

21. СИМПОЗИЈУМ ФИЗИКЕ КОНДЕНЗОВАНЕ МАТЕРИЈЕ

THE 21st SYMPOSIUM ON CONDENSED MATTER PHYSICS

BOOK OF ABSTRACTS

Conference Chairs

Vladimir Dobrosavljević, Florida State University, USA Zorica Konstantinović, Institute of Physics Belgrade Željko Šljivančanin, Vinča Institute of Nuclear Sciences

Organizing Committee

Jelena Pešić, Institute of Physics Bojana Višić, *Institute of Physics* Belgrade- chair Belgrade Andrijana Šolajić, *Institute of Physics* Jovan Blagojević, Institute of Physics Belgrade Belgrade Ivana Milošević, Institute of Physics Marko Orozović, Vinča Institute of Belgrade Nuclear Sciences Tijana Tomašević-Ilić, Institute of Mitra Stepić, Vinča Institute of Nuclear Physics Belgrade Sciences Jelena Mitrić, Institute of Physics Igor Popov, Institute for Belgrade Multidisciplinary Research, Belgrade

Program Committee

Ivan Božović, Brookhaven National
Laboratory, USA

Vladimir Djoković, Vinča Institute,
University of Belgrade, Serbia

Vladimir Dobrosavljević, Florida State
University, USA

Gyula Eres, Oak Ridge National
Laboratory, USA

Milan Damnjanović, Faculty of
Physics, University of Belgrade, Serbia

Vladimir Djoković, Vinča Institute,
University of Belgrade, Serbia

Radoš Gajić, *Institute of Physics Belgrade*

Igor Herbut, Simon Fraser University, Canada

Zoran Ikonić, University of Leeds, UK

Nenad Lazarević, *Institute of Physics Belgrade*

Ivanka Milošević, Faculty of Physics, University of Belgrade, Serbia

Milorad Milošević, University of Antwerp, Belgium

Milica Milovanović, *Institute of Physics Belgrade*

Stevan Nadj-Perge, CALTECH, USA

Branislav Nikolić, *University of Delaware*, USA

Cedomir Petrovic, *Brookhaven* National Laboratory, USA

Dragana Popović, National High Magnetic Field Laboratory, USA

Zoran V. Popović, *Institute of Physics Belgrade*

Zoran Radović, Faculty of Physics, University of Belgrade, Serbia

Miljko Satarić, Faculty of Technical Sciences, University of Novi Sad, Serbia

Marko Spasenović, *Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia*

Djordje Spasojević, Faculty of Physics, University of Belgrade, Serbia

Željko Šljivančanin, Vinča Institute of Nuclear Sciences

Bosiljka Tadić, *Jožef Štefan Institute,* Slovenia

Milan Tadić, School of Electrical Engineering, University of Belgrade, Serbia

Darko Tanasković, *Institute of Physics Belgrade*

Jasmina Tekić, Vinča Institute of Nuclear Sciences

21. СИМПОЗИЈУМ ФИЗИКЕ КОНДЕНЗОВАНЕ МАТЕРИЈЕ

THE 21st SYMPOSIUM ON CONDENSED MATTER PHYSICS

26 - 30 June 2023, Belgrade, Serbia

https://www.sfkm2023.ipb.ac.rs/

TABLE OF CONTENTS

1. INVITED TALKS

A. Balaž, Stability of vortices in dipolar droplets (S5)
E. S. Božin, Nanostructure View Of Electronic Transitions In Selected Van Der Waals Quantum Materials (S5)
C. Brukner, Quantum Reference Frames: what they are and what they're good for (S5)
B. Dakić, Reconstruction of Quantum Particle Statistics: Fermions (S8)11
M. Damnjanović, Crystal Closed Shell (S2)12
V. Dobrosavljević, Mott quantum critical phase of FeO dominates Earth's lower mantle
M. Dramićanin, How Can We Benefit From The Optica Properties Of Mn5+ To Make Pigments And Near-Infrared Phosphors? (S1)
M. Drndić, TBA
D. Dulić , Designing of a "perfect" porphyrin molecule for the Mechanically Controllable Break Junction Experiments (S2)
V. Djoković, Fabrication hybrid Janus nanoparticles and their application as light-driven micromotors (S2)
M. Đurđevich, Physics and Geometry Beyond the Limits of Uncertainty Relations (S8)
G. Eres , Evolution of Topological Magnetism in the Two-Dimensional Limit (S2) 18
J. Fabian, Spin phenomena in van der Waals heterostructures (S2)19
L. Forro, Surprises in transition metal dichalcogenides revealed by interlayer charge transport (S4)
R. Hackl, Raman Studies of Kagome Lattice Systems (S6)21
I. Herbut, Time reversal symmetry breaking and Bogoliubov-Fermi sufraces in multiband superconductors (S4)

K. Hingerl, Prediction of 1st order Phase Transition with Electron-Phonon Coupling (S6)23
Z. Ikonić , Group-IV SiGeSn Alloys For Photonics and Electronics – Recent Progress (S1)
W. Ku, Transport in the emergent Bose liquid: Bad metal, strange metal, and weak insulator, all in one system (S6)
N. Lazarević, Probing charge density wave phases and the Mott transition in 1T–TaS ₂ by Raman scattering (S4)
M. Ležaić, Binary Oxides and Ferroelectricity: Ab-initio Insights Into The Polar-state Formation And Its Switching (S1)
M. Lončar, Efficient Photon and Phonon Interfaces for Spin Qubits in Diamond (S5)
J. Luo, Superconductivity and Charge-Density-Wave in Kagome Metal CsV ₃ Sb ₅ Revealed by NMR measurement (S4)
B. Martinez, Spin injection and spin-charge conversion processes in all-oxide heterostructures (S3)
J. Maultzsch, Excitons and phonons in van-der-Waals 2D materials (S2)32
I. Milošević, Topological States in Layered Transition Metal Dichalcogenides (S2)33
M. V. Milošević, From magnonics to neuromorphic computing in magnetic 2D materials (S2)
M. Milovanović, Dipole representation of half-filled Landau level (S2)35
M. Mitrović Dankulov, Collective dynamics of social systems: a statistical physics approach (S8)
S. Nadj-Perge, Topology and Correlations In Twisted And Untwisted Graphene Structures (S4)
B. Nikolić , What is quantum spin torque: Spintronics meets nonequilibrium strongly correlated and long-range entangled quantum matter (S5)

A. Pelster, On the Theoretical Description of Photon Bose-Einstein Condensates (S3)
C. Petrovic, Disorder in FeSe _{1-x} S _x $(0 \le x \le 1)$ superconducting crystals (S4)40
D. Popović, Nonequilibrium transport and thermalization in strongly disordered 2D electron systems (S4)
P. Prelovšek, Many-body localization: wanted dead or alive - from random to quasiperiodic systems (S5)
X. Qiu, Spontaneous superconducting vortex induced by stray field of skyrmion in Chiral Magnet-Superconductor Heterostructures (S4)
M. Radovic, Tuning Phases and Physical Properties of ReNiO ₃ (S6)44
M. Satarić, Calcium-A life and death signal (S7)45
M. Spasenović, Graphene For Physiological Parameter Sensing (S2)46
D. Spasojević , On The Effects Of Finite Rate Driving On Disordered Magnetic Systems (S3)
V. Stevanović, Finding Useful Metastable Materials – New Perspectives on an Old Problem (S6)
D. Tanasković, Spectral Functions and Mobility of the Holstein Polaron (S7)49
C. Teichert, Phyllosilicates as a platform for air-stable 2D magnetism (S2)50
K. J. Tielrooij, The Ultrafast Thermodynamics Of Graphene And Twisted Bilayer Graphene (S2)
S. Tomić, Effect of Large Quantum Correlations in "Russian Doll" Quantum Dots: Impact on MEG Solar Cells (S1)
B. Vasić, Exploring Functional Properties Of Two Dimensional Materials By Atomic Force Microscopy (S2)
O. Zhang, Rare earth spin frustrated systems (S3)

2. CONTRIBUTED TALKS

N. Adžić, Soft Cluster Crystals in Simulation and Experiment (S7)57
V. Damljanović, Unmovable Nodal Points and Lines in Two- Dimensional Materials: Dispersions and Positions in the Reciprocal Space (S2)
M. Gmitra, Charge To Spin Conversion In Graphene On 1T-TaS ₂ Monolayer Triggered By Charge Density Wave Proximity Effects (S2)
M. Hadžijojić, Analysis of two-dimensional crystals via rainbow scattering (S2)60
A. Hudomal, Observation of many-body scarring in a Bose-Hubbard quantum simulator (S5)
V. Janković, A Nonequilibrium-Thermodynamics Perspective on Charge Separation in Organic Solar Cells (S1)
D. Jovković, Spin activity in driven disordered systems (S3)
S. Maletić, Higher-order Connectivity Patterns in the Correlation Structure of Complex Systems (S8)
M. Milivojević , Proximity Induced Spin-Orbit Coupling In Phosphorene/WSe ₂ and WSe ₂ /Phosphorene/WSe ₂ van der Waals heterostructures (S2)
A. Milosavljević, Evolution of Lattice, Spin, and Charge Properties Across FeSe1-xSx Phase Diagram (S4)
P. Mitrić, Cumulant Expansion in the Holstein model: Spectral Functions and Mobility (S5)
J. Pešić, Uniaxial Strain-Induced Changes in Vibrational Modes of FeSe (S4)68
N. Starčević, Ion-atom interaction potential dependence on the ion's charge exchange (S2)
S. Stavrić, The Anisotropic Interlayer Exchange In Van Der Waals 2D Magnets (S3)
D. Šabani, Solving the puzzle of magnetic 2D materials – from electronic structure to magnetic interactions (S3)

B. Šoškić, Exploring superconductivity in doped mono- and bilayer borophenes (S4)
B. Višić, Mo _x W _{x-1} S ₂ Nanotubes For Advanced Field Emission Application (S2)73
R. Zikic, Single-Molecule Probing By Rectification in a Nanogap (S2)74
3. POSTER SESSION
T. Belojica , Crystal structure and phase transitions in InSiTe ₃
J. Blagojević , Effect of disorder and electron-phonon interaction on 2H-TaSe _{2-x} S _x lattice dynamics
D. Cvetković , Classification of complex networks with graph neural networks: importance of network properties and limitations
N. Ćelić, TiO ₂ /PMMA nanocomposites functionalized with ascorbic and gallic acid for environmental applications
S. Djurdjić Mijin, Lattice dynamics and phase transitions in Mn ₃ Si ₂ Te ₆ 80
S. Gombar, P. Mali, Quantum Entanglement and Quantum Coherence Correlations in XY Spin Chains
A. Kalinić, Dynamic-Polarization Forces Acting On A Charged Particle Moving Over A Graphene-Sapphire-Graphene Heterostructure
I. Kavre Piltaver, Magnetic Field Directed Assembly of Magnetic Non-Spherical Microparticles
J. Kovačević, Spin-wave Dispersion of a Layer Film With a Honeycomb Lattice85
S. Miladić, A Method For Obtaining Holstein Polaron Mobility Using Real And Imaginary Time Path Integral Quantum Monte Carlo
I. R. Milošević, Fe-nanoparticle-modified Langmuir-Blodgett Graphene Films for Pb(II) Water Purification

J. Mitrić, Effect of Laser Heating on Partial Decomposition of Bi ₁₂ SiO ₂₀ (BSO) Single Crystals
M. S. Petrović, Edge Solitons in Spiraling Waveguides
K. Seetala, Cobalt Ferrite on Silicon Memristors: Device Fabrication and Resistive Switching Investigation
N. Stanojević, Impact of Interface Diffusion and Doping Segregation on Transport Characteristics in THz Quantum Cascade Lasers91
A. I. Strinić, Localized Waves in Graphene Metamaterials92
J. R. Šćepanović, Long-term effects of abrupt environmental perturbations in model of group chase and escape with the presence of non-conservative processes
A. Šolajić, Strain-Controlled Electronic and Optical Properties of hBN/InTe and hBN/GaTe Heterostructures94
A. Ž. Tomović, Tunnel Junction Sensing of TATP Explosive at the Single-Molecule Level95
I. Vasić, Conductivity of Cold Bosonic Atoms in Optical Lattices96

How Can We Benefit From The Optical Properties Of Mn⁵⁺ To Make Pigments And Near-Infrared Phosphors?

Miroslav D. Dramićanin

Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, Belgrade, 11001, Serbia

Abstract. When tetrahedrally coordinated in crystals, Mn⁵⁺ optical centers ([Ar]3d² electron configuration) always encounter a strong crystal field. Their lower electronic states have an energy progression of ${}^3A_2 < {}^1E < {}^1A_1 < {}^3T_2 < {}^3T_1$. The ground state (3A_2) is not orbitally degenerate, and the first excited state 1E has almost no nuclear displacement relative to the ground state and can be separated by the low-symmetry ligand field. For these reasons, Mn⁵⁺-doped compounds may provide a strong and narrow (FHWM < 5 nm) phosphorescence emission in the near-infrared (1110–1300 nm) which is significantly affected by a nephelauxetic effect. Their strong absorption in the red spectral region, associated with the ${}^3A_2 \rightarrow {}^3T_1({}^3F)$ electronic transition, provides intensive turquoise/blue coloration of the materials. Herein, we propose the way to engineer pigments and efficient near-infrared phosphors and demonstrate optical properties of several of them (Mn⁵⁺-activated Ca₆Ba(PO₄)₄O [1], Sr₃(PO₄)₂, Ba₃(PO₄)₂, and Ba₃(VO₄)₂). In addition, recent applications of these materials are highlighted, including luminescence thermometry [2] based on phosphors steady-state [1] and time-resolved [3] near-infrared emission, the latter of which has been demonstrated for biomedical applications.

REFERENCES

- 1. Dramićanin, M. D., Marciniak, Ł., Kuzman, S., Piotrowski, W., Ristić, Z., Periša, J., Evans, I., Mitrić, J., Đorđević, V., Romčević, N., Brik, M. G., and Ma, C.-G., *Nature Light Sci. Appl.*, **11**, 279 (2022).
- 1. Marciniak, L., Kniec, K., Elzbieciak-Piecka, K., Trejgis, K., Stefanska, J., and M. D. Dramićanin, *Coord. Chem. Rev.*, **469**, 214671 (2022)
- Piotrowski, W. M., Marin, R., Szymczak, M., Martín Rodríguez, E., Ortgies, D. H., Rodríguez-Sevilla, P., Dramićanin, M. D., Jaque, D., and Marciniak, L., Adv. Opt. Mater. 11, 2202366 (2023).