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Abstract. In our work we presented the modified field equations generated by action of Weyl conformal
gravity. Assuming static cylindric symmetry, we derived the corresponding Bach tensor and from field
equation we find gravity potential. We solved geodesic equations in the case of conformal gravity potential.
Also we consider precession perihelion of Solar planets and S stars.

1. Introduction

The modified theories of gravity have been proposed like alternative approaches to Einstein theory of
gravity [1]. In this work we consider Weyl gravity theories of gravity [4]. Weyl gravity is a straightforward
extension of General Relativity (GR) where, instead of the Hilbert-Einstein action, linear in the Ricci scalar
R, one considers in the gravity Lagrangian density [2, 3, 7]:

L = RµνRµν −
1
3

R2. (1)

In the weak field limit, a gravitational potential may be written as [2, 3]:

Φ =
c2

2

[
−

2β
r
+ γr − kr2

]
. (2)

and β, γ, and k are integration constants. This solution includes as special cases the Schwarzschild solution
(γ = k = 0) and the Schwarzschild-de Sitter (γ = 0) solution; the latter requiring the presence of a
cosmological constant in Einstein gravity.

We considered geodesic equations for cilindrically symmetric static (CSS) metric and Weyl gravity. In
Section 2 we presented basic properties of CSS metric, while in section 3 we design an action integral,
also find field equations. In section 4. we find geodesic equations as proposed in [1]. In section 5 we
considered expression for precession perihelion for body rotating around supermassive star or black hole.
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In next section we have done the theoretical results for precession perihelion of potential Weyl’s gravity.
The section 7 is devoted to concluding remarks. Section 8 or Appendix A present detail calculation of Bach
tensor Wrr [3], while in section 9 or appendix B we repesent solution of differential equation Wrr = 0. After
that at finally in section 9 or appendix C are given calculation of precession perihelion.

2. General properties

We proposed metric for cilindical static symmetric (CSS) space [3], because the metric tensor with
components 1µµ depend only of radius r

ds2 = −B(r)dt2 + A(r)dr2 + r2dφ2 + r2dz2, (3)

where is: 100 = −B(r), 111 = A(r), 122 = r2, 133 = r2, 1µµ =
1
1µµ

, 1 = 100111122133 = −ABr4.

Cristoffel symbols are given: Γαεν =
1
2
1ασ

(
1σε,ν + 1σν,ε − 1εν,σ

)
and Γαµα,ν =

∂Γαµα
∂xν

and 1µν,α =
∂1µν
∂xα

.
Crystoffel symbols Γαεν different from zero are:

Γ1
00 =

1
2A

dB
dr
,Γ0

10 = Γ
0
01 =

1
2B

dB
dr
,Γ1

11 =
1

2A
dA
dr
,Γ1

22 = Γ
1
33 = −

r
A
,Γ2

12 = Γ
3
13 =

1
r

.
Rimman curvator tensor Rρναβ and Ricci tensor Rνβ are given by the following relations [1,5]:

Rµναβ = 1
µρR

ρναβ
= Γ

µ
να,β − Γ

µ
νβ,α + Γ

µ
εβΓ
ε
να − Γ

µ
ϵαΓ
ϵ
νβ, (4)

Rνβ = Rµνµβ, (5)

Rµν = Γαµα,ν − Γ
α
µν,α + Γ

α
ενΓ
ε
µα − Γ

ε
µνΓ
α
εα. (6)

Weyl tensor Cµναβ is defined by expression [5,7]:

Cµναβ = Rµναβ +
1
2

(
1ναRµβ + 1µβRνα−1νβRµα−1µαRνβ

)
+

1
6

R
(
1µα1νβ − 1µβ1να

)
. (7)

Ricci tensor Rµν and Ricci scalar R are expressed in the sense of CSS metric:

R00 = −
1

2A
d2B
dr2 +

1
4A2

dA
dr

dB
dr
+

1
4AB

(
dB
dr

)2

−
1

rA
dB
dr
, (8)

R11 =
1

2B
d2B
dr2 −

1
4B2

(
dB
dr

)2

−
1

4AB
dA
dr

dB
dr
−

1
rA

dA
dr
, (9)

R22 =
1
A
+ r

1
2AB

dB
dr
− r

1
2A2

dA
dr
, R33 = R22, (10)

R = 1µνRµν =
1

AB
d2B
dr2 −

1
2AB2

(
dB
dr

)2

−
1

2BA2

dA
dr

dB
dr
−

2
r2

(
−

1
A

)
−

2
rA2

dA
dr
+

2
rAB

dB
dr
. (11)

As we take AB = 1 it has shown that relations (8), (9), (10) and (11) become:

R00 = −
B
2r

(
d2B
dr2 r + 2

dB
dr

)
, (12)

R11 =
1

2rB

(
d2B
dr2 r + 2

dB
dr

)
, (13)

R22 = R33 = r
dB
dr
+ B, (14)

R =
d2B
dr2 +

4
r

dB
dr
+

2B
r2 . (15)
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3. Weyl conformal CSS gravity

Action is: S = −α
∫

d4x
√
−1CµναβCµναβ =− 2α

∫
d4x
√
−1[RµνRµν − 1

3 R2], [2,3,7] where lagrangian density
is:

L = RµνRµν −
1
3

R2. (16)

The Euler-Lagrange equations turn out to be second order [2]

√
−1Wµν

=
∂
∂1µν

(√
−1L

)
−
∂

∂xµ

√−1 ∂L

∂
(
1µν

)′
 + ∂2

∂ (xµ)2

√−1 ∂L

∂
(
1µν

)′′
 , (17)

where
(
1µν

)′
=
∂1µν
∂r ,

(
1µν

)′′
=
∂21µν

∂r2 , and Wµν is Bach tensor [5,6,7], which is given by the following equations
expression

Wµν = Cµβνα;αβ +
1
2

CµανβRαβ, (18)

where Cµβνα;αβ is covariant derivate second order of Weyl tensor.
The Euler-Lagrange equations is Wµν = 0 [2,3]. In the static geometry it is enough to find out Wrr. Two

other components of Bach tensor Wzz and Wtt can get from the trace of Bach tensor Wµν and the divergence
of Wµν [2,6,7] , ie.

1µνWµν = 0 ,Wµν
;µ = 0. (19)

After some manipulation we get from equations (19) following two equations:

−B(r)Wtt + A(r)Wrr + 2r2W
zz
= 0, (20)(

∂
∂r
+

1
A

dA
dr
+

1
2B

dB
dr
+

2
r

)
Wrr +

1
2A

dB
dr

Wtt
−

2r
A

Wzz = 0. (21)

From equation (15) and Appendix A [2,3,4] we get third equation:

12r4

B
Wrr = −4B2

− 4rB
[
−2

dB
dr
+ r

(
d2B
dr2 + r

d3B
dr3

)]
+ r2

−4
(

dB
dr

)2

− r2

(
d2B
dr2

)2

+ 2r
dB
dr

(
2

d2B
dr2 + r

d3B
dr3

) . (22)

In our case field equations are

Wµµ = 0, (23)

then from Appendix B and [2,3] we get

B (r) = 1 −
2β
r
+ γr − kr2. (24)

and β, γ, and k are integration constants. This solution includes as special cases the Schwarzschild solution
(γ = k = 0) and the Schwarzschild-de Sitter (γ = 0) solution; the latter requiring the presence of a
cosmological constant in Einstein gravity.
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4. Geodesic equations in Weyl gravity

We are solving relativistic equations of motion for massive particles in Weyl gravity [1] with common
assumption given in the paper by Capozziello at al. [14], Manheim at al. [2], Jackson Levi Said at al. [3]:
AB = 1.

Geodesic equations are:

d2xµ

dp2 + Γ
µ
αβ

dxα

dp
dxβ

dp
= 0. (25)

These equations provide differential equations for the four space-time components: xµ = (t(p), r(p), φ(p), z(p)),
where p is affine parameter describing the trajectory. The coordinate system may be oriented so that the
orbit of the particle lies in (r(p), φ(p)) plane, and fix the z = 0 [1,4]. These equations become:

d2t
dp2 +

1
B

dB
dr

dr
dp

dt
dp
= 0, (26)

d2r
dp2 +

1
2A

dB
dr

(
dt
dp

)2

+
1

2A
dA
dr

(
dr
dp

)2

−
r
A

(
dφ
dp

)2

−
r
A

(
dz
dp

)2

= 0, (27)

d2φ

dp2 +
2
r

dr
dp

dφ
dp
= 0, (28)

d2z
dp2 +

2
r

dr
dp

dz
dp
= 0. (29)

From the first equation we get:

dt
dp
=

1
B
. (30)

From the third equation we obtain:

J = r2 dφ
dp
= const. =

√

GML =
√

GMa(1 − e2), (31)

where J is sector velocity, G is gravitation constant, M is mass of supermasive black hole, a is semimajor
axis, L is semilatus rectum, e is eccentricity. From the fourth equation we obtain in general case:

K = r2 dz
dp
= const. (32)

where K is second sector velocity and in our case is zero. We assumed that the orbital of particle lies in the
plane z = 0, i.e. coordinate z is fixed and does not depend on p. From the second equation we obtain:

A
(

dr
dp

)2

+
J2 + K2

r2 −
1
B
= const. = E, (33)

and using the second equation we finally have:

(
dr
dφ

)2

+
r2

A

(
J2 + K2

J2 −
Er2

J2

)
=

c2r4

ABJ2 , (34)

(
dr
dτ

)2

=
c2

A
+

c4

ABE
−

c2(J2 + K2)
Er2A

, (35)
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dr
dt

)2

=
EB2

A
+

Bc2

A
−

(J2 + K2)B2

r2A
, (36)

where E, J and K are constants of the motion and c is velocity of light [1,4].
Also,

ds2 = c2dτ
2
= Edp2. (37)

where τ is proper time. Angle φ(r) is given by expression:

φ(r) = φ(r−) +
∫ r

r−

√
Adr

r2

√
E
J2 +

c2

BJ2 −
J2 + K2

r2 J2

(38)

and

r± = (1 ± e) a ∧ L =
(
1 − e2

)
a, (39)

where r± is maximum (aphelia) and minimum (perihelia) values of r, a - semimajor axis, L - semilatus
rectum, e - eccentricity.

The angle of orbital precession per revolution is [1,4]:

∆φ = 2|φ(r+) − φ(r−)| − 2π. (40)

In the case of Weyl gravity, taking into account the following equations:

B = 1 +
2Φ
c2 , (41)

which is 100 = 1 +
2Φ
c2 in Newtonian limit in weak field, and Φ is gravitation potential.

B (r) = A−1 (r) = 1 −
2β
r
+ γr − kr2, (42)

Φ =
c2

2

[
−

2β
r
+ γr − kr2

]
. (43)

We also obtained angular velocity ω in Weyl gravity:

ω =
dφ
dt
=

JB
r2 =

J
r2

[
1 −

2β
r
+ γr − kr2

]
, (44)

and:

dr
dt
= B

√
c2 + B

(
E −

(J2 + K2)
r2

)
. (45)

5. Orbital precession in the potential of Weyl gravity

As proposed in the reference [4] and described in Appendix C following expression is used to calculate
precession:

∆φ = φ (π) − φ (0) =
1
√

C

∫ π

0

√
A(Ψ)dΨ, (46)
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whereΨ is parameter which substitute of radius r to simplify the integral of precession and C is a constant.

C
(
L−1

)
≈ 1 −

(u+ − u−) (u+ + u−) A′′(L−1)
2 [A(u+) − A(u−)]

≈ 1 −
A′′(L−1)
LA′(L−1)

, (47)

and

u =
1
r
=

1 + ecosΨ
L

, (48)

5.1. The case of Schwarzschild metric

In this case B(r) can be simplified, taking γ = 0 and k = 0:

B (r) = A−1 (r) = 1 −
2β
r
= 1 − 2βu. (49)

By taking series expansion, concluding in second order in u:√
A (r) = 1 + βu + 2β2u2. (50)

We also simplified expansion involving C:

1
√

C
= 1 +

2β
L
. (51)

Precession is then:

∆φ =

[
1 +

2β
L

] ∫ π

0

(
1 + βu + 2β2u2

)
dΨ, (52)

∆φ =

[
1 +

2β
L

] ∫ π

0

(
1 + β

[1 + ecosΨ
L

]
+ 2β2

[1 + ecosΨ
L

]2)
dΨ, (53)

∆ϕ + 2π = 2∆φ + 2π = 2π +
6πβ

L
+ π

4β2

L2

[
4 + e2

2

]
= 2π +

3πrs

L
+ π

r2
s

L2

[
4 + e2

2

]
, (54)

∆ϕ ≈
3πrs

L
, (55)

where rs =
2GM

c2 is Schwarzschild radius.

5.2. The case of Weyl potential

Using now completing formula (42), and then series expansion we have:

B (r) = A−1 (r) = 1 −
2β
r
+ γr − kr2, (56)

√
A (r) = 1 + βu + 2β2u2

−
γ

2u
+

k
2u2 . (57)

And similary for C:

1
√

C
= 1 +

2β
L
. (58)
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Precession is given by integral expression:

∆φ =

[
1 +

2β
L

] ∫ π

0

(
1 + βu + 2β2u2

−
γ

2u
+

k
2u2

)
dΨ, (59)

∆φ =

[
1 +

2β
L

] ∫ π

0

(
1 + β

[1 + ecosΨ
L

]
+ 2β2

[1 + ecosΨ
L

]2

−
γL

2 (1 + ecosΨ)
+

kL2

2(1 + ecosΨ)2

)
dΨ. (60)

From [9] we get the solution of following integrals:∫ π

0

1
(1 + ecosΨ)

dΨ=
π

√

1 − e2
,

∫ π

0

1

(1 + ecosΨ)2 dΨ=
π√

(1 − e2)3
. (61)

Finaly integral expresion reduces to:

∆ϕ =
3πrs

L
−
πγL
√

1 − e2
+

πkL2√
(1 − e2)3

, (62)

and we take following expresion for integral constants γ and k, which can be compared with Einstain
precession in equation (55),

γ

2
=

rs

L2

rm
s

Lm ,
k
2
=

rs

L3

rm
s

Lm , (63)

where m is scaling parameter.

∆ϕ =
3πrs

L

1 − 2rm
s

3Lm
√

1 − e2
+

2rm
s

3Lm
√

(1 − e2)3

 . (64)

6. Results

In this section we compare our calculations with some astronomical observations for Solar planets and
S-stars. In tables 1 and 2 first column present a semimajor axis, second is e eccentricity, thrid is observation
period of revolution (T), fourt is orbital precession (∆ϕ) in general theory of relativity, fifty column is orbital
precession (∆ϕ) given by astronomical observations, sixty column is orbital precession (∆ϕ) calculate by
equation (64) and m is scaling parameter. In table 1 we get results for solar planets and the results are
for S-stars (S2, S38 and S55) in second table. The observed orbital elements from Table 2 are taken from
references [11, 12, 13, 15, 16] while the observed orbital elements in Table 1 are taken from Table 8.1 of [1,10].
∆ϕ in Table 1 is in unit arcseconds for one century, while in second table is in degrees for one revolution.

Solar
Planet

a(106km) e T (days) GR ∆ϕ Observ
∆ϕ

Weyl
relativity
∆ϕ

m

Mercur 57.91 0.2056 87.9692 43.03 43.1 ± 0.5 42.912 1
Venus 108.21 0.0068 224.7091 8.6 8.4 ± 4.8 8.4 1
Earth 149.60 0.0167 365.256 3.8 5.0 ± 1.2 5.02 -0.42

Table 1: Period of revolution (T) in (yr.) and orbital precession (∆ϕ) in (seconds for one century) for Solar planets (Mercur, Venera and
Earth), estimated for the Weyl gravity.

Probably dark matter is reason for m = −0.42 for Earth, while all other cases suggest that m = 1 is good
match.
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The GRAVITY Collaboration was detected orbital precession of the S2 star around the Galactic Center
[15] and found that it is similary to GR prediction which for S2 star is ∆φ = 0◦.201 per orbital period.
Also, according to data analysis in the framework of Yukawa gravity model in the paper [16], the orbital
precessions of the S38 and S55 stars corespond to GR predictions for these stars, which are 0◦.119 and 0◦.106
per orbital period, respectively. Also the scaling parameter m is 1.

S stars a(AU) e T (years) GR ∆ϕ Observ∆ϕ Weyl
relativity
∆ϕ

m

S2 1044.2 0.8839 16.00 0.20078 0.201 0.20116 1
S38 1178.1 0.8201 19.2 0.11888 0.119 0.11950 1
S55 896.9 0.7209 12.80 0.10743 0.106 0.10745 1

Table 2: Period of revolution (T) in (yr.) and orbital precession ∆ϕ in (degree for orbital period) for S stars (S2, S38 and S55), estimated
for the Weyl gravity. The observed orbital elements are taken from [11,12,13,15,16]

From the Table 2. we can see the orbital precession of Weyl gravity for S-stars (S2, S38 and S55) are in
good agreement with astronomical observations.

7. Conclusions

In this work we presented the modified field equations and geodesic equations in the case of a Weyl
gravity. We assume cilindrical static symmetry because the metric tensor 1µµ depend only of radius r. After
that we find the equations of field and geodesic equations for Weyl gravity. Solving geodesic equations of
motion we find orbital precession (∆ϕ) in limit of weak field. Then our results represent in Table 1 and
Table 2 are compared with astronomical observations.

As we can see from tables our results are agree with observed values, while in the case of Earth the Weyl
gravitation get good agreement with observation. Weyl gravitation include dark matter and dark energy
which Einstain’s prediction are given by term of cosmology constant. Weyl gravity consists three term.

From equation (43) we can calculate gravitation force, is given by following relation:

−→
F = −

−→
∇Φ = −

∂Φ
∂r
−→e −→r = −

c2β

r2
−→e −→r −

c2γ

2
−→e −→r + c2kr−→e −→r . (65)

The first factor is Newton force.
Second force is constant and present galaxy rotation curves as a factor of expansion cosmos. What is

galaxy rotation curves? Spiral Galaxies rotate such that the rotation speed: Rises steadily from the center to
the inner disk and becomes roughly constant (flat) with radius in the outer parts as far as can be measured
in the disk. Evidence of dark matter has been confirmed through the study of rotation curves. To make a
rotation curve one calculates the rotational velocity of e.g. stars along the length of a galaxy by measuring
their Doppler shifts, and then plots this quantity versus their respective distance away from the center (for
example Figure 1)

Vera Florence Cooper Rubin (July 23, 1928 December 25, 2016) was an American astronomer who
pioneered work on galaxy rotation rates. She uncovered the discrepancy between the predicted and
observed angular motion of galaxies by studying galactic rotation curves. Identifying the galaxy rotation
problem, her work provided evidence for the existence of dark matter. These results were confirmed over
subsequent decades.

Thrid force is given by Einstain along constant c2k and also it is likewise force of Hook and constant c2k
is similary as Hook constant. In this case we have only expansion of cosmos because force is greater than
zero.

In the context of cosmology the constant c2k is a homogeneous energy density that causes the expansion
of the universe to accelerate. Originally proposed early in the development of general relativity in order
to allow a static universe solution it was subsequently abandoned when the universe was found to be
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FIGURE 1. Rotation speed of spiral galaxies versus distance r from the center of galaxy. Right picture is the
rotation curve for the galaxy NGC3198 from Begeman 1989. Left picture is the rotation curve for the Milky
Way galaxy and show that the rotation curve is nearly flat with increasing radius. Evidently there are huge
amounts of unseen ”dark” matter in the outer parts of the galaxy that add gravitational field beyond that
just from the center, causing the stars and gas to orbit faster. (Figure from The Essential Cosmic Perspective,
by Bennett et al.)

expanding. Now the constant c2k is invoked to explain the observed acceleration of the expansion of the
universe. The constant c2k is the simplest realization of dark energy, which is the more generic name given
to the unknown cause of the acceleration of the universe.

Also, our calculations showed a good agreement with the corresponding astronomical observations of
several S-stars. We hope that using this method with geodesics, we can evaluate parameters of alternative
models for a gravitational potential at the Galactic Center with higher accuracy.

8. Appendix A. Calculation of Wrr Weyl conformal CSS gravity [2,3]

For any action S = −α
∫

d4x
√
−1L, where lagrangian density is L and any static line element

ds2 = −B(r)dt2 + A(r)dr2 + C(r)dφ2 +D(r)dz2, (66)

where in our case C(r) = D(r) = r2, and langragian density is

L = RµνRµν −
1
3

R2. (67)

We can calculate on the following way Wrr component of Bach tensor:

√
−1Wrr =

∂S
∂A
=
∂
∂A

(√
−1L

)
−
∂
∂r

(
√
−1
∂L
∂A′

)
+
∂

∂r2

(
√
−1
∂L
∂A′′

)
. (68)

We define

L = L1 + L2 + L3 + L4, (69)

where

L1 = R00R00 = 1
2
00R2

00, L2 = R11R11 = 1
2
11R2

11, L3 = R22R22 = 1
2
22R2

22, L4 = −
1
3

R2. (70)
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Now we calculate

I = −
√
−1
∂L
∂(A)

′ = I1 + I2 + I3 + I4, (71)

where

I1 = −
√
−1
∂L1

∂(A)
′ = −2

√
−1R00

∂R00

∂A′

(
100

)2
=

BB′r
4

(
B
′′

r + 2B′
)
, (72)

I2 = −
√
−1
∂L2

∂(A)
′ = −2

√
−1R11

∂R11

∂A′

(
111

)2
=

(
BB′r

4
+ B2

) (
B
′′

r + 2B′
)
, (73)

I3 = −
√
−1
∂L3

∂(A)
′ = −4

√
−1R22

∂R22

∂A′

(
122

)2
=

2B2

r

(
B
′

r + B
)
, (74)

I4 =
√
−1
∂L4

∂(A)
′ =

2
3
√
−1R

∂R
∂A′
=

(
−

BB′r2

3
−

4B2r
3

) (
B′′r2 + 4rB′ + 2B

r2

)
. (75)

Then we calculate the partial derivate of I by coordinate r:

∂I
∂r
=
∂I1

∂r
+
∂I2

∂r
+
∂I3

∂r
+
∂I4

∂r
, (76)

where the components of partial derivate of I are ∂I1
∂r , ∂I2

∂r , ∂I3
∂r , ∂I4

∂r and given by next four relations:

∂I1

∂r
=

B′2r
4
+

BB′′r
4
+

BB′

4

 (B′′r + 2B′
)
+

BB′r
4

(
B
′′′

r + 3B′′
)
, (77)

∂I2

∂r
=

B′2r
4
+

BB′′r
4
+

9BB′

4

 (B′′r + 2B′
)
+

(
BB′r

4
+ B2

) (
B
′′′

r + 3B′′
)
, (78)

∂I3

∂r
=

[
2B2

r

] (
B
′′

r + 2B′
)
+

(
rB
′

+ B
) (4BB′

r
−

2B2

r2

)
, (79)

∂I4

∂r
=

[
−

BB′′r2

3
−

B′2r2

3
−

10
3

BB′r −
4B2

3

] (
B′′r2 + 4rB′ + 2B

r2

)
+

(
−

BB′r2

3
−

4rB2

3

) (
B
′′′

+
4B′′

r
−

2B′

r2 −
4B
r3

)
. (80)

After that we find out the

II =
∂
∂A

(√
−1L

)
, (81)

which are divided in four components II1, II2, II3 and II4,

II = II1 + II2 + II3 + II4. (82)

In the following four equations are given by the expresions of II1, II2, II3 and II4:

II1 =
∂
∂A

(√
−1L1

)
=
∂
∂A

√ABr2

(
R00

100

)2 = B
8

(
B
′′

r + 2B′
)2
− r

(
B
′′

r + 2B′
) (B′′B

2
+

B′2

4
+

B′B
r

)
, (83)
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II2 =
∂
∂A

(√
−1L2

)
=
∂
∂A

√ABr2

(
R11

111

)2 = −3B
8

(
B
′′

r + 2B′
)2
+ r

(
B
′′

r + 2B′
) −B′2

4
−

B′B
r

 , (84)

II3 =
∂
∂A

(√
−1L3

)
=
∂
∂A

√ABr2

(
R22

122

)2 = B
r2

(
B
′

r + B
)2
+

4
r2

(
B
′

r + B
) (
−

3rB′B
2
− B2

)
, (85)

II4 =
∂
∂A

(√
−1L4

)
=
∂
∂A

(
−

1
3

√

ABr2R2
)

(86)

= −
B

6r2

(
B
′′

r2 + 4rB
′

+ 2B
)2
−

2
3

(
B
′′

r2 + 4rB
′

+ 2B
) (
−B

′′

B −
6BB′

r
−

2B2

r2 −
B′2

2

)
. (87)

So we can get the finally expresion for Bach tensor Wrr is:

r2Wrr =
∂I
∂r
+ II, (88)

where

B
′

=
dB
dr
, B

′′

=
d2B
dr2 , B

′′′

=
d3B
dr3 , (89)

and finally we get equation (20):

12r4

B
Wrr = −4B2

− 4rB
[
−2

dB
dr
+ r

(
d2B
dr2 + r

d3B
dr3

)]
+ r2

−4
(

dB
dr

)2

− r2

(
d2B
dr2

)2

+ 2r
dB
dr

(
2

d2B
dr2 + r

d3B
dr3

) . (90)

9. Appendix B. Calculation of differential equation Wrr = 0 Weyl conformal CSS gravity [2,3]

This appendix represent the way of calculation of equation Wrr = 0. First we take substitution for B(r)

B(r) = r2l (r) . (91)

Put that in Wrr we get following expression:

12r4

B
Wrr = r6

8(dl (r)
dr

)2

− r2

(
d2l (r)

dr2

)2

+ 2r
dl (r)

dr

[
4

d2l (r)
dr2 + r

d3l (r)
dr3

] . (92)

After that we take second substitution:

dl (r)
dr
= y(r), (93)

and put it in equation (91), we get following expression for Wrr

12r4

B
Wrr = r6

8y(r)2
− r2

(
dy (r)

dr

)2

+ 2ry(r)
[
4

dy (r)
dr
+ r

d2y (r)
dr2

] . (94)

Then we take thrid substitution

y (r) =
h (r)
r3 , (95)

and put in the equation (93), we get new expression for Wrr.

12r4

B
Wrr = h(r)2

− r2

(
dh (r)

dr

)2

+ 2rh(r)
[

dh (r)
dr
+ r

d2h (r)
dr2

]
. (96)
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Then we take fourth substitution

r = et, (97)

and put it in equation (95) we get following expression for Wrr

12r4

B
Wrr = −h(t)2

−

(
dh (t)

dt

)2

+ 2h(t)
d2h (t)

dt2 . (98)

And finally we take last substitution

h(t) = v2(t), (99)

to get finally expression for Wrr:

12r4

B
Wrr = v(t)3

[
4

d2v (t)
dt2 − v(t)

]
. (100)

Solving the equation Wrr = 0 we finally get B(r)

4
d2v (t)

dt2 − v(t) = 0, (101)

v2 = c1 + c2r +
c3

r
, (102)

B (r) = a + br + cr2 +
d
r
, (103)

where a, b, c and d the constants of integration.

10. Appendix C. Calculation of precession [1,4]

We start from equation (42)

B (r) = A−1 (r) = 1 −
2β
r
+ γr − kr2, (104)

We are consider the case K = 0 and we get following equation from equation (34):

A
r4

(
dr
dφ

)2

+
1
r2 −

c2

J2B
=

E
J2 . (105)

In the case: AB = 1,

φ(r+) − φ(r−) =
∫ r+

r−

√

B−1dr

r2

√
E
J2 +

c2

BJ2 −
1
r2

, (106)

where

r± = (1 ± e) a, L = a
(
1 − e2

)
, (107)

r± is maximum (aphelia) and minimum (perihelia) values of r, a - semimajor axis, L - semilatus rectum, e -
eccentricity.
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At perihelia and aphelia, r reaches its minimum and maximum values r− and r+, and at both points
dr/dφ vanishes so gives

dr
dφ

(r±) = 0⇒
E
J2 −

1
r2
±

+
c2

J2B (r±)
= 0. (108)

From these two equations we can derive two constants of motion K and J:

J2 = c2
1

B(r+) −
1

B(r−)
1
r2
+
−

1
r2
−

, (109)

−E = c2

r2
+

B(r+) −
r2
−

B(r−)

r2
+ − r2

−

. (110)

The angle swept out by the position vector as r increases from r−, using equations (108) and (109), is
given by

φ (r) − φ (r−) =
∫ r

r−
A

1
2

 r2
−

(
B−1
− B−1

−

)
− r2
+

(
B−1
− B−1

+

)
r2
+r2
−

(
B−1
+ − B−1

−

) −
1
r2


1
2

dr
r2 , (111)

where B+ = B (r+) , B− = B(r−). The total change φ per revolution is 2(φ (r+) − φ (r−)). This would equal 2π
if the orbit is closed ellipsa, so in general the orbit precesses in each revolution by an angle which is given
by equation (40).

We make the argument of first square root in (110) a quadratic function of 1/r. Futhermore, it vanishes
at r− and r+. It can be shown that expression can write in the following shape:

r2
−

(
B−1
− B−1

−

)
− r2
+

(
B−1
− B−1

+

)
r2
+r2
−

(
B−1
+ − B−1

−

) −
1
r2 = C

( 1
r−
−

1
r

) (1
r
−

1
r+

)
, (112)

where C is a constant. Then letting u = 1
r and differentiating twice with respect to u gives

C ≈ 1 −
(u+ − u−) (u+ + u−) A′′(L−1)

2 [A(u+) − A(u−)]
≈ 1 −

A′′(L−1)
LA′(L−1)

, (113)

where

L =
2

(u+ + u−)
,

L
e
=

2
(u− − u+)

. (114)

If we put next parametrs u−, u+ and C in equation (110), we get next expression:

φ (u+) − φ (u−) = −
1
√

C

∫ u+

u−

√
A(u)√

(u− − u) (u − u+)
du. (115)

If we set following substitution in equation (114)

u =
u+ + u−

2
+

u− − u+
2

cosΨ, (116)

we get for precession finally expresion:

∆φ = φ (π) − φ (0) =
1
√

C

∫ π

0

√
A(Ψ)dΨ. (117)
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