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Abstract: Luminescence thermometry has emerged as a very versatile optical technique for remote
temperature measurements, exhibiting a wide range of applicability spanning from cryogenic tem-
peratures to 2000 K. This technology has found extensive utilization across many disciplines. In the
last thirty years, there has been significant growth in the field of luminous thermometry. This growth
has been accompanied by the development of temperature read-out procedures, the creation of
luminescent materials for very sensitive temperature probes, and advancements in theoretical under-
standing. This review article primarily centers on luminescent nanoparticles employed in the field of
luminescence thermometry. In this paper, we provide a comprehensive survey of the recent literature
pertaining to the utilization of lanthanide and transition metal nanophosphors, semiconductor quan-
tum dots, polymer nanoparticles, carbon dots, and nanodiamonds for luminescence thermometry.
In addition, we engage in a discussion regarding the benefits and limitations of nanoparticles in
comparison with conventional, microsized probes for their application in luminescent thermometry.

Keywords: luminescence thermometry; luminescence; nanoparticles; thermometry; nanophosphors;
quantum dots; nanodiamonds

1. Introduction

Nanoparticles are defined as materials that possess dimensions inside the nanoscale
range, namely measuring less than 100 nm. These materials have become important
players in contemporary technologies, with numerous and significant uses. Luminescent
nanoparticles have garnered substantial attention among the scientific community due
to their many present-day uses, including but not limited to solid-state lighting, solar
cells, displays, dosimetry, medical imaging, phototherapy, counterfeiting, and physical and
chemical sensing [1]. Nanoparticles exhibit characteristics that are not seen in their bulk
counterparts as a result of the reduction in their size. The electronic and phonon quantum
confinements, high surface area, and surface features facilitating specialized interactions
are key factors contributing to their distinct properties and appealing applications.

Luminescent nanoparticles are also successfully used as luminescence thermometry
probes. This optical technique for the remote sensing and measurement of temperature
relies on the detection of temperature-induced changes in the luminescence of probe
materials. The detection can be steady-state or time-resolved in both downshifting and
up-conversion emission measurements. So far, all types of luminescent materials have
been tested for various applications of luminescence thermometry. This is possible because
luminescence is always affected by temperature to some extent. The type of material used
depends on application demands and available instrumentation. However, luminescent
nanoparticles were the sole choice for luminescence thermometry in biomedicine, integrated
optoelectronics, and nanoscale environments [2]. They were used either just for temperature
sensing or to simultaneously serve additional tasks, such as bioimaging, localized heating,
chemical sensing, etc. The method can be used in biological systems in vitro or in vivo,
where temperature variations in kelvin have been measured. This amount of temperature
variation cannot be justified considering the power generated by cell metabolism and the
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laws of thermal transport [3]. The quantum efficiency of emission and the biocompatibility
of the material are also important factors to consider when utilizing nanoparticles.

The spectral positions of emission and excitation bands, the intensity of emission
bands, the ratio of the intensities of emission bands, excited state lifetimes, and emission
rise times are the features readily used to determine the temperature of luminescence
probes. They can be used either separately or in combination to perform single-parameter
thermometry or multiparameter thermometry. In this case, the choice depends not only on
the application demands and available instrumentation but also on the available materials.
The latter differ in luminescence characteristics and in thermometric performances, which
are usually quantified by the relative sensitivity, temperature, and spatial and temporal
resolutions. It is worth mentioning that the thermometric performances of luminescence
nanoparticles differ from those of their bulk counterparts [4]. In addition, some of them,
mostly semiconductor quantum dots, exhibit notable size dependence.

A substantial body of literature exists on the subject of luminescence thermometry,
encompassing several books [2,4,5] and review papers [6–10]. Nevertheless, there is a
notable absence of comprehensive review sources that thoroughly explore the application
of nanoparticles in luminescent thermometry. This review paper aims to address this
deficiency by providing a comprehensive analysis of this area. It is primarily focused on
an overview of the recent utilization of nanoparticles for luminescence thermometry and
not on the luminescence thermometry methodology itself. The review addresses both inor-
ganic and organic nanoparticles, namely lanthanide and transition metal nanophosphors,
semiconductor quantum dots, polymer nanoparticles, carbon dots, and nanodiamonds.

2. Lanthanide Activated Nanoparticles

Lanthanide-activated materials were among the first to find usage in luminescence-
based temperature measurements and have been, by far, the most widely employed [4].
They consist of lanthanide ions as optically active centers that are incorporated into hosting
insulators or wide band gap semiconductors. Even though lanthanides include sixth
group elements form the periodic table, from 57La to 71Lu, only elements from 58Ce to
70Yb transform into ions that possess specific electronic configurations which result in a
diversity of luminescence features. The most common trivalent lanthanide ions are formed
by removing electrons from the outer 5d and/or 6s orbitals, leaving only partly filled 4f
orbitals. In this way, optically active 4f electrons are shielded inside the outer 5s2 and 5p6

shells, which are in fact energetically lower. This indicates that the optical properties of
lanthanides are only slightly impacted by their surroundings, resulting in typically narrow
spectral bands formed by sets of well-defined peaks. However, the crystal environment
is important in lanthanide luminescence because electronic transitions between 4f levels,
which are forbidden by Laporte’s selection rules, become partially allowed when the
lanthanide senses an asymmetric field from the host crystal lattice [11]. The diversity of
energy levels of a lanthanide ion within the crystal lattice is depicted schematically in
Figure 1a, including the order of magnitude of the energetic separation between sublevels.
The levels are noted as 2S+1LJ , (L is orbital angular momentum, noted as S, P, D, F, G,
H, . . . for L = 1, 2, 3, 4, 5, 6 . . ., respectively; S is spin angular momentum; J is total
angular momentum; J = L− S when n < 7 and J = L + S when n > 7), and are much
more influenced by the spin–orbit interaction than the crystal field. The number of Stark
sublevels that originated from the crystal field is 2J + 1 when J is an integer and J + 1/2
when J is a half-integer number. Numerous energy levels of lanthanide ions provide a
variety of luminescent emissions throughout the long spectral range from UVA to NIR,
Figure 1.
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Figure 1. (a) Ln3+ ion’s energy levels splitting; (b) Emission spectra of different Ln3+ ions between 
400 and 1600 nm. 

Each lanthanide ion has a specific luminescent fingerprint according to its set of 
energy states [11]. Trivalent Sm3+ (4f5 configuration), Eu3+ (4f6), Tb3+ (4f8), Dy3+ (4f9), and 
Ho3+ (4f10) ions have largely separated energy levels and exhibit strong emissions in the 
visible region [4]. Nd3+ (4f3), Er3+ (4f11) and Tm3+ (4f12) ions, whose energy levels have 
smaller energy differences, usually radiate in the NIR region. The Ce3+ ion is an unusual 
example of trivalent lanthanides because of its large energy 4f–5d transition, which differs 
from the typical 4f–4f lines of other Ln3+. The emission of Gd3+ is located at a shorter 
wavelength in the ultraviolet spectral range due to the absence of sufficient intermediate 
states; therefore, it is not commonly used as an emitting center in luminescence 
thermometry [4]. Only recently, Yu et al. [12] have demonstrated that YAl3(BO3)4 is 
activated by the Pr3+–Gd3+ pair for ratiometric luminescence thermometry in the UV 
spectral range. 

Regardless of the excitation scheme, the luminescent properties of lanthanide-doped 
nanoparticles are temperature-dependent in a variety of ways. As the temperature rises, 
the various emission peaks broaden as a result of lattice vibrations, the overall intensity of 
the spectrum decreases, and the lifetimes of radiative transitions shorten as non-radiative 
phonon relaxations become more probable. All of these phenomena have been proposed 
and verified as a basis for temperature sensing with lanthanide-doped nanoparticles 
[4,6,13]. Each lanthanide energy state can potentially be used to sense temperature. 
Depending on the experiment, this provides a wide spectrum of excitation and emission 
wavelengths [14]. As primary disadvantages, one should mention the lower absorption 
cross-sections and quantum yields of f–f transitions in lanthanide-doped nanoparticles 
compared with those of other luminescent probes, which must often be compensated for 
by a higher excitation power or a prolonged detection time [14]. The ability of this class of 
nanothermometers to optimize sensing performance for different temperature ranges—
from cryogenic regions (4 K) to regions with temperatures as high as >1400 K—is a 
remarkable advantage for many applications including those in harsh environments [15–

Figure 1. (a) Ln3+ ion’s energy levels splitting; (b) Emission spectra of different Ln3+ ions between
400 and 1600 nm.

Each lanthanide ion has a specific luminescent fingerprint according to its set of energy
states [11]. Trivalent Sm3+ (4f 5 configuration), Eu3+ (4f 6), Tb3+ (4f 8), Dy3+ (4f 9), and Ho3+

(4f 10) ions have largely separated energy levels and exhibit strong emissions in the visible
region [4]. Nd3+ (4f 3), Er3+ (4f 11) and Tm3+ (4f 12) ions, whose energy levels have smaller
energy differences, usually radiate in the NIR region. The Ce3+ ion is an unusual example
of trivalent lanthanides because of its large energy 4f –5d transition, which differs from the
typical 4f –4f lines of other Ln3+. The emission of Gd3+ is located at a shorter wavelength in
the ultraviolet spectral range due to the absence of sufficient intermediate states; therefore,
it is not commonly used as an emitting center in luminescence thermometry [4]. Only
recently, Yu et al. [12] have demonstrated that YAl3(BO3)4 is activated by the Pr3+–Gd3+

pair for ratiometric luminescence thermometry in the UV spectral range.
Regardless of the excitation scheme, the luminescent properties of lanthanide-doped

nanoparticles are temperature-dependent in a variety of ways. As the temperature rises,
the various emission peaks broaden as a result of lattice vibrations, the overall intensity of
the spectrum decreases, and the lifetimes of radiative transitions shorten as non-radiative
phonon relaxations become more probable. All of these phenomena have been proposed
and verified as a basis for temperature sensing with lanthanide-doped nanoparticles [4,6,13].
Each lanthanide energy state can potentially be used to sense temperature. Depending on
the experiment, this provides a wide spectrum of excitation and emission wavelengths [14].
As primary disadvantages, one should mention the lower absorption cross-sections and
quantum yields of f–f transitions in lanthanide-doped nanoparticles compared with those
of other luminescent probes, which must often be compensated for by a higher excitation
power or a prolonged detection time [14]. The ability of this class of nanothermometers to
optimize sensing performance for different temperature ranges—from cryogenic regions
(4 K) to regions with temperatures as high as >1400 K—is a remarkable advantage for
many applications including those in harsh environments [15–17]. From the point of view
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of biocompatibility, while lanthanide doped NPs are basically considered as chemically
nontoxic, toxicity due to nanoparticle size may pose some concerns [18].

The initial utilization of lanthanide-based phosphors for luminous temperature moni-
toring was documented by Kusama et al. [19], who investigated the cathodoluminescence
of Y2O2S:Eu3+. Interest in this topic surged around 2010, owing mostly to the realization of
luminescence thermometry’s great potential in nanotechnology and nanomedicine [6].

Lanthanide-based nanoparticles (NPs) utilized in luminescent thermometry can be
categorized into two types, based on energy path phenomena and the number of photons
absorbed and released. These types are known as downshifting and upconverting NPs [20].
In downshifting, NPs absorb high-energy photons and subsequently re-emit lower energy
photons. Almost all lanthanide ions can be used for Boltzmann-type LIR temperature
sensing, and downshifting lanthanide-based NPs are a good choice when a high energy
absorption is practically feasible [4]. Most literature reports involve the use of Eu3+, Dy3+

and Nd3+ ions.
Recently, Trejgis et al. [21] developed a new concept of luminescence-based temper-

ature sensing and 2D mapping using the intensity of the emission band under excited
state absorption (ESA) of Eu3+-doped LiLaP4O12 nanocrystals of approximately 20 nm
size. In this particular approach, it is shown that at lower temperatures, the population
of the ground state is predominant (Figure 2a). Consequently, the absorption process of
the ground state becomes highly effective, resulting in a strong intensity of the excited
emission achieved at the wavelength λGSA

EMI (wavelength of the emission obtained upon the
ground state absorption). Nevertheless, as per the Boltzmann distribution, it is seen that at
higher temperatures, the relative population of the excited state (7F1–6) is greater than that
of the ground state (7F0), Figure 2b. In this particular scenario, the temperature-dependent
factor pertains to the LIR (Luminescence Intensity Ratio) of a solitary emission band ac-
quired using two distinct excitation wavelengths, one resonating with the Ground State
Absorption (GSA) and the other resonating with the Excited State Absorption (ESA). The
authors examined the excitation and the emission within the temperature range of −150 to
400 ◦C and obtained sensitivity as high as 2.17% K−1 (at 200 K), and 1.9% K−1 (at 200 K).
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Figure 2. Schematic presentation of excited state absorption-based ratiometric luminescent ther-
mometry at low (a) and high (b) temperatures; (c) Simplified energy diagram of Eu3+ ions with the
indication of level used for temperature sensing; (d,e) The results of LIR and temperature sensitivity.
Adapted with permission from [21].

In Table 1, the most recent results of typical nanothermometry studies of downshifting
nanoparticles made from lanthanides are shown.
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Table 1. The overview of the most recent literature reports on downshifting lanthanide-based
nanoparticles for luminescence temperature sensing.

NPs
Size [nm] Host Lanthanide

Ion Measurement Method Temperature
Range [K]

Maximal
Sensitivity

[%K−1]
Application Ref.

50–100 Gd2Zr2O7 Eu3+ Ratiometric 300–700 0.92 Temperature sensing [22]

15–20 TiO2 Eu3+ Luminescence intensity 293–313 2 Sensing temperature
within L929 fibroblast cells [23]

100–200 LaVO4 Eu3+
Ratiometric, dual-excited

single band, CT band
position

98–773 2.3 Remote thermometry [24]

17 × 25 NaYF4 Eu3+
Ratiometric, dual-excited

single band, resonant to GSA
and ESA

123–473
4.11

Remote thermometry [25]
12 × 25 NaGdF4 16.9

70–80 YVO4

Eu3+
Ratiometric, dual-excited

single band, CT band
position

299–466

2.23

Remote thermometry [26]Dy3+ 2.36

Sm3+ 3.09

10–30 Gd2Ti2O7 Dy3+ Ratiometric, trap emission of
host and Dy3+ emission band

293–443 0.9 Temperature sensing [27]

80–100 YAlO3 Dy3+ Ratiometric, three-level 300–850 0.86 Temperature sensing at
high temperatures [28]

~20 La2Zr2O7 Pr3+ Ratiometric 85–705 0.41 Temperature sensing at
high temperatures [29]

~100 YAlO3 Nd3+ Ratiometric 290–610 1.8
Sub-tissue luminescence

imaging in I- and
II-biological window

[30]

60–70 YVO4 Nd3+ Ratiometric 123–398 0.54 Temperature sensing in I-
and II-biological window [31]

~50 CaSrSiO4 Tb3+ Ratiometric 10–290 0.18 Low-temperature sensor [32]

~50 Y3Al5O12 Er3+, Yb3+

Ratiometric (Stark
components of Er3+)

80–600

1

Temperature sensing in
biological windows [33]

Ratiometric (emissions of
Yb3+ and Er3+)

0.8

Yb3+ bandshift and
bandwidth change 0.4

Yb3+ 2F5/2 state kinetics 0.86

Upconverting nanoparticles (UC NPs) possess the potential to achieve light emission
characterized by a shorter wavelength and more energy compared with the excitation
process. This phenomenon is facilitated by a nonlinear optical process known as upconver-
sion [13,14,34–36]. Typically, the phenomenon is seen through the sequential absorption
of two or more photons with low energy, subsequently resulting in the emission of a
photon with higher energy. Various mechanisms have been put forth to elucidate the
phenomenon of upconversion, including excited-state absorption, energy transfer upcon-
version, photon avalanche, cooperative sensitization upconversion, and energy migration
upconversion [37]. In general, the process of upconverting nanoparticles (UCNPs) involves
the introduction of a single ion, known as the activator. This activator ion, which may
include ions such as Er3+, Ho3+, and Tm3+, is responsible for generating emissions through
excited state absorption or energy transfer between ions of the same species. Frequently,
the addition of two distinct ions is employed to enhance the upconversion quantum yield
and absorption cross-section. This involves the introduction of an activator ion alongside
a sensitizer ion, which possesses the ability to absorb energy and subsequently transmit
it to the adjacent activator within the crystal lattice [4,34]. An exemplary instance of an
upconverting ion pair that holds significant relevance in the field of thermometry is the
Yb3+–Er3+ pair. In this system, Yb3+ ions exhibit absorption of radiation at approximately
980 nm, while the absorbed energy is subsequently transferred to Er3+ ions, leading to



Nanomaterials 2023, 13, 2904 6 of 32

their excitation through a series of resonant transitions. In addition to this, it is worth
noting that the energy level of the excited state of Yb3+ closely aligns with that of Ho3+ and
Tm3+ excited states. This alignment facilitates efficient resonant energy transfer [4]. The
utilization of upconverting luminous nanoparticles appears primarily in biological contexts,
as the use of low-energy near-infrared (NIR) excitations does not pose any harm to living
entities [38]. The first report of a UCNP-based nanothermometer for in vitro measurement
was reported by Vetrone et al. who used PEI-coated NaYF4:Yb3+/Er3+ nanocrystals to
measure the intracellular temperature of HeLa cells [39]. Tm3+ ion is also suitable for
UC nanothermometry in bioapplications since it emits within the biological windows of
transparency of tissues [40].

Runowski et al. [41] recently reported results of the upconverting nanoparticles of
YVO4 co-doped with Yb3+-Tm3+ for sensing high temperatures—up to 1000 K. Their
particles of 50–100 nm sizes exhibit upconversion emission of Tm3+ and Yb3+ ions upon the
975 nm laser excitation. For temperature sensing in the low-temperature range, the authors
used relative intensities of the Tm3+ emissions from thermally coupled levels (TCLs), while
for the high-temperature range, the intensity ratio of the nonthermally coupled levels
(non-TCLs) of Yb3+ and Tm3+ was exploited. Even at extreme temperatures, these NIR
bands are quite intense, and their intensity ratio fluctuates dramatically, allowing accurate
temperature detection. The sensitivities of these two methods are 2.86% K−1 (at 300 K) and
2.13% K−1 (at 1009 K), as shown in Figure 3.
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Figure 3. (a) TEM image; (b) UC emission spectrum; inset presents a photograph of the sample
under 975 nm laser irradiation at ambient conditions; (c) a simplified energy-level diagram for the
synthesized YVO4:Yb3+−Tm3+ NPs; (d) the obtained relative temperature sensitivities (Sr) for TCLs
of Tm3+ (700/800 nm) and non-TCLs of Yb3+ and Tm3+ (940/800 nm) as a function of temperature.
Adapted from [41] under a Creative Commons Attribution (CC-BY) License.
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Recent results of the typical nanothermometry explorations of lanthanide-based up-
converting nanoparticles are summarized in Table 2.

Table 2. The overview of the most recent literature reports on upconverting lanthanide-based
nanoparticles for luminescence temperature sensing.

NPs
Size [nm] Host Lanthanide

Ion
Measurement

Method
Temperature

Range [K]

Maximal
Sensitivity

[%K−1]
Application Ref.

~50 NaNbO3 Tm3+
Ratiometric

(1390 nm
excitation)

295–363 0.80 Subtissue thermal sensing
with deep penetration [42]

70–150 LaPO4
Tm3+, Yb3+ Ratiometric 293–773

~3 In situ pressure and
temperature measurements [43]

20–50 YPO4 ~2.3

15
NaYbF4@CaF2@

NaYF4:Yb3+/Er3+@
CaF2 core/multishell

Tm3+,
Er3+/Yb3+

Ratiometric (Tm3+)
10–295

3.06 Ultralow temperature
sensing of the contactless
luminescence nanoprobe

[15]
Ratiometric (Er3+) 0.82

10–50
NaYF4@

NaGdF4:Nd
core/shell

Er3+/Yb3+ Ratiometric (Er3+) 283–338 9.3 Temperature monitoring in
photothermal therapy [44]

~25

NaYbF4/NaYF4:
Tm3+-Yb3+

/NaYF4
core/shell/shell

Tm3+, Yb3+ Ratiometric 303–423 3.9 Temperature detection in
bio-systems [45]

50–150 KLu(WO4)2 Tm3+, Ho3+ Ratiometric (Tm3+

and Ho3+ lines)
300–333 2.84 Estimation of thermal

resistance [46]

40 × 70 YVO4

Tm3+,
Er3+/Yb3+

Ratiometric
(Er3+ lines)

267–673
7.4

Temperature sensing [47]
Tm3+, Ho3+,
Er3+/Yb3+

Ratiometric
(Er3+ lines) 2.4

20–60 Y2O3 Nd3+/Yb3+ Ratiometric (Nd3+

and Yb3+ lines)
303–333 2.9 Temperature sensing in

different temperature ranges [48]
423–773 2.3

Despite the fact that there have been few reports on the use of divalent lanthanide
ion-activated phosphors in luminescence thermometry, we are not aware of the usage of
corresponding nanoparticles.

3. Transition Metal Ion-Activated Nanoparticles

Transition metal ion-activated photoluminescent nanoparticles are a broad range of
compounds that, together with lanthanide-doped nanoparticles, are commonly employed
in luminescent thermometry. In this context, ions of transition elements belonging to the
fourth period of the periodic table (namely, from 22Ti to 30Zn) function as optically active
centers, which are included in insulating materials or large band gap semiconductors.
When a transition metal ion (TM) is incorporated into a solid host, its outer 4s electrons are
removed, leaving partially filled 3d shells as optically active [49]. Therefore, the electronic
configuration of TM ions is 3dn (0 < n < 10), where partially occupied d orbitals provide
various energy levels for possible optical transitions. Correspondingly, all TM ions with
the same configuration exhibit similar optical properties [4]. In contrast to the 4f -orbitals
of lanthanide ions, d-orbitals are not protected from the outside environment, making
TM ions highly sensitive to the features of the materials host, particularly its crystal field
strength [49]. All this implies that the spectroscopic properties of TMs as optical probes
are the consequence of the specific ion’s electronic configuration, as well as the crystal
field potential of ligands [4]. The influence of a host crystal lattice on a TM ion inside
it is elucidated using crystal field theory [50], where the TM ions are subjected to the
electrostatic field from the surrounding atoms (ligands) and treated as negative point
charges located in the corners of the coordination polyhedron. Thus, the crystal field of
the ligands causes perturbation of the energy levels of d-orbitals, which is usually much
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stronger (~104 cm−1) than the spin-orbit interaction (~102 cm−1). The total separation of
3d energy levels—the crystal field strength (CFS)—is denoted by ∆ or 10Dq, and it strongly
depends on the coordination number and symmetry of the crystalline environment. In
Figure 4a, the splitting of the 3d energy levels in octahedral and tetrahedral environments
is presented [10]. Further separation can occur via the so called Jahn–Teller effect, with the
deformation in the coordination polyhedron (Figure 4b) [51]. Other parameters of interest
in the crystal field theory are the so called Racah parameters A, B, and C, where B is the most
important one and represents the individual d electron repulsion [4]. The important and
useful tools for the prediction and explication of the TM-doped phosphors’ spectroscopic
properties are the Tanabe–Sugano diagrams, calculated for each electronic configuration
in an octahedral crystal field [52]. They provide the energy layout of the electronic states,
with their symmetry and term notations, with respect to the crystal field parameters Dq/B.
The exemplary Tanabe–Sugano diagram for the d2 configuration (exists in Ti2+, V3+, Cr4+,
Mn5+, Fe6+ ions) is shown in Figure 4c. The free ion energy levels correspond to Dq/B = 0.
The lowest energy level, the ground state, coincides with the x-axis. The free ion levels are
noted as 2S+1L, where the values for L can be 0 (indicated by S), 1 (P), 2 (D), 3 (F), 4 (G).
When incorporated into the crystal field, a TM ion’s levels are given by 2S+1X , where X
can be A (no degeneracy), E (double degeneracy, doublet), or T (triplet) [49]. The increase
in the crystal field strength does not influence all the levels in the same way—the levels
with the higher slope in the diagram are more sensitive to the Dq/B values. Figure 4d
displays representative transition metal ions that are most frequently used in luminescent
thermometry, and their emissions span from the UV to NIR spectral range [10].
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Figure 4. (a) TM ion’s energy levels splitting in octahedral and tetrahedral environment; (b) the
influence of the polyhedron distortion on 3d energy levels splitting; (c) Tanabe–Sugano diagram for
the d2 configuration; (d) representative emission spectra of different TM ions. Adapted from [10]
under the Creative Commons Attribution License.

The Cr3+ ion was one of the first transition metal ions to be used in luminescence
temperature measurements [53,54]. It is also the most widely employed of all the TM ions,
followed by manganese ions of different valence (Mn2+, Mn3+, Mn4+, Mn5+), while other
ions of interest are Ti3+, Ti4+, V3+, V4+, Fe3+, Co2+, and Ni2+ [10]. In the ever-growing field
of biological research, ions like Ti2+, Co2+, Ni2+, V2+, and Cr4+ are finding their use in
temperature measurements of tissues and cells in all three biological windows [4]. When
discussing transition metal ion-doped nanoparticles, various temperature-dependent spec-
troscopic properties can be monitored, such as changes in TM ion emission intensities,
emission bandwidths, bandshifts, or excited state lifetimes, as well as the intensity ratios
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between different emission bands. In order to explain and quantify these changes, different
theoretical models have been proposed [7,10]. Generally speaking, in this type of lumines-
cent nanoparticle, both radiative and non-radiative transition rates alter with temperature,
making their luminescence intensity highly sensitive to temperature fluctuations, which
results in excellent thermometric performances [55–57]. The advantages of using TM ions
as optical probes over lanthanide ions, which have undoubtedly dominated this research
area, lie in their distinctive spectroscopic properties. As they strongly depend on the type
of material into which they are placed, their temperature-changing characteristics can
be modulated by choosing the appropriate matrices [58]. Furthermore, they have much
higher absorption cross-sections than that of the f–f transitions of Ln3+ ions, allowing for
enhanced luminescence brightness. Very often, hosts are being co-doped with lanthanide
and transition metal ions, which may offer interesting phenomena and improved thermo-
metric properties [57,59–62]. Lanthanide ions can activate additional methods of thermal
quenching of the TM’s excited states, as well as introduce supplementary transitions for
ratiometric thermometry methods.

The initial record of using temperature-dependent luminescence behavior in materials
doped with transition metal (TM) ions for thermometry was reported in 1997 by Fernicola
et al. [53]. In their study, they developed fiber optic thermometers using Cr-doped forsterite
and olivine crystals. The researchers investigated the decay of strong near-infrared emission
throughout the temperature range of 77–373 K. They discovered a significant decrease in
the emission lifetime, which was shown to be four times shorter across this temperature
range. Nevertheless, the present analysis lacks information regarding this sensitivity.

An interesting example of the Cr3+ (d3 configuration) use in nanothermometry is
presented in the work of Avram et al. [63]. The authors synthesized Cr3+-doped zinc gallate
(ZnGa2O4:Cr) nanoparticles and co-doped them with Ge4+, obtaining the particle size of
~50 to 80 nm. The characteristic spin-forbidden 2E→ 4A2 transition of the Cr3+ ion that
appears around 700 nm in the emission spectrum was monitored. The lifetime of this
transition is in the milliseconds range, and it was used for luminescence thermometry
in the temperature span of 303–533 K. The ZnGa2O4:0.05Cr nanoparticles exhibited the
best performance, with the maximum sensitivity of 1.25% K−1 at 493 K (Figure 5a). These
authors have also developed an experimental setup for real-time thermal imaging (the
method is schematically presented in Figure 5b and the thermal image obtained by it in
Figure 5c).

The Mn5+ ion has recently been proven as an important luminescent activator for
biological applications. Its intense and narrow emission band lies in the second biological
window, while the excitation is in the first biological window. There are certain prerequisites
for these features— a tetrahedral crystal environment, a sufficient host’s energy band gap,
as well as the suitable composition that enables the stability of the 5+ valence state [10].
A very recent report on accurate deep-tissue thermal monitoring using a Mn5+ ion was
published by Piotrowski et al. [64]. The authors examined the temperature dependence of
the excited level lifetimes of Mn5+-doped Ba3(VO4)2 nanoparticles of the average size of
~52 nm, as well as the influence of co-doping with different lanthanide ions (Nd3+, Pr3+,
Tm3+, Er3+), with the main results shown in Figure 6. The emission transition 1E→ 3A2,
which appears at 1178 nm and reaches lifetime values of 450 µs, served for thermal probing.
The optimized composition of the nanothermometer is Ba3(VO4)2:1%Mn5+,0.5%Er3+, which
features relative thermal sensitivity between 0.5 and 1.2%K−1 in the 350–500 K temperature
range. This research also contains the proof-of-concept experiment of thermal imaging
in vivo.
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obtained using single pulse time-gated method. Adapted from [63] under the Creative Commons
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Figure 6. (a) Configurational coordinate diagram for Mn5+ (d2 configuration, in the tetrahedral
environment, the Tanabe–Sugano diagram for d8 configuration is applied) and Er3+ ions; (b) the
representative TEM images of Ba3(VO4)2:1%Mn5+,0.5%Er3+ nanoparticles; (c) thermal evolution of
luminescent decays of 1E excited state of Mn5+ ions for Ba3(VO4)2:1% Mn5+, 0.5% Er3+; (d) thermal
evolution of Mn5+ average lifetimes; (e) the relative sensitivities; (f) temperature uncertainties for
Ba3(VO4)2:1%Mn5+ co-doped with different Er3+ concentrations. Adapted from [64] under the
Creative Commons Attribution License.
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In Table 3, the most recent results of luminescence thermometry studies using the
nanoparticles activated by transition metal ions are shown.

Table 3. The overview of the most recent literature reports on transition metals-based nanoparticles
for luminescence temperature sensing.

NPs
Size [nm] Host Transition Metal Ion

(Co-Doping ion)
Measurement

Method
Temperature
Range [K]

Maximal
Sensitivity

[%K−1]
Application Ref.

<100 Y3Al5O12

Ti4+/Ti3+ Ratiometric,
Ti4+/Ti3+ bands

123–573

0.71
Temperature sensing [65]

Ti4+/Ln3+

(Nd3+, Eu3+, Dy3+)
Ratiometric,

Ti4+/Nd3+ bands 3.70

30 ± 10 Y3Al5O12
Ti3+

(Eu3+)

Ratiometric,
Eu3+/Ti4+ bands

123–573

1.37
Temperature sensing [66]

Ratiometric,
Eu3+/Ti3+ bands ~0.90

50 ± 10 Gd3Al5−xGaxO12
Cr3+

(Nd3+)

Ratiometric,
Cr3+/Nd3+ bands

123–573

1.90
Temperature sensing [60]

Ratiometric,
Cr3+/Cr3+ bands 1.30

70 ± 10

Y3Al5O12
Cr3+

(Nd3+)

Ratiometric,
(Cr3+/Cr3+ bands,
Cr3+/Nd3+ bands)

123–573

2.64
Temperature sensing [62]Y3Ga5O12 ~2

Y3Al2Ga3O12 2.16

40–50 ZnGa2O4/ZnGaGeO4/ Cr3+ Ratiometric,
Cr3+/Cr3+ bands 295–328 ~1 Bioimaging and

biosensing [67]

10–30 La2LuGa5O12
Cr3+

(Nd3+)
Ratiometric,

(Nd3+/Cr3+ bands) 123–573 1.47 Temperature sensing [61]

35–55 LaScO3
Cr3+

(Yb3+) Lifetime 123–573 1.70 Temperature sensing [68]

~100 Mg2SiO4 Cr3+

Emission intensity

10–350

0.7

Temperature sensing [69]Lifetime 0.8

Emission band
position 0.85

22–47.6 Y3Al5O12
V3+,V5+

(Eu3+, Dy3+, Nd3+)

Ratiometric,
(V3+/V5+ bands)

123–573

4–6

Temperature sensing [61]
Ratiometric,

(V3+/Eu3+ bands) 0.4

Ratiometric,
(V3+/Dy3+ bands) 3.5

Ratiometric,
(V3+/Nd3+ bands) 0.91

<100 Y3Al5−xGaxO12

V3+

Emission intensity
123–573

1.08

Temperature sensing [70]
V4+ 1.34

V5+ 2

V5+/V4+ Ratiometric
(V5+/V4+ bands) 2.64

<100
GAG, GGG,
LuAG, YAP,

YAG
Mn3+

Mn4+
Lifetime (decay time)

120–570
2.08 (GAG)

Temperature sensing [71]
Lifetime (risetime) 3.58 (GGG)

20–200 Sr4Al14O25
Mn4+

(Tb3+)
Ratiometric,

(Mn4+/Tb3+ bands) 123–543 2.8 Thermal imaging [72]

<100 Ba3(VO4)2
Mn5+

(Nd3+)
Ratiometric,

(Nd3+/Mn5+ bands) 83–683 0.94 Deep-tissue thermal
imaging [73]

10–50 SrTiO3
Ni2+

(Er3+)

Ratiometric,
(Ni2+ bands)

123–483
0.25 Temperature sensing in

the second biological
window

[74]
Ratiometric

(Er3+/Ni2+ bands) 0.80
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At the transition from bulk to nanocrystalline lanthanide and transition-activated
materials, certain thermometric properties are maintained (ratiometric), while others can
significantly differ (emission decay times and emission bandwidths). It is therefore useful
to look at these properties in bulk materials, which are given, for example, in reference [4].

4. Semiconductor Quantum Dots

Semiconductor quantum dots (QDs) are defined as semiconductor nanocrystals, i.e.,
inorganic particles in the size range of 1–10 nm, that are generally composed of II-VI and
III-V elements [75–78]. Currently, QDs are also based on I–VI, IV–VI, I−III−VI elements,
as well as transition-metal dichalcogenides, perovskites, and carbon [76,79]. Their zero-
dimensionality causes the quantum confinement of their charge carriers and some unique
and fascinating optical properties of QDs arise—sharp and symmetrical emission spectra,
high quantum yield, good chemical and photo-stability, and size-dependent emission
wavelength tunability [80]. In addition, they display acceptable biocompatibility and
biofunctionality after capsulating and/or surface modification [18,79]. The size of QDs
can be controlled by regulating nanometer accuracy during chemical synthesis, which
results in the adjustability of their emissions from the UV to the near-infrared spectral
range. Like all semiconductors, the QDs possess the valence- and the conduction band,
separated by a band gap. Their charge carriers are formed when the electrons are excited to
the conduction band, leaving holes in the valence band. The electron-hole pairs, bounded
through the Coulomb interaction, are called excitons. As the size of the QD reduces,
quantum confinement in both the electron and hole wavefunctions leads to an increase
in the QD’s effective bandgap and the appearance of the discrete energy levels in the
vicinity of the valence- and conduction band. Hence, different optical transitions become
possible and luminescence can be tuned [14,18]. The critical parameters that determine
QDs’ luminescent properties are as follows: QD’s particle radius (R) and Bohr radius
(electron-hole distance in an exciton, ae

B). The mutual relationship of these quantities, as
well as the influence of R on luminescent color in various QDs, are illustrated in Figure 7.
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From the point of view of thermal sensing, several properties of the quantum dots’
emission are affected by temperature—intensity, lifetime, peak position, and Stokes-shift
(spectral separation between absorption and emission). The simplest of them is the emission
intensity thermal evolution, but it is influenced by the particle concentration and excitation
power fluctuations [14]. The method based on the temperature-dependent spectral shift of
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the emission wavelength is the best known [81], and it overcomes the drawbacks of the
intensity-based methods, as the thermal reading is unaffected by the local variations [78].
This phenomenon occurs as a consequence of different effects, such as bandgap energy
thermal change, quantum effects, electron phonon coupling, quantum yield variations, and
the thermal expansion of the crystalline lattice [81]. The temperature dependence of QD
luminescence is a complex phenomenon in which both the nature and the magnitude of
the thermally originated changes depend on the QDs’ size [4]. Introducing impurities to
semiconducting quantum dots (mostly Mn2+ and Eu3+) may offer additional possibilities
in terms of temperature read-outs, as these bring in new levels inside or outside the QDs’
band gaps [4,82,83].

To the best of our knowledge, the luminescence temperature dependence of QD
nanoparticles was originally observed by Joly et al. in 2001. They explored the luminescence
behavior of ZnS:Mn2+ at temperatures 11–273 K and discussed its mechanisms [84]. A
bit later, Wang et al. reported the thermal behavior of CdTe nanoparticles (~4 nm size,
30–60 ◦C temperature range, 350 nm excitation), and found the emission intensity decreased
linearly and reversibly with a sensitivity of 1.1%/◦C [82]. These results paved the way for
future investigations in this field. One of the first demonstrations of suitability of using
QDs for temperature sensing in vitro was demonstrated in 2010 by Maestro et al. [85],
who examined CdSe dispersed in phosphate buffered saline for biomedical imaging by
measuring the temperature evolution of a single HeLa cancer cell.

The exciton absorption band shift can also be used for temperature measurement, as
shown by Savchenko et al. [86]. These authors have tested the optical absorption spectra
ranging from 6.5 to 296 K of colloidal InP/ZnS core-shell quantum dots with the coating of
a modified polyacrylic acid. The results show that the first exciton absorption band, which
is attributed to the InP exciton band, shifts towards higher energies when cooled from
room temperature. The obtained experimental data have been approximated by means of a
linear model and Fan’s expression (presented in Figure 8).
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Figure 8. (a) Optical absorption spectra of InP/ZnS at various and temperatures; (b) energy shift and
broadening analysis of exciton absorption band: ∆E1 temperature dependence (blue square symbols
are experimental estimates); (c) normalized PL and OA spectra of the InP/ZnS QDs. Adapted
from [86].

Recently, Marin et al. have produced two types of nanocomposite materials based
on mercaptosilane-passivated CuInS2/ZnS core-shell quantum dots, the performance of
which was tested for luminescence thermometry and luminescent labels [87]. These QDs
were deposited onto silica nanoparticles and embedded into polymeric film. Luminescence
thermometry was performed on the nanocomposite QD-based film in the temperature
range of 140–340 K. The authors monitored the thermal parameter (∆) as the ratio between
the sum of integrated area of the two red-most emission components (2) + (3), and the
one centered at 642 nm (1) (Figure 9c). The obtained thermal sensitivity reached values of
~2.3%/K.
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Recent results of the typical nanothermometry explorations of quantum dots are 
summarized in Table 4. 
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Recent results of the typical nanothermometry explorations of quantum dots are
summarized in Table 4.

Table 4. The overview of the most recent literature reports on semiconductor quantum dots for
luminescence temperature sensing.

QDs
Size [nm] Type of QDs Measurement Method Temperature

Range [K]

Maximal
Sensitivity

[%K−1]
Application Ref.

5–6
CdSe/CdS/ZnS

dispersed in
squalane

Linear dependence
Eemission − T 295–393 NA

Temperature measurement in situ
of thin films of liquids in dynamic

conditions
[88]

~7.5
CdSe/ZnS

immobilised in
silicone matrix

Linear dependence
Eemission − T 303–333 0.93

In situ thermal analysis and
calibration within the

microfluidics
[89]

~7.5 CsPbCl3:Mn2+
Ratiometric (IMn/IExciton )

298–353
7.38

Highly sensitive temperature
measurement of nanoprobes [90]FWHM method

(Exciton emission) 2.13

~6 CdHgTe in NaCl
matrix

Linear dependence
Eemission − T 80–340

0.02 NIR LED, NIR noncontact
thermometry [91]

Lifetime 1.4

~4 PbS/CdS/ZnS Intensity 283–333 1
Minimally invasive photothermal
tumor treatments with real-time
intratumoral thermal feedback

[92]

NA CdSe/CdSxSe1−x
Ratiometric (FWHM and the

maximum emission intensity) 306–343 6.9
Supersensitive luminescent
nanothermometers with low

toxicity
[93]



Nanomaterials 2023, 13, 2904 15 of 32

5. Polymer Nanoparticles

Organic substances demonstrating photoluminescent properties can be categorized
into various classes, including organic dyes, pigments, polymers, and proteins [14,18,78].
The fundamental basis for luminescence in organic compounds is in the π-electron systems
present within individual molecules. These systems give rise to electronic transitions
between molecular orbitals, leading to the absorption and emission of light [94]. The
elucidation of luminescence in organic molecules can be effectively explicated by the
renowned Jablonski diagram (Figure 10a). Starting with the initial state known as the
ground state, typically denoted as S0 and characterized by singlet spin, the molecule
undergoes a transition to higher energy states, namely singlet (Si) or triplet (Ti) states,
upon the absorption of a photon. These excited states, with i being greater than or equal
to 1, exhibit distinct vibrational and rotational energy levels. Then, the molecule quickly
relaxes from the higher energy excited singlet states (in the ps range) to the lowest singlet
state S1 through internal conversion (IC), from where it decays back to the ground state
S0 either radiatively (fluorescence) or nonradiatively (through IC or external conversion,
EC). Alternatively, the molecule can undergo an intersystem crossing (ISC) (in the 10 ns
range) and transit to a triplet state. It should be noted that the singlet –singlet transition,
S1 → S0 , is more probable than the singlet–triplet transition, S1 → T1 , as the latter is
spin-forbidden since it involves a spin multiplicity change. From there, the T1 → S0
transition can be either radiative (phosphorescence) or nonradiative (ISC or EC). The time
frame of the phosphorescence can even be in the millisecond range, precisely because
of its forbidden nature [94]. The spectral properties of organic compounds arise from
these transition mechanisms, and often contain a specific vibronic structure as well, as
schematically illustrated in Figure 10b.
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The flexibility of organic compounds is considered to be one of their primary advan-
tages in comparison with other thermometric nanoparticles. A diverse array of organic
fluorophores is already accessible, each engineered to possess distinct characteristics such
as absorption and emission wavelengths, spectrum range, solubility, and functionaliza-
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tion capabilities [18]. Furthermore, these temperature sensors have the capability to be
seamlessly integrated with other organic or inorganic species, resulting in the formation
of hybrid sensors [4]. Although the temperature-dependent quenching mechanism may
differ between compounds, the generalized, fundamental photodynamics can be explained
using the Jablonski energy-level model. The relative probability for the excited molecule
to descend to the ground state via the radiative or nonradiative path(s) changes when the
temperature changes, effectively modifying the molecule’s luminescence intensity (and
lifetime). The variation in decay rates with temperature is a consequence of complex
and sometimes competing effects [18]. The most utilized thermometric organic dyes are
fluorescent, such as fluorescein of rhodamine B, and their emission and lifetime change
with temperature [14]. Green Fluorescent Protein (GFP) is an interesting example of in vivo
temperature measurements and fluorescence imaging at the cellular level, because its
temperature-dependent characteristic is fluorescence polarization anisotropy [78]. One
should also mention the application in aerodynamics, where organic dyes are mixed with
paints to form pressure-sensitive paints (PSP), which are used to monitor pressure and tem-
perature on aircraft model surfaces [18]. Qiao et al. [95] classify the fluorescent polymeric
nano-thermometers into two categories: thermosensitive polymer-based and nonther-
mosensitive polymer-based. Both groups comprise a polymer and organic fluorescent dye.
Thermosensitive polymer undergoes a reversible phase transition with temperature that
induces a change in the optical properties of a dye incorporated in it. Nonthermosensitive
polymer serves only as a matrix of physically embedded optically active organic dye [95].

Meng et al. [96] have monitored the intracellular temperature of Hep-G2 cells under
photothermal therapy using the ratiometric fluorescent thermometer. Thermometric organic
nanoparticles were prepared by encapsulating thermoresponsive NIR fluorophores (dyes)—
TBB (2-([1,1′-biphenyl]-4-yl)-3-(4-((E)-4-(diphenylamino)styryl) phenyl) fumaronitrile) and
Rhodamine 110—into an amphiphilic polymer matrix F127 to form TBB&R110@F127 nanopar-
ticles of about 50 nm size and a narrow size distribution (Figure 11b). Upon the 480 nm
excitation, TRF NPs exhibited double peaks (520, 680 nm) originated from two different
fluorophores. The ratio of these peaks was used to measure thermographic properties in the
temperature range of 25–65 ◦C, yielding a relative sensitivity of 2.37%·◦K−1 (Figure 11b,c).
Also, the stability of this polymer thermometer was confirmed by repeating cycles of
heating and cooling [96].

Another example of organic thermographic nanoparticles was recently proposed by
Russegger et al. [97], and the results are presented in Figure 12. The authors synthe-
sized different organic zirconium(IV)-pyridinedipyrrolide complexes as dyes and immo-
bilized them in gas-blocking polymers. In this way, they obtained negatively charged
PVA-MMA-based nanoparticles for temperature imaging in microfluidic devices, and posi-
tively charged PVA-TMA-based nanoparticles for thermometry in live cells. The size of
PVA-MAA particles was ~34 nm with a uniform size distribution, while for PVA-TMA
particles the size distribution was trimodal (~9 nm, ~42 nm and ~344 nm). The temperature-
dependent property of interest was a luminescence decay time of different Zr-complexes
in the temperature range 5–60 ◦C, while the emission intensity remained unchanged (ex-
citation at 530 nm) (Figure 12a,b, respectively). Mono-exponential decay in the order of
tens and hundreds of microseconds exhibited temperature sensitivities between −2.5 and
−2.9% K−1 in polystyrene at 25 ◦C [97].

Recent results of the typical nanothermometry explorations of polymer nanoparticles
are summarized in Table 5.
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NPs; (e) PL intensity ratios variation in TRF NPs during repeated heating and cooling. Reprinted
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Table 5. The overview of the most recent literature reports on polymer nanoparticles for luminescence
temperature sensing.

PNPs
Size [nm] Type of PNPs Measurement Method Temperature

Range [K]

Maximal
Sensitivity

[% K−1]
Application Ref.

20–50 NIR775 dye in MEH-PPV
polymer

Lifetime of persistent
luminescence 277–308 NA Optical imaging in living mice [98]

90
Rhodamine dye in F127-
melamine-formaldehyde

polymer

Ratiometric
(R110 emission/

RB emission)
253–383 7.6

Cellular temperature
monitoring in HeLa cells

during microwave exposure
[99]

NA
Ru(II) polypyridyl complexes

embedded in
poly(cyanoacrylate)

Luminescence intensity
( linear dependence

I − T)
273–323 3.3

Production of
temperature-sensitive optical
fiber tips for temperature and

O2 monitoring

[100]

~20

Eu3+,Sm3+-btfa-based
polymeric micelles Ratiometric, dual

emission
(Sm emission/
Eu emission)

300–328
1.5 Intracellular temperature

mapping of breast metastatic
adenocarcinoma cells

[101]
Eu3+,Sm3+-DNPD-based

polymeric micelles 1.7

NA (water
solutions)

Tetrasulfonatophen
ylporphyrinate (tetra sodium

salt) TSPH2

Ratiometric
(peak-to-valley ratio)

293–318

1.04
Molecular thermometers for

phototherapy to avoid
heat-induced adverse effects

[102]Mono(4-pyridyl)-
triphenylporphyrinato)
phosphorus(V) bromide

MPyPP(OH)2

Lifetime-based 0.24
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Table 5. Cont.

PNPs
Size [nm] Type of PNPs Measurement Method Temperature

Range [K]

Maximal
Sensitivity

[% K−1]
Application Ref.

8 Poly(N-vinylcaprolactam) Aggregation-induced
emission after heating 293–313 NA Intracellular temperature

imaging in MCF-7 cells [103]

NA (in
solutions) Green Fluorescent Protein Peak Fractions analysis 293–333 2.5

Determination of chemically
induced heat production in

the HeLa cells
[104]

NA

Carbazole-substituted
dicyanobenzenes,

anthraquinone based dyes in
RL100 nanoparticles

Lifetime-based 278–323 2.8 Temperature sensing and
imaging [105]

150 (178)

Nanocapsules consisting of
PdPc(OBu)8, PCU, perylene,

nujol (medium), albumin
(stabilizer)

Lifetime-based 293–318 ~7.5 Detection of the temperature
changes in vivo in mice [106]

6. Carbon Dots

Carbon dots (CDs) are zero-dimensional carbon-based materials that have a size
range of a few tens of nanometers [107]. They can be chemically modified and/or doped
to improve or add useful qualities. CDs have extraordinary features, including tunable
optoelectronic capabilities, bright photoluminescence with high quantum yields, non-
toxicity, and superior biocompatibility, as well as modifiable functional groups that come
along with simple and cost-effective manufacturing procedures [108–111]. Most of the CDs
consist of a sp2/sp3 carbon skeleton with possible functional groups or polymer chains.
Their core can have a graphite/diamond lattice or carbon in amorphous form, depending
on the different degrees of carbonization [111]. The origin of luminescence in carbon dots
is still a subject of ongoing investigation and debate. CDs manufactured using various
techniques, precursors, and post-treatments have distinctive optical properties, indicating
that CDs present a sophisticated system. There are several proposed mechanisms for the
luminescence of carbon dots, and it is likely that multiple factors influence it [109]:

• Surface States and Functional Groups: Carbon dots have a high density of surface states—
the electronic states are localized near their surface. These surface states can arise from
the presence of oxygen and functional groups such as carboxyl, hydroxyl, or amino
groups on the surface of the carbon dots, schematically shown in Figure 13a. The
interaction between these surface states and the excited electrons can lead to radiative
recombination, resulting in the emission of light [112], Figure 13b,c.

• Quantum Confinement Effect: The small size of carbon dots leads to quantum con-
finement effects, which can influence the electronic structure of the carbon material,
causing the formation of discrete energy levels [113].

• Molecular Fluorescence: Introducing fluorescent impurities (organic molecules, in par-
ticular) during the synthesis may contribute greatly to the emission of CDs [114],
Figure 13b,c.
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Figure 13. (a) Schematic presentation of the CDs with the exemplary functional groups at their
surface. Red color indicates a graphene-like core and the grey color stands for the surface functional
groups surrounding the core. Adapted with permission from [115]; (b) simplified energy band
scheme of CDs. Dopants and/or surface functional groups can introduce additional energy levels
and modify possible photoluminescence output; (c) typical luminescence emission spectra of various
CDs can appear in different spectral ranges, from blue to NIR.

The mechanism of carbon dots’ temperature-dependent luminescence is still not
clearly explained. Typically, with an increase in temperature, the exitonic emissions
from CDs are redshifted and nonradiative decay rates increase [116]. Yang et al. [117]
ascribe thermal linear fluorescence quenching to the synergistic effects of plentiful oxygen-
containing functional groups and hydrogen bonds. On the contrary, other authors at-
tribute linear fluorescence temperature decay to the temperature-induced “energy traps”
on the CDs’ surface, the non-radiative channels of trap/defect states that become acti-
vated at higher temperatures, thus provoking energy transmission and thermal quench-
ing [118–120]. Yu et al. [118] were the first authors to investigate the temperature-dependent
fluorescence in carbon nanodots by measuring their temperature-dependent photolumi-
nescence lifetimes within the 77–300 K range and comparing them to semiconductors and
metal-based nanoparticles.

Kalytchuk et al. [121] obtained highly luminescent water-soluble nitrogen and sulfur-
codoped CDs and examined their photoluminescent properties in a wide range of temper-
atures (10–70 ◦C). In contrast to many semiconducting nanocrystals, the absorption and
emission spectra of N,S-codoped CDs did not show any band shifts at different tempera-
tures. On the other hand, they exhibited temperature-dependent emission decays and can
serve as highly sensitive intracellular nanothermometers, stable over a wide range of pH
values, CD concentrations, and environmental ionic strengths, with a maximum sensitivity
of 1.79%K−1 and a statistical accuracy of 0.27 ◦C. The results enabled the authors to achieve
in vitro photoluminescence lifetime-based temperature sensing in human cervical cancer
(HeLa) cells (shown in Figure 14). Moreover, the absolute PL quantum yield of these CDs
is as high as 78 ± 2% under a 355nm excitation.

Mohammed et al. [122] showed that their N,B-CDs’ photoluminescent emission spec-
tra are very sensitive to temperature changes within the 0–90 ◦C range, as presented in
Figure 15. These CDs emitted blue fluorescence that peaked at 450 nm and exhibited
up to 70% quantum yield, which can be used for highly sensitive temperature measure-
ments with a thermo-sensitivity of 1.8%◦K−1, excellent recovery, and pH stability. Apart
from being excellent nanothermometers, these CDs can be used as Fe3+/Fe2+ sensors in
biological samples.
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Figure 14. In vitro intracellular PL lifetime thermal sensing using N,S-CDs. (a) PL emission decays
of HeLa cells incubated with N,S-CDs (500 µg/mL) at different temperatures (Tset), together with
the single-exponential fits; (b) temperatures determined using the calibration curve (Tmeas.) and set
temperatures (Tset) plotted against the PL lifetime; (c–f) applicability of N,S-CDs for long-term remote
intracellular temperature monitoring; (c) PL lifetimes extracted from PL transients recorded every
15 min for 24 h of HeLa cells incubated with N,S-CDs (500 µg/mL); (d) temperatures determined using
the calibration curve; (e) temperatures measured with a reference thermometer (Tref.); (f) histogram
showing the distribution of temperature differences between the obtained and reference temperatures;
the solid line is the distribution curve. Reprinted from [121] under an ACS Author Choice License.
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Figure 15. (a) Fluorescence spectra of CDs at different temperatures; (b) the linear fit of fluorescence
intensity temperature change; (c) fluorescence intensity upon the cyclic switching of CDs under
alternating conditions of 20 ◦C and 90 ◦C. Reprinted from [122], under the Creative Commons
Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/, accessed on 11
October 2023.

In the context of detecting temperature fluctuations in the surrounding environment,
the utilization of ratiometric optical nanothermometry is advantageous due to its reliance
on the ratio between two luminescent signals. This approach offers benefits such as self-
calibration of the system and enhanced reliability in thermal measurements [115,116].

Recent results of the typical nanothermometry explorations of carbon dots are summa-
rized in Table 6.
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Table 6. The overview of the most recent literature reports on carbon dots for luminescence tempera-
ture sensing.

CDs
Size [nm] Type of CDs Measurement Method Temperature

Range [K]

Maximal
Sensitivity

[% K−1]
Application Ref.

~4 CD
Linear dependence I −
T(intensity rises with

temperature)
283–353 1.07 Temperature measurement in

living MC3T3-E1 cells [123]

~2.3 N, S—CD Linear dependence I − T 298–348 NA Temperature sensor [124]

~27 CD Ratiometric, dual emission 288–358 0.93 Cellular temperature imaging
of MC3T3-EI cells [125]

~1.5 CD Ratiometric, dual emission 278–358 1.48 Temperature sensor [126]

~2.5 N, S—CD Linear dependence I − T 278–348 0.41 Temperature sensor [120]

~7.5 CD Ratiometric, dual emission 278–333 3.71 In vitro thermal sensing using
HeLa cells [127]

~3 CD Ratiometric (intensity rises
with temperature) 277–353 1.2 Intracellular temperature

sensing in different cells [128]

~3.6 N, S—CD Ratiometric 283–343 0.64 Temperature sensor [129]

~5.6 MnO—CD Ratiometric 283–333 NA In vitro thermal sensing using
HepG2 cells [130]

<5 CD Ratiometric, dual emission 305–315 8.2
Intracellular temperature

measurement in HEK293T
cells

[115]

7. Nanodiamonds

The research regarding nanodiamonds (i.e., diamond nanoparticles) was initiated in
the Soviet Union during the 1960s [131]. Nanodiamonds combine many superior properties
of bulk diamond. Some of the most important characteristics are summarized in [132], such
as chemical inertness, wide-band gap electronic properties, excellent thermal conductivity,
and outstanding mechanical behavior to those conferred by their high specific surface
area [131]. In addition, they are non-toxic and have rich surface chemistry, making them
ideal candidates for biomedical in vivo and in vitro applications [133–135]. The lumines-
cent properties of nanodiamonds arise from the defects within their crystal lattice that
introduce energy levels within the bandgap of the diamond structure, causing absorption
and, subsequently, the emission of light. The negatively charged nitrogen-vacancy color
center (NV−, or just NV) is one of the 500 distinct color centers discovered in diamond,
and one of the most promising so far [136]. Silicon-, germanium-, tin-, and lead-vacancy
color centers (SiV, GeV, SnV, and PbV, respectively) are also of interest [137]. The thermom-
etry methods in nanodiamonds are categorized into spin-based thermometry and all-optical
thermometry, based on their temperature-dependent features. The NV centers are em-
ployed in both spin-based and all-optical thermometry, whereas the other color centers are
predominantly used in all-optical thermometry [136,137].

The NV color center comprises a C-atom vacancy and a N-atom impurity plus
an additional electron, trapped at the defect center, and has C3v point group symme-
try [131,138,139]. The photoluminescence spectra of the NV center lie in the visible range
(Figure 16). They can be excited by easily accessible optical lasers (532 nm), whereas the
emission spectra of the NV center consist of a Zero-Phonon Line (ZPL) at 638 nm accompa-
nied by broad phonon side-bands (PSB) that originate from thermally excited vibrational
states [140]. The peculiarity of the NV center photoluminescence is its dependence on
the temperature and magnetic field when subjected to resonant microwave excitation.
These features are the foundation of two different thermometry methods in nanodiamond—
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zero-phonon line (ZPL) thermal shift (i.e., all-optical thermometry) and optically detected
magnetic resonance (ODMR) thermal shift (i.e., spin-based thermometry) [131,136,137,140].
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The simplified electronic structure of the NV center is presented in Figure 17a. The cen-
ters have triplet ground states (3A2) with electron spin sublevels of mS = 0 and mS = ±1,
where the spin–spin interaction is responsible for a zero-field splitting of D = 2.88 GHz.
At room temperature the spin–orbit coupling results in the 3E excited state fine structure
with three detectable levels of mS = 0 and mS = ±1, separated by a zero-field splitting
of D′ = 1.42 GHz. The intersystem crossings can take place from the 3E excited state
to/from the intermediate 1E and 1A singlet states, causing weak near-infrared (NIR) emis-
sions [131,138,141]. The associated photoluminescence spectra and schematic presentation
of the all-optical thermometry method are schematically summarized in Figure 17b. A
strong optical transition that occurs between the 3A2 ground state and the 3E excited state
(green arrow) initiates the ZPL at 638 nm (red arrow) at room temperature. The position,
amplitude, and width of ZPL changes with temperature according to a Lorentzian function
with an exponential background. Furthermore, the ratiometric all-optical thermometry
method relies upon the ratio of the counts underneath the ZPL and the total emission spec-
tra, known as the Optical Debye–Waller factor. By applying the microwave resonance to
the transition between of mS = 0 and mS = ±1 in the ground state, the photoluminescence
substantially decreases through a process called the optically detected magnetic resonance
(ODMR). This method, presented in Figure 17c, analyses the temperature dependence of D,
a phenomenon arising from the thermal lattice expansion and temperature dependence of
the electron–phonon interaction [131].

The usage of the temperature-dependent fluorescent properties of the NV centres in
nanodiamonds for thermometry in the range of 300–700 K was first proposed by Plakhotnik
et al. [142]. The authors introduced ratiometric all-optical thermometry method based on
the Debye–Waller factor of the NV fluorescence spectrum and obtained the variability in the
fluorescence intensity and lifetime of approximately −0.2%/K and −0.06 ns/K, respectively.

Choi et al. [143] published important results (displayed in Figure 18) about using
the nanothermometry method of NV centers in nanodiamonds of ~50 nm size for in vivo
temperature measurements as well as for the regulation of cell division timings in C. elegans
embryos. NV nanothermometers were injected inside C. elegans embryos, allowing the
in vivo monitoring of the temperature and the correlation of cell-division dynamics with
the local temperature distribution inside an embryo. An infrared laser was utilized to
achieve heating within the temperature range of ∆T~20 K, commencing from an initial
temperature of 12.3 ◦C. NV temperature sensors were characterized using the ODMR
method and had maximal temperature sensitivities of ~2 K/Hz−1/2.

http://creativecommons.org/licenses/by/4.0/
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Figure 17. (a) Basic energy level scheme of the NV center; (b) schematic presentation of the NV
center all-optical thermometry, typical photoluminescence emission spectrum of a single NV center
displaying ZPL (638 nm) and PSB, in the inset: the temperature-dependent shift of ZPL; (c) typical
ODMR spectra of the NV centers in nanodiamonds, in the inset: thermally induced changes in the
ODMR spectra.
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Unlike NV centers, which exhibit an almost 100 nm broad emission band, group IV-
based defects in nanodiamonds concentrate almost all their photoluminescence into a few 
nanometers-wide zero phonon lines (ZPLs), and their temperature-dependent changes 
have been used for all-optical thermometry [131,144–148]. Miller et al. [147] studied ag-
gregates of nanodiamonds with germanium-vacancy (GeV) defects distributed on differ-
ent substrates within a wide temperature range of 85–400 K, with the aim of obtaining 2D 
optical thermometer with high nanoscale spatial resolution, predominantly for biomedi-
cal applications. They observed the thermal shift of the GeV center’s ZPL at 602 nm and 
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Figure 18. (a) Optically detected magnetic resonance of an NV thermometer. Contrast is defined as the
fluorescence ratio of the thermometer with and without the application of microwaves. In temperature
measurements, the resonance curve is sampled at four optimized frequencies (red crosses) to extract
the resonance position D(T) at a given local temperature T; (b) 2D temperature distribution map of
the laser-illuminated C. elegans embryo, measured by a collection of NV thermometers inside an
embryo, with comparisons between experiments and simulations. Adapted from [143].

Unlike NV centers, which exhibit an almost 100 nm broad emission band, group
IV-based defects in nanodiamonds concentrate almost all their photoluminescence into a
few nanometers-wide zero phonon lines (ZPLs), and their temperature-dependent changes
have been used for all-optical thermometry [131,144–148]. Miller et al. [147] studied aggre-
gates of nanodiamonds with germanium-vacancy (GeV) defects distributed on different
substrates within a wide temperature range of 85–400 K, with the aim of obtaining 2D
optical thermometer with high nanoscale spatial resolution, predominantly for biomedical
applications. They observed the thermal shift of the GeV center’s ZPL at 602 nm and fitted it
with different models. The results shown in Figure 19 proved that nanodiamond aggregates
with GeV center are optical temperature sensors with a sensitivity of 0.2 cm−1K−1 at room
temperature [147].
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of ND aggregates; (b) the fits of the ZPL shifts from different theoretical models. Adapted with per-
mission from [147]. 
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Figure 19. (a) Emission spectra of NDs on the surface of TiO2 film, upon heating by a focused laser
beam. The laser was pointed onto the object for 5 min while recording a spectrum every minute.
Then, the laser excitation was removed, and the object was cooled for 5 min, after which, a spectrum
was recorded again. The spectra are obtained in the temperature range 293–323 K. Insert: a cluster
of ND aggregates; (b) the fits of the ZPL shifts from different theoretical models. Adapted with
permission from [147].

Recent results of the typical nanothermometry explorations of nanodiamonds with
different optically active defects are summarized in Table 7. It is important to note that the
sensitivity of thermometry using nanodiamonds is commonly expressed as the uncertainty
for a given measurement time. For other types of nanoparticles, sensitivity is defined as the
rate of change in a measurement over its uncertainty. Therefore, it is difficult to compare the
reported sensitivity values for other types of nanoparticles with those of nanodiamonds.

Table 7. The overview of the most recent literature reports on nanodiamonds for luminescence
temperature sensing.

NDs Size
[nm]

Type of
luminescent

Center
Measurement

Method
Temperature

Range [K]
Maximal

Sensitivity Application Ref.

100 NV All-optical 85–300 ~15 K/Hz−1/2 Low-temperature thermometry [149]

100 NV ODMR RT ~2 K/Hz−1/2 Camera-based thermometry of living cells [150]

100
NV All-optical

RT
~0.2 K/Hz−1/2 Nanothermometry in the biological

transparency window [151]
NiV ODMR ~0.9 K/Hz−1/2

40 NV
ODMR

(frequency-jump
modulation)

RT
∆T~20 K NA Thermal probing and heat diffusion

measurements in the microelectronic circuit [152]

100 NV All-optical 301–348 2 K/Hz−1/2 Hyperthermia research in human embryonic
kidney cells [153]

168 NV ODMR 303.4–317.3 1.4 K/Hz−1/2
Temperature measurement in living animals

which may allow quantification of their
biological activities

[154]

150 NV ODMR 302.1–313.9 2.2 K/Hz−1/2 Measurement of the intracellular thermal
conductivities of HeLa and MCF-7 cells [155]

70 SiV All-optical RT 0.037 K−1 Temperature monitoring and mapping within
intracellular regions [144]

200 SiV All-optical RT
∆T~20 K ~0.5 K/Hz−1/2 Calibration-free thermometry for sensing and

control of complex nanoscale systems [156]

300 SiV All-optical 200–400 ~0.5 K/Hz−1/2 Practical nanoscale thermometry and sensing [157]
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8. Conclusions

Luminescent nanoparticles are widely used as probes in luminescence thermometry.
They can be utilized in all temperature read-out methodologies, with both steady-state
and time-resolved emission detection and with both downshifting and up-conversion
excitations. They can be used in almost all luminescence thermometry applications. The
only ones that they cannot be used in are measurements at very high temperatures, because
at those temperatures, nanoparticles emit less light and are not as stable as their bulk
counterparts. For some applications, they are indispensable. These are primarily biomed-
ical and nanotechnology applications that require high spatial measurement resolutions
and/or particle surface modifications. In addition, achieving multifunctional luminescence
materials is much easier with nanoparticles. The polyvalent functions of nanoparticles
related to thermometry so far are mostly bioimaging, nanoheating, and counterfeiting, but
some other functions would not be difficult to envisage. Further, by combining several
nanoparticles with different spectral and temperature responses, one can construct a lu-
minescence thermometer to suit any specific demand. To achieve similar goals, it is also
possible to use core/(multiple) shell nanoparticles. Considering the number of papers
published on luminescence thermometry, lanthanide-activated nanophosphors are the
most commonly used probes, with semiconductor quantum dots following them. This is
probably due to the large and important field of applications of up-conversion materials
in which lanthanide-activated nanoparticles play a crucial role. Regarding semiconductor
quantum dots, luminescence thermometry performance differs between nanoparticles of
different sizes and morphologies.
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