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Electrocatalytic materials are pivotal for clean chemical production and energy
conversion in devices like electrolyzers and fuel cells. These materials usually
consist of metallic nanoparticles which serve as active reaction sites, and support
materials which provide high surface area, conductivity and stability. When
designing novel electrocatalytic composites, the focus is often on the metallic
sites, however, the significance of the support should not be overlooked. Carbon
materials, valued for their conductivity and large surface area, are commonly used
as support in benchmark electrocatalysts. However, using alternative support
materials instead of carbon can be beneficial in certain cases. In this minireview,
we summarize recent advancements and key directions in developing novel
supports for electrocatalysis, encompassing both carbon and non-carbon
materials.
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1 Introduction

Electrocatalysis plays an important role in advancing clean energy and chemical
production. Renewable-powered water electrolysis produces green hydrogen (Carmo
et al., 2013; Lei et al., 2019), while fuel cells convert different fuels (hydrogen, methanol,
ethanol, etc.) into electricity (Carrette et al., 2001). CO2 electrolyzers transform this feedstock
into value-added chemicals (Popović et al., 2020; Wang et al., 2023), while ammonia can be
produced via nitrogen electro-reduction (Zeng et al., 2020; Lu et al., 2021). The core of these
devices are electrocatalysts, typically comprised of metallic nanoparticles (NPs) dispersed on
support materials. NPs act as the active sites for reaction enrolling, while supports provide
electrical conductivity, a fine distribution of NPs, and stability in (electro)chemical
environments.

The focus in the development of novel electrocatalytic materials is primarily on active
sites. Strategies for improving intrinsic activity, stability, and selectivity include altering
composition (Bing et al., 2010; Mistry et al., 2016; Mukherjee et al., 2022), customizing
nanostructures (Erini et al., 2015; L. Pan et al., 2019; Wu et al., 2019) and downsizing catalyst
to the level of singe atoms (Li et al., 2019; Speck et al., 2020; Wang et al., 2020). Pt-M alloys
(M = Co, Cu, Ni) became benchmark catalysts for fuel cells (Bing et al., 2010; Mistry et al.,
2016; Mukherjee et al., 2022). High entropy alloys, formed by mixing five or more metals,
create entirely new active sites (Huo et al., 2022). Single-atom electrocatalysts exemplify
novel chemistry where isolated atoms yield outstanding performances (Li et al., 2019; Speck
et al., 2020; Wang et al., 2020).
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Another approach toward novel electrocatalytic composites
involves studying the effect of the support on the performance of
active sites (Jayabal et al., 2020). Carbon materials are the most
common supports in electrocatalysis as they possess unique
properties including large surface area and high conductivity
(Sharma and Pollet, 2012). Although carbon nanomaterials can
serve both as catalysts and catalyst supports (Zhai et al., 2015),
they can be enhanced to overcome shortcomings like limited
electrochemical stability (Bele et al., 2019; Reier et al., 2014;
Pizzutilo et al., 2016). Additionally, the weak interaction between
carbon support and NPs may promote certain degradation
mechanism such as particle detachment, migration, and
coalescence (Campisi et al., 2018). To this end, various directions
have been explored, including modification of carbon supports by
functionalization, introducing defects and doping with heteroatoms,
or developing supports based on transition metal oxides, nitrides,
carbides, and organic materials.

This minireview summarizes recent advances in enhancing
electrocatalyst performance through support effects. We cover
both carbon and non-carbon materials, the two main directions
in the field. We explore strategies for improving carbon supports
and efforts to design non-carbon materials that combine the benefits
of carbon while enhancing active site performance.

2 Carbon-based supports

The diverse range of carbonmaterials available for catalyst substrates
highlights their versatility. In this section, the latest research on the most
studied and most promising systems will be presented.

2.1 Graphene

Graphene is a 2D material consisting of a monolayer of
sp2 hybridized carbon atoms disposed in a hexagonal packing.
Graphene stands out because of large theoretical surface area and
easy tenability (Tarcan et al., 2020). Pristine graphene is rarely
utilized in electrochemistry, whereas its derivatives like graphene
oxide (GO) (Krishnamoorthy et al., 2013) and reduced graphene
oxide (rGO) (Erickson et al., 2010) are widely used. The interest in
graphene arises from its single-layer structure (Baig et al., 2021)
which prevents re-stacking through the formation of a well-
organized and interconnected 3D framework. One way to
prevent agglomeration is to obtain graphene with more hydroxyl
groups at the edges, which can serve also as active sites (Pan et al.,
2019).

The interaction between NPs and graphene can be enhanced by
heteroatom doping. Xiong et al. (2013) showed that significantly
smaller and more homogeneous nanoparticles with enhanced
catalytic activity were obtained on N-doped graphene. The
introduction of N and B dopants (Y. Sun et al., 2016) can
synergistically improve catalyst performance. Pt single-atom
catalysts were synthesized using holey N-doped graphene as
support and achieved 28 times greater mass activity than Pt/C
for hydrogen evolution reaction (HER) (Sun et al., 2022). Our
group created advanced PdAu (Rakočević, Srejić, et al., 2021) and
PtAu (Rakočević et al., 2021) catalysts on rGO for HER by

combining two metals to optimize their electronic structure.
Excellent HER activity of PtAu/rGO catalyst can be observed in
(Figure 1A). Our recent works revealed that using graphene
derivatives as support for Pt-M improves fuel cell catalyst
performance. Enhancements were attributed to increased levels of
total oxygen, specific oxygen functionalities, sp2 carbon, and reduced
structural defects (Pavko et al., 2022; 2023).

Combining the porous structure of graphene and doping with
heteroatoms can significantly improve catalyst performance (Gao
et al., 2023). Karaman (2023) synthesized N,P,S triple-doped 3D
graphene architectures with interconnected, hierarchical porous
structure, which was decorated with Pd NPs. This catalyst
showed improved activity and stability for ethanol oxidation
reaction (EOR) compared to Pd@C and Pd@3DG. Ma et al.
(2022) developed a one-step strategy for preparing N, P co-
doped graphene-supported ultrafine Ru2P NPs using GO and
deoxyribonucleic acid (DNA) as precursors. In this case, the
biomolecule of DNA gives the sites for metal ion adsorption
leading to the excellent activity for HER in the whole pH range.

High conductivity of graphene facilitates electron transfer at the
interface (Jung et al., 2020) and provides more active sites (Navalon
et al., 2017) for electrocatalytic reactions. This is crucial when using
poorly conductive materials as catalysts (Li et al., 2017). Bejigo et al.
(2023) synthesized Co3O4/rGO catalysts by recycling spent lithium-
ion batteries. The activity of Co3O4/rGO for oxygen reduction
reaction (ORR) is similar to that of commercial Pt/C but with
improved stability. Tang et al. (2022) showed that combining the
cobalt metaphosphate with 3D graphene support provides a catalyst
with promising HER performance.

2.2 Carbon nanotubes (CNTs)

CNTs are nanometer-sized cylindrical structures, which can be
either single-walled (SW) or multi-walled (MW), depending on the
number of concentric layers. Due to their chemical stability, they can
be used in different pH environments. High electrical conductivity
and large surface area of CNTs enable efficient electron transfer and
more active sites (Ortiz-Herrera et al., 2022) making them
interesting supports for electrocatalysis.

Wang et al. (2023) developed electrocatalyst for HER by
depositing Pt nanoparticles onto activated CNTs. Outstanding
HER performance was ascribed to the improved electron
conductivity of CNTs and the increased number of exposed
active sites. Liu et al. (2023) synthesized three-metallic PtPdRh
nanoparticles with CNTs and obtained a highly active catalyst for
EOR. Multicomponent catalyst, denoted as Co@CNTs|Ru, showed
excellent results for HER in the whole pH range (Chen et al., 2022).
The arrangement of Co NPs constrained within nanotubes and a
small amount of Ru uniformly deposited on their outer walls led to a
redistribution of charges and electron coupling, resulting in
excellent HER activity. Wang et al. (2020) reported an HER
catalyst containing Co nanoparticles, along with Pt and CNTs.
They used dealloying of PtCo/CNT catalyst to reach excellent
HER performance. Kweon et al. (2020) uniformly deposited small
Ru nanoparticles on MWCNTs modified with–COOH groups,
which showed exceptional HER performance in both acidic and
alkaline media (Figure 1B). DFT calculations suggest that Ru-C
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bonds likely serve as the primary active sites for HER. MWCNTs
were also utilized for developing low-cost catalysts with MnSe
nanostructures for both alkaline oxygen evolution reaction (OER)
and ORR (Singh et al., 2022).

Regarding heteroatom doping, nitrogen-doped CNTs
(N-CNTs) are the most widely studied. For example, excellent
catalysis was obtained on N-CNTs supporting Pt-Ru for
methanol oxidation reaction (MOR) (Forootan Fard et al., 2020).
Similarly, Cu-Fe oxide alloy nanoparticles supported on N-CNTs
exhibited promising activities for HER and ORR (Liu et al., 2022).
The B,N co-doped CNTs with highly dispersed Ru nanoclusters
showed high activity for water splitting. Simultaneous doping with B
and N significantly reduces the adsorption energy of the hydrogen
intermediate at Ru sites, which enhances the HER kinetics (Fan
et al., 2022). S-doped (Tavakol et al., 2020) or P-doped (Song et al.,
2022) CNTs have also shown potential in improving HER kinetics.

2.3 Other carbon-based supports

In addition to graphene and CNTs, various other carbon-based
materials have potential as catalyst substrates. Carbon nanofibers

(CNFs) are similar to CNTs in structure but have a more disordered
arrangement. Wang et al. (2017) synthesized well-dispersed Pt-Cu
nanoparticles enclosed in CNFs as a highly effective catalyst for
HER. The outstanding performance originated from synergistic
interaction between Pt and Cu, the uniform distribution of the
alloy nanoparticles, and the use of CNFs with 3D architectures.
Hodnik et al. reported a facile and scalable synthesis of 3D-
structured electrodes composed of Pt NPs deposited on
graphitized CNFs which were used as catalysts for ORR and
MOR (Hodnik et al., 2020). RuNi nanoparticles grafted in
nitrogen-doped CNFs also showed very good activity for water-
splitting reactions (Figure 1C) (Li et al., 2020).

Carbon aerogels (CA) are 3D structures that can be organic-
based, graphitic materials-based, or biomass-based (Lee and
Park, 2020). The aerogel’s porosity affects the distribution and
size of the NPs and inhibits their aggregation (Peles-Strahl et al.,
2023). Li et al. synthesized a highly stable non-precious metal
catalyst with template-assisted few-layer graphene aerogel as
support with high activities for OER and ORR (Li et al.,
2023). Hou et al. (2023) developed a Ni-WC/CA anode for
MOR, using the highly conductive bacterial cellulose-derived
carbon as the substrate.

FIGURE 1
(A) (a) SEM image of PtAu/rGO; (b) comparison of HER activities in 0.5 M H2SO4; (c) corresponding Tafel slopes (Rakočević et al., 2021). (B) (d) TEM
image of Ru@MWCNTs with particle size distribution; (e) and (f) HER activity and stability compared to Pt/C in different media (Kweon et al., 2020). (C) (g)
SEM image of Ru1Ni1-NCNFs; (h) HER and (i) OER polarization curves in 1 M KOH (M. Li et al., 2020).
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Another strategy to create catalysts with excellent corrosion
resistance involves the combination of fullerene C60 and platinum.
The attachment of Pt clusters onto two-dimensional fullerene
nanosheets (Chen et al., 2023), as well as confining single Pt
atoms using two fullerene molecules were achieved (Zhang et al.,
2023). In both cases, the enhanced catalytic effect originated from
the varied bonding characteristics of Pt-sites at the Pt/C60 interface.
Ruthenium nanoparticles and singe atoms were grafted into a 3D
crystalline fullerene network, providing an outstanding catalyst for
alkaline HER (T. Luo et al., 2023).

3 Non-carbon-based supports

Despite the mentioned advantages and feasibility of carbon
supports, there are cases where alternative materials are
necessary. In this section, we will explore recent advancements in
the design of non-carbon supports for electrocatalysis.

3.1 Transition metal oxides-based supports

Transition metal oxides (TMOs) are attractive in electrocatalysis
due to their (electro)chemical stability and ability to trigger metal-
support interaction (MSI) with active sites (Tauster et al., 1978; Pan
et al., 2017; Luo et al., 2022). However, TMOs often suffer from
limited conductivity. For example, TiO2, a cost-effective, low-
toxicity semiconductor with excellent corrosion resistance. To
address insufficient conductivity, Kwon et al. developed a TiO2/C
composite by covering carbon with a sub-nanometer-thick TiO2

layer, which enhanced the durability of carbon support and the
performance of supported Pt for ORR throughMSI (Shi et al., 2021).
MSI weakens the interaction of Pt with intermediate species, which
results in more active sites available for O2 adsorption. Gasteiger’s
group achieved a different effect by partially reducing a TiO2-y layer
on carbon and decorating it with Pt nanoparticles using atomic layer
deposition (Geppert et al., 2020). This led to the encapsulation of Pt
particles with a TiO2-y coating, enabling selective catalysis of
hydrogen reactions while inhibiting ORR, CO oxidation, and Pt
oxidation. Such selectivity is crucial for fuel cells’ lifetime, as it
prevents catalyst deactivation due to the enrolling of the undesired
ORR at Pt-based anodes (Jung et al., 2020). A similar encapsulation
effect was demonstrated for Ru/TiOx/C composites (Stühmeier
et al., 2022). In summary, blending TiO2 with carbon is a viable
strategy to enhance its conductivity.

Another way to increase TiO2 conductivity is transition metal
doping. For instance, incorporating W into TiO2 generates a highly
conductive composite with a high surface area (Pham et al., 2021). Pt
supported on W-doped TiO2 (Pt/W-TiO2) exhibited significantly
improved ORR activity compared to undoped Pt/TiO2 and
surpassed the durability of Pt/C (T. M. Pham et al., 2023). A
similar effect was shown for Pt supported on Ta-doped TiO2

(Liu et al., 2014; Anwar et al., 2017) and Nb-doped TiO2 (Liu
et al., 2014). Analogously, IrO2 and IrRuOx nanoparticles loaded on
Nb-doped TiO2 nanotubes exhibited high activity for OER (Genova-
Koleva et al., 2019).

Our group has developed a way to increase the conductivity of
TiO2 using partial nitridation to form titanium-oxynitride (TiON).

Initial work by Bele et al. showed that TiON is a conductive material
capable of anchoring small-sized Ir nanoparticles (Bele et al., 2019).
The OER activity and stability of the Ir/TiON composite surpassed
the performance of Ir-benchmarks. Further developments included
mixing TiON with carbon to increase its surface area. Ir/TiON/C
composite with nearly three times higher OER mass activity than Ir-
black was reported by Loncar et al. (2020). Ir nanoparticles
immobilized on nanotubular TiON exhibited exceptional OER
performance due to MSI. The presence of nitrogen was shown to
be crucial for Ir anchoring and nanoparticle stability (Bele et al.,
2020). Another work reported that the presence of Ir stabilized
TiON support against oxidation during electrochemical treatments
(Koderman Podborsek et al., 2022). We have also explored the effect
of TiON on other catalysts and reactions beyond Ir and OER.
Graphene covered with TiON was decorated with PtCu, Ir and
Ru nanoparticles (Moriau et al., 2019). This composite (scheme
given in Figure 2A) exhibited high catalytic performance for various
reactions occurring in fuel cells and electrolyzers (Figures 2B, C).
More recently, we have shown that Pt/TiON outperforms Pt/C as a
HER catalyst due to the dual effect of MSI (Figures 2D–F): i)
adjustment of H adsorption energetics; ii) more effective
anchoring of Pt particles with respect to carbon (Smiljanić et al.,
2022).

Tin-oxide (SnO2) is another interesting material in this context.
Sasaki et al. demonstrated that Pt/SnO2 composite is more stable
than Pt/C in fuel cell operations and that doping of SnO2 with
hypervalent anions (Nb5+, Sb5+, Al3+) can increase its conductivity
(Takasaki et al., 2011). The approach of doping antimony into tin-
oxide (ATO) and decoration with Pt was adopted for obtaining
better-performing catalysts for ORR (Hussain et al., 2019; He et al.,
2020), and electro-oxidation of methanol and ethanol (Lee et al.,
2008). In terms of OER, ATO is considered state of the art support
for iridium nanocatalysts (Puthiyapura et al., 2014). Many works
reported impressive OER catalysts prepared by supporting IrO2 on
various types of ATO (Tong et al., 2017; Han et al., 2020; Moriau
et al., 2022; Khan et al., 2023). The advantages of SnO2 over carbon
include higher durability, an oxophilic effect beneficial for CO
tolerance of supported nanoparticles, and the ability to induce MSI.

Tungsten-oxide (WO3) also found application in electrocatalysis
research. Recent findings reveal that Pt/WO3 has remarkable HER
activity, attributed to electron transfer from the support to Pt sites,
leading to the adjustment of the free energy of H adsorption (Fan
et al., 2023). Conversely, Kim et al. reported a unique effect of WO3

support, known as a metal-insulator transition (Jung et al., 2020).
When exposed to hydrogen, WO3 transforms into a metallic
conductor (HxWO3-x), enabling supported Pt to catalyze HOR.
In contrast, HxWO3-x reverts to insulating WO3 in an oxygen
atmosphere and suppresses ORR. Such selective catalysis of Pt-
materials is beneficial for the fuel cell lifespan.

3.2 Other non-carbon-based supports

Many other materials gained attention in electrocatalysis,
including nitrides, carbides, 2D-materials, organic matrices, etc.
Transition metal nitrides are known for high conductivity which
makes them interesting for electrocatalysis. For instance, Ir
nanoparticles loaded onto TiN exhibited improved OER
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performance due to electronic interactions between TiN and Ir (G.
Li et al., 2018). A recent study also reported electron transfer
between Ru nanorods anchored on TiN, contributing to the
excellent HER activity of Ru/TiN composite (Yang et al., 2022).
However, the instability of TiN is a concern for its electrocatalytic
applications (Avasarala and Haldar, 2011). To address this, DiSalvo
et al. prepared a ternary Ti0.5Nb0.5N nitride as a support for Pt,
which exhibited better ORR performance than Pt/C (Cui et al.,
2013). Similar benefits were observed with various transition metal
carbides. Sun and others synthesized a RuO2-WC composite with
exceptional activity for water-splitting, attributed to the regulation
of Ru electronic structures via MSI (Sun et al., 2022). Ru singe atoms
supported on nitrogen-doped molybdenum carbide displayed
excellent HER performance due to the synergistic effect between
support and active Ru sites (Yu et al., 2020).

Recently, a group of 2D layered materials called MXenes gained
prominence in electrocatalysis (Liu et al., 2020; Bai and Guan, 2022).
For instance, Pt nanoclusters deposited on Ti3C2Tx MXene exhibited
higher HER activity than Pt/C (Jian et al., 2021). Sun’s team reported
MXene catalysts with low Pt loading and impressive HER performance,
which was linked with the influence of surface terminals (OH andO) in
MXene on the electronic state of Pt (Yuan et al., 2019).

Our group recently explored tris(aza)pentacene (TAP) as a
support for Pt nanoparticles (Vélez Santa et al., 2021; Smiljanić,
Bele, et al., 2022). TAP belongs to the family of polyheterocycles,
which are organic compounds interesting in various fields of
chemistry and material science due to their electronic, optical,
and conductive properties. In aqueous media, TAP features
tunable conductivity due to reversible protonation/deprotonation.
When protonated at lower potentials (<0.5 VRHE), the conductivity

of TAP increases, allowing supported Pt to run HOR/HER, while at
higher potentials limited TAP conductivity prevents Pt/TAP from
running ORR (Vélez Santa et al., 2021). Additionally, this feature of
TAP reduces Pt dissolution during rapid potential spikes
encountered during device switching on/off, which is otherwise
very harmful for Pt/C benchmarks (Smiljanić, Bele, et al., 2022).

4 Summary and outlook

This mini-review provides a concise overview of recent
advancements in designing support materials for electrocatalysis.
High surface area carbon-based materials have shown their
versatility in electrocatalysis but also have room for further
improvements. The most important challenge is in optimizing
the activity of supported nanoparticles and enhancing the carbon
corrosion resistance to prevent degradation of the catalytic
composites. High-temperature treatments that lead to
graphitization offer a path to more stable materials, but this
comes with the trade-off of potentially reducing catalytic activity
by removing defects and heteroatoms. Strategies for manufacturing
advanced carbon-basedmaterials will be the focus of future research.
Despite all advantages, in some cases, however, it is necessary to
replace carbon with some alternative supports. After addressing
their low conductivity, TMOs offer several key advantages over
carbon in tackling specific challenges in energy conversion devices.
Their corrosion resistance enables the design of supported
nanocatalysts for OER, which significantly improves the
utilization of precious and scarce metals such as Ir and Ru. The
ability to induce MSI and to improve the activity and durability of

FIGURE 2
(A) Scheme ofmultifunctional electrocatalyst comprised of Ir, PtCu and Ru nanoparticles dispersed over TiON-graphene support; (B) comparison of
HER/HOR activity of TiON-RuPtCu-Ir catalyst with Pt/C benchmark; (C) comparison of MOR performance of TiON-RuPtCu-Ir catalyst with PtRu/C
bechmark; (D) scheme of MSI between Pt and TiON; (E) comparison of HER activities of TiON/C, Pt/TiON/C and Pt/C; (F) intrinsic HER activities of Pt/C
and Pt/TiON/C obtained by taking into account Pt electrochemical surface area. Reprinted with permission fromMoriau et al. (2019); Smiljanić et al.
(2022). Further requests regarding reproduction of the used materials should be directed to the ACS.
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supported active sites can be used to create advanced electrocatalysts
for a range of reactions. Materials such as ATO and TiON are
certainly TMO derivates with interesting features as electrocatalytic
supports for different reactions. Further work is needed to
additionally understand the MSI provided by these supports for
each particular case (i.e., each combination of metal and reaction),
which will allow more straightforward tailoring of the advanced
electrocatalytic composites. Similar is valid for nitrides, carbides,
MXenes, and organic matrices, which can be used for reactions in
both fuel cells and electrolyzers.

Overall, we anticipate that carbon materials will remain a key
focus in electrocatalysis, particularly in cases when they provide
sufficient durability for stable catalyst operation. Non-carbon
supports are foreseen to play a role when a specific issue is to be
addressed (such as carbon corrosion) and when additional
enhancement of the performance of active sites via MSI is
desired. While TMOs, nitrides, and carbides are already well-
known as supports for electrocatalysis, the research on MXenes
and a few other types of 2Dmaterials (phosphorenes, boridenes, etc.)
is in its early stages, offering ample opportunities for the synthesis of
advanced electrocatalytic composites. In the case of non-carbon-
based materials, the choice of support can be guided by the specific
demand in front of the catalyst.
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