29th International conference on atomic collisions in solids & 11th International symposium on swift heavy ions in matter

ICACS & SHIM 2022

Book of Abstracts

June 19–24, 2022 University of Helsinki, Finland

Welcome to ICACS & SHIM 2022

It is with great pleasure, and without hesitation, that we welcome you, on site and virtual, to the jointly arranged 29th International conference on atomic collisions in solids (ICACS) and the 11th International symposium on swift heavy ions in matter (SHIM). While both conferences have been long running, and especially the ICACS conference has already been arranged during extraordinary turns in world history, never before have world events necessitated postponing the conference twice, first from 2020 to 2021, then again from 2021 to 2022. The reason for this is, as all of those reading this text now, in 2022, well know, the COVID-19 pandemic, that brought travel and physical meetings to a halt all across the globe.

We are very pleased that we can now, in June 2022, finally arrange the conference without any local limitations due to the pandemic situation. Yet on a global level many countries still have rules in place that make travel difficult. To enable participation from all countries, we chose to arrange the conference for the first time in a hybrid format, supporting both on site and virtual participation. This solution, necessitated by the present circumstances, can also be considered an experiment that will guide the organization format of future meetings.

We firmly believe that face-to-face scientific discussions during the conferences will inspire many new collaborations, build new bonds, inspire new daring unprecedented ideas. This is particularly important in times that are difficult from both a global health and political viewpoint.

We welcome you all to a week of high-level science and good-spirited community building during the white summer nights of Finland.

Helsinki, June 10, 2022 Flyura Djurabekova Kai Nordlund Professor Professor Chairperson Co-chairperson

Contents

Committees 3
Maps 6
Conference programs 9
Sunday, June 19, 2022
Monday, June 20, 2022
Tuesday, June 21, 2022
Wednesday, June 22, 2022
Thursday, June 23, 2022
Friday, June 24, 2022
List of posters - onsite
List of posters - virtual
Abstracts 35
Index of authors 196

Committees

Local Organizing Committee

Flyura Djurabekova	Chairperson
Kai Nordlund	Co-chairperson
Aleksi Leino	Scientific secretary
Xin Jin	Scientific secretary
Aslak Fellman	Webmaster
Ville Jantunen	Webmaster (in 2021)
Christoffer Fridlund	Webmaster (in 2020)
Jesper Byggmästar	
Fredric Granberg	
Alvaro Lopez Cazalilla	
Eryang Lu	
Guanying Wei	
Jintong Wu	
Victor Lindblad	
Milad Ghaemikermani	
Rasmus Nilsson	
Chloé Nozais	
Saana Vihuri	

ICACS International Scientific Committee

Bhupendra Dev	Kharagpur (India)
Flyura Djurabekova	Helsinki (Finland)
Stefan Facsko	Dresden (Germany)
Pedro Grande	Porto Alegre (Brazil)
Platon Karaseov	St. Petersburg (Russia)
Christoph Lemell	Vienna (Austria)
Claudia Montanari	Buenos Aires (Argentina)
Hidemi Ogawa	Nara (Japan)
Daniel Primetzhofer	Uppsala (Sweden)
Pierfrancesco Riccardi	Cosenza (Italy)
Hermann Rothard	Caen (France)
Thomas Schenkel	Berkeley (USA)
Károly Tökési	Debrecen (Hungary)
Christina Trautmann	Darmstadt (Germany)
Hidetsugu Tsuchida	Kyoto (Japan)
Zhiguang Wang	Lanzhou (China)

SHIM International Scientific Committee

Hiro Amekura	Tsukuba (Japan)
Pavel Apel	Dubna (Russia)
Devesh Avasthi	New Dehli (India)
Michael Beuve	Lyon (France)
Wolfgang Bolse	Stuttgart (Germany)
Flyura Djurabekova	Helsinki (Finland)
Norito Ishikawa	Ibaraki (Japan)
Patrick Kluth	Canberra (Australia)
Maik Lang	Knoxville (USA)
Xinwen Ma	Lanzhou (China)
Nikita Medvedev	Prague (Czech Republic)
Isabelle Monnet	Caen (France)
Ricardo Papaleo	Porto Alegre (Brazil)
Hermann Rothard	Caen (France)
Daniel Severin	Darmstadt (Germany)
Christina Trautmann	Darmstadt (Germany)

Comprehensive model of SHI impacts: from ion passage to track formation

<u>R.A. Rymzhanov</u>^{1,2,*}, J.H. O'Connell³, N. Medvedev^{4,5}, M. Ćosić⁶, V.A. Skuratov^{1,7,8}, A. Janse van Vuuren³, S.A. Gorbunov⁹, A.E. Volkov^{1,9}

¹Joint Institute for Nuclear Research, Dubna, Russia; ²The Institute of Nuclear Physics, Almaty, Kazakhstan; ³Nelson Mandela University, Port Elizabeth, South Africa; ⁴Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic; ⁵Institute of Plasma Physics, Czech Academy of Sciences, Prague, Czech Republic; ⁶Vinča Institute of Nuclear Science, Belgrade, Serbia; ⁷National Research Nuclear University MEPhI, Moscow, Russia; ⁸Dubna State University, Dubna, Moscow Region, Russia; ⁹P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia; ^{*}rymzhanov@jinr.ru

A combined Monte Carlo (MC) and Molecular Dynamics (MD) approach enables us to study in detail effects of different stages of swift heavy ion (SHI) track formation. The MC model (TREKIS [1]) describes excitation of the electronic system and energy transfer to the lattice providing initial conditions for the MD simulations of subsequent lattice response. We discuss here the kinetics of individual track formation, tracks overlap and surface modifications in some amorphizable (YAG, Mg₂SiO₄) and non-amorphizable (Al₂O₃, MgO, CaF₂) solids irradiated with SHIs. High-resolution transmission electron microscopy analysis of samples irradiated with Xe and Bi ions is used to validate the developed model and to investigate the link between the basic properties of the studied materials and the kinetics of structural changes of the targets. We demonstrate the following:

1) The size and morphology of individual latent tracks and tracks overlap at high fluences are strongly affected by recrystallization of the transiently disordered zone [2].

2) Different spectra of electrons generated by ions of different energies result in a velocity effect of track formation and a mismatch between the position of the maximal damage and the Bragg peak of the projectile energy loss [3].

3) Protrusion of molten material and a final structure of surface defects induced by an SHI are governed by mobility of target atoms, surface tensions and recrystallization of a material during the ultra-short cooling period [4].

4) A target thickness affects formation of surface defects under SHI irradiation: the thinnest layers form a through hole, semispherical and spherical hillocks are created after an ion impact at medium thicknesses, whereas nanoparticle emission occurs from thick layers [5].

5) Impact of an SHI under a grazing incidence results in formation of a groove-like structure vs. a chain of nanohillocks depending on material and irradiation properties. It can be concluded that hydrodynamic (Rayleigh) instability of molten material on the surface dominates in hillock chain formation over the effect of the dependence of ion energy loss on the impact parameter.

References

- [1] N.A. Medvedev, J.Phys. D 48 (2015) 355303
- [2] R.A. Rymzhanov et al. Sci. Rep. 9 (2019) 3837
- [3] R.A. Rymzhanov et al. NIMB 440 (2019) 25–35
- [4] R.A. Rymzhanov et al. J. Appl. Phys. 127 (2020) 015901
- [5] R.A. Rymzhanov et al. Appl. Surf. Sci. 566 (2021) 150640