy Agency, France, 2019
- [3] National Public Utilities Council, Decarbonization Report, USA, 2023
- [4] **Regional Cooperation Council**, *Sofia declaration on the green agenda for the Western Balkans*, Bosnia and Herzegovina, 2020
- [5] Kumar Mehta, P. Greening of the Concrete Industry for Sustainable Development, *Concrete International*, 24 (2002), pp. 23–28.
- [6] Andrew. R. M. Global CO₂ emissions from cement production, *Earth System Science Data*, 10, (2018), pp.195–217.
- [7] Kirthika, S. K. Singh, S. K., Chourasia, A. Alternative fine aggregates in production of sustainable concrete – A review. *Journal of Cleaner Production*, 268, (2020), 122089.
- [8] **Hui, Z., Sun. W.** Study of properties of mortar containing cathode ray tubes (CRT) glass as a replacement for river sand fine aggregate. *Construction and Building Materials*, 25, (2011), pp. 4059–4064.
- [9] Singh, N., Wang, J. Li., J. Waste cathode rays tube: An assessment of global demand for processing, *Procedia Environmental Sciences*, 31, (2016), pp. 465–474.
- [10]Portal Ekapija, https://www.ekapija.com/news/2153051/u-srbiji-u-2017-reciklirano-izmedju-8000-i-9000-tona-crt-televizora
- [11]**Baldé, C. P., Wang, F., Kuehr, R. Huisman. J.** *The global e-waste monitor 2014*, United Nations University, Germany, 2015.
- [12]Grdić, D., Despotović, I., Ristić, N., Grdić, Z., Ćurčić, G. T. Potential for Use of Recycled Cathode Ray Tube Glass in Making Concrete Blocks and Paving Flags, *Materials*, 15, (2022), 1499.
- [13] Bakshi, U. A., Godse, A. P. *Electronic Devices and Circuits*, Vishwakarma Institute of Technology, India, 2008.
- [14]Mear, F., Yot, P., Cambon, M. Ribes, M. The characterization of waste cathode-ray tube glass, *Waste Management*, 26, (2006), pp. 1468–1476.

- [15]Rulebook on categories, testing, and classification of waste (RS Off. Gazette, No. 56/2010, 93/2019, and 39/2021).
- [16]Bawab, J. Khatib, J., El-Hassan, H., Assi, L., Kırgız, M. S. Properties of Cement-Based Materials Containing Cathode-Ray Tube (CRT) Glass Waste as Fine Aggregates – A Review. Sustainability, 13, (2021), 11529.
- [17] Cabrera, M., Pérez, P., Rosales, J., Agrela, F. Feasible Use of Cathode Ray Tube Glass (CRT) and Recycled Aggregates as Unbound and Cement-Treated Granular Materials for Road Sub-Bases. *Materials (Basel)*, 13, 2020, 748.
- [18]Grdić, Z., Despotović, I., Grdić, D., Topličić-Ćurčić, G., Bijeljić, J., Ristić, N. Concrete Resistance Achieved with Subtly Ground Tube Glass of Cathode Ray as Supplementary Cementitious Material to Sulphate Attack, *Periodica Polytechnica Civil Engineering*, 67, 2023, pp. 298–307.
- [19]W. J. Long, X. Zhang, J. Xie, S. Kou, Q. Luo, J. Wei, C. Lin, G. L. Feng. Recycling of waste cathode ray tube glass through fly ash-slag geopolymer mortar, *Constr. Build. Mater. 322*, 2022.