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Abstract: Against the background of escalating global electronic waste (e-waste) and its rich reservoir
of elements, this research addresses the exploitation of precious metals from discarded CPUs for
potential applications in hydrogen production. The study systematically explores the influence of
varied CPU sample preparation techniques on the formation of an electrode’s catalytic layer and the
kinetics of the hydrogen evolution reaction (HER) in alkaline media. Four distinct e-waste samples,
each subjected to different preparation protocols, were employed as sources in electrodeposition baths.
The electrocatalytic efficiency of the resulting electrodeposited cathodes was evaluated, with the AR-
CPU-1.4M electrode demonstrating superior properties. Morphological insights from SEM, coupled
with elemental data from EDS and ICP analyses, revealed the intricate relationship between sample
preparation, electrode characteristics, and HER kinetics. Notably, gold deposits and a prominent
copper concentration emerged as defining attributes of our findings. This research underscores the
potential of e-waste-derived metals, particularly in hydrogen production, providing an avenue for
sustainable metal recovery and utilization.

Keywords: e-waste; hydrogen evolution reaction; electrodeposition; CPU recycling; catalytic efficiency

1. Introduction

In today’s technological era, marked by rapid innovation and growing consumer
demands, the electronics sector is on a growth trajectory rarely seen in other industries.
However, this growth has been accompanied by a large-scale challenge: the escalation
of electronic waste, or e-waste [1]. Data collated in 2019 highlight this alarming trend,
pinpointing the global accumulation of electronic and electrical waste at an astounding
53.6 million metric tons—a surge of about 17.16% from the 44.4 million metric tons ob-
served in 2014 [2]. With projections estimating this to touch 65.3 million metric tons by
2025, of which 11.4 million metric tons can be attributed to IT and telecommunications
equipment and computers, the magnitude of the issue becomes evident [2,3]. Delving into
the composition of these discarded devices reveals an abundance of elements, including
an impressive 70 elements from the periodic table. Precious metals such as gold, silver,
and copper dominate the mix, but a litany of other metals, including aluminum, nickel,
and titanium, also make their presence felt [4]. Given that the Earth’s metal reserves are
definitely limited and conventional mining is notoriously harmful to the environment [5],
the argument for extracting these metals from e-waste becomes compelling. Such efforts
not only support sustainability but could also act as the genesis of a transformative sector
within the circular economy [6].

Our work postulates one possible application: the utilization of recycled metals,
especially precious ones from e-waste, in the field of hydrogen production. Given the
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well-documented catalytic efficiency of noble metals in the hydrogen evolution reaction
and other reactions of interest in energy converting applications [7,8], this exploration gains
significant traction. A pivotal section of this paper will be devoted to understanding how
the preparation nuances of recycled e-waste samples influence both the catalyst layer and
its overarching activity.

The main goal of this research is to examine in detail the influence of variations in the
preparation of samples from recycled CPUs (central processing units) on the formation of
the catalyst layer and the kinetics of the hydrogen evolution reaction (HER) in alkaline
media. In this effort, we applied four different e-waste samples, each subjected to different
preparation protocols, to serve as sources in electrodeposition baths. The electrocatalytic
efficiency of the resulting electrodeposited cathodes was investigated in detail through
an in-depth analysis of the underlying mechanisms governing HER. Furthermore, a com-
prehensive examination of the morphology and compositional attributes of the cathodes
was conducted to delineate the correlation between the preparation methodologies and
the structural properties of the electrodeposited layers. Simultaneously, dynamic changes
within the composition of the electrodeposition bath throughout the electrodeposition
sequence were monitored to observe their consequent effects on the overall deposition
process and subsequent HER kinetics in alkaline solutions. Through this multifaceted
analysis, this study aims to illuminate the interdependencies between e-waste-derived
sample preparation, the characteristics of the electrodeposited layers, and their collective
consequences on the hydrogen evolution process.

2. Materials and Methods
2.1. Sample Collection, Pre-Treatment, and Preparation

All computer processors, CPUs, employed in this study were of the same brand and
generation. The computers were disassembled, and the processors were carefully extracted
from sockets and motherboards. Following extraction, the processors underwent cleaning
to remove dirt, plastic, and thermal paste. This step was consistent across all sample types.

For the sample preparation protocols, four different sample preparation methods were
used with the following designations:

• BM-CPU-1.4M: CPUs were mechanically fragmented and placed in a handmade
laboratory tungsten carbide ball mill for a grinding duration of 6 h. Due to the
CPUs’ inherent hardness, only a fraction of fine powder was derived. This powder’s
particle sizes were measured using a Retsch AS200 Control lab sieve [9]. A total of
0.75 g of this powder was leached in a 10 mL solution consisting of 0.6 g sodium-
chloride, 9.5 mL 1.4 M hydrochloric acid, and 0.5 mL 30% hydrogen peroxide for 1 h
at room temperature.

• EM-CPU-1.4M: CPUs, removed from their metal cooling cases and with silicon boards
segmented, were processed using an IKA A10 basic electrical mill (IKA-Werke GmbH
& Co.KG, Staufen, Germany). The resultant powder displayed some heterogeneity
in particle size, which was subsequently gauged using the Retsch AS200 Control
lab sieve (Retsch GmbH, Haan, Germany). This powder was then subjected to the
aforementioned leaching process.

• HM-CPU-1.4M: A CPU, once detached from its metal case, had its PCB (printed
circuit board) partitioned into smaller sections to accommodate an MRC DMP-100
disc mill (MRC Laboratory-Instruments, Holon, Israel). After milling, particle size was
evaluated, and the powder was processed using the specified leaching solution like in
previous samples.

• AR-CPU-1.4M: This method involved a chemical preparation technique utilizing aqua
regia (3:1 volume ratio of hydrochloric acid to nitric acid) (Merck KGaA, Darmstadt,
Germany). In total, 60 mL of this solvent was employed to treat the CPU for 98 h.
Post dissolution, undissolved residues were separated, and the remaining solution
was evaporated down to a paste, washed thrice with hydrochloric acid, and finally
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reconstituted with deionized water. This yielded a metal-rich aqueous solution which
was then adapted for electrochemical sedimentation bath preparation.

2.2. Electrodeposition and Electrochemical Testing

Metal electrodeposition baths, denoted the same as the prepared samples described
above, were an aqueous mixture of 0.6 g sodium-chloride, 9.5 mL 1.4 M hydrochloric
acid, and 0.5 mL 30% hydrogen peroxide (all analytical-grade chemicals from Merck
KGaA, Darmstadt, Germany) with 0.75 g of powdered samples. Electrochemical testing
solution was a 6 M KOH (p.a., Merck KGaA, Darmstadt, Germany) constituted using
deionized water.

Electrodeposition was conducted in a standard two-electrode glass cell. The working
electrode employed was high-purity (99.9%) metallic nickel with a surface area of 1 cm2,
while the counter electrode was a high-surface-area platinum mesh. The electrodeposition
process was carried out using Gamry 1000E Potentiostat (Gamry Instruments, Warminster,
PA, USA) in the galvanostatic mode at current density of 10 mAcm−2 for two hours with
constant stirring maintained at 300 rpm using a magnetic stirrer IKA C-MAG HS10 (IKA-
Werke GmbH & Co.KG, Staufen, Germany).

Electrochemical evaluations were performed in a three-electrode glass cell. The work-
ing electrode comprised the metallic nickel with electrodeposited catalysts denoted the
same as the samples from which they were obtained. The counter electrode remained
a high-surface-area platinum mesh, and the reference electrode was an SCE (saturated
calomel electrode). Prior to testing, the electrolyte was purged with hydrogen for 15 min.
Electrochemical characterization consisted of recording and analyzing the polarization
curves and EIS (Electrochemical Impedance Spectroscopy) spectra in order to determine
HER (hydrogen evolution reaction) kinetics on electrodeposited catalysts. All electrochemi-
cal measurements were performed using a Gamry 1000 E Potentiostat (Gamry Instruments,
Warminster, PA, USA). Polarization curves were recorded by changing the electrode poten-
tial in the range from −1.6 V to −0.6 V, with respect to the SCE reference electrode, at a
rate of 1 mVs−1. Impedance spectra were recorded in the frequency range from 0.01 Hz
to 100 kHz using an alternating signal with an amplitude of 10 mV superimposed on a
constant overvoltage value in a range from −50 mV to −200 mV. Before each measurement,
the working electrode was conditioned for 20 min at a constant current of 100 mA. The
temperature of the solution in the electrochemical cell was 298 K.

The morphology and elemental analysis of the best-performing catalyst was investi-
gated through scanning electron microscopy (SEM) analysis. The SEM micrographs were
obtained using SEM FEI Scios2 Dual Beam System instrument (Thermo Fisher Scientific,
Waltham, MA, USA) under high vacuum conditions and accelerating voltage of 10 kV with
the applied magnification being up to 50,000×. The corresponding EDS (Energy-Dispersive
X-ray Spectroscopy) spectra were captured utilizing the same instruments. Elemental
composition analysis of electrodeposition baths before, during, and after deposition process
were conducted via ICP-OES (Inductively Coupled Plasma Optical Emission spectroscopy)
analysis using a Thermo Scientific ICP-OES 7000 series instrument (Thermo Fisher Scientific,
Waltham, MA, USA).

All methods and protocols were carefully followed, ensuring consistency and repro-
ducibility of results across all samples.

3. Results
3.1. Sample Preparation and Characterization

In this study, we began our research by comparing different methods for the prepara-
tion of samples from e-waste, which were to be used as electrodeposition baths to obtain
catalyst deposits suitable for hydrogen production. Four different preparation techniques
were applied, including one chemical method and three primarily mechanical preparation
approaches described in previous sections and presented in Figure 1.
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Figure 1. Schematic representation of the sample preparation procedure.

As previously described, after each mechanical treatment of the CPUs, the obtained
grounded samples were sieved as described above and their weight was measured to
determine the particle size and its proportion to the total volume [10]. Particle size mass
fractions are presented in Table 1.

Table 1. Particle size mass percent in the mechanically prepared samples.

Particle Size BM-CPU-1.4M (%) EM-CPU-1.4M (%) HM-CPU-1.4M (%)

>1 mm 7.77 13.63 12.63
>500 µm 1.35 27.58 25.25
>250 µm 3.23 23.39 25.92
>125 µm 28.44 17.71 15.55
<125 µm 59.22 17.69 20.65

Based on the observed data, the highest proportion of fine particles was derived
from the ball milling technique. It is crucial to note that, even after a duration of 6 h,
complete grinding of the entire sample was not achieved. This consideration, in tandem
with the subsequent electrochemical characterization, suggests caution in interpreting
the results derived from this sample preparation method. Specifically, for the purpose of
electrode preparation for hydrogen production in alkaline electrolysis, this method may
not be the most optimal. The particle size, in conjunction with consistent stirring during
the electrolytic process, plays a pivotal role in the preparation of our electrodeposition
bath. Utilizing a magnetic stirrer for electrolyte preparation has been demonstrated to
yield a narrow particle size distribution and maintain stable particle dispersions [11]. A
combination of smaller particles and consistent stirring promotes stable particle dispersions
in the bath, though it is less effective at disaggregating large particle clusters [12]. The
distribution of mass percentages in the particle sizes of the ground samples in the other two
milled samples (EM-CPU-1.4M and HM-CPU-1.4M) was relatively uniform, facilitating a
more consistent comparison during electrochemical characterization.

3.2. Electrochemical Testing

The kinetics and mechanisms of the hydrogen evolution reaction (HER) on cathodes
electrodeposited from solutions containing the subject samples were analyzed via Tafel
analysis and Electrochemical Impedance Spectroscopy (EIS). Polarization curves and EIS
spectra were acquired in a 6 M KOH standard electrolyte solution comparing bare nickel
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electrodes to those coated with the samples under study. These polarization curves are
presented in Figure 2.
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the samples: (a) BM-CPU-1.4M, (b) EM-CPU-1.4M, (c) HM-CPU-1.4M, (d) AR-CPU-1.4M.

A subsequent Tafel analysis was performed on the captured polarization curves. For
the analyses, two data sets were examined: one representing the bare metallic Ni electrode
and another for the Ni electrode coated with the electrodeposited catalyst. A noteworthy
observation across all samples was that the polarization curves for electrodes with the
catalytic coating revealed a positive shift, gravitating towards less negative potential values
in comparison with the pristine Ni electrode.

In the Tafel plot, a linear relationship emerges between the logarithm of the current
and the overpotential. The curve’s slope, known as the Tafel slope, provides insight into
the reaction’s activation energy, and, consequently, its rate. A pronounced slope suggests a
higher requisite activation energy, implying a diminished reaction rate [13].

The derived Tafel slope values for each sample are detailed in Table 2. Leveraging
these values, a rudimentary reaction mechanism is inferred. Broadly, three mechanisms can
be categorized: activation-controlled, diffusion-controlled, and mixed-controlled reactions.
Within this study’s context, slope values spanning between 90 and 120 mV/dec were
observed, correlating with a mixed-controlled reaction mechanism. Such a mechanism
amalgamates aspects of both activation- and diffusion-controlled processes [14].

The exchange current density, indicative of an electrode’s propensity to facilitate
an electrochemical reaction, was also evaluated. A heightened exchange current density
signifies enhanced electrode surface activity. The data indicate that the AR-CPU-1.4M
electrode possesses the maximal exchange current density. This underscores that this
particular coating manifests significantly superior catalytic activity compared with other
electrode coatings and the uncoated Ni electrode.
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Table 2. Kinetic parameters for Ni electrodes in 6M KOH and for coated electrodes.

Sample Tafel Slope
(mV/dec)

Exchange Current Density
(A cm−2)

BM-CPU-1.4M 94.4 5.637 × 10−6

EM-CPU-1.4M 104.7 28.420 × 10−6

HM-CPU-1.4M 100.0 1.795 × 10−6

AR-CPU-1.4M 110.0 29.790 × 10−6

Ni 120.0 23.450 × 10−6

Enhanced understanding of the hydrogen evolution electrochemical reaction mecha-
nism was facilitated by capturing electrochemical impedance spectra for electrodes coated
in a 6 M KOH standard electrolyte solution. The impedance plots, or Nyquist diagrams, for
these coated electrodes are illustrated in Figure 3.
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Figure 3. Impedance diagrams (Nyquist diagrams) of the coated electrodes noted on each graph
recorded at overpotentials ranging between 0 mV to 200 mV: (a) BM-CPU_1.4M coating, (b) EM-CPU-
1.4M coating, (c) HM-CPU-1.4M coating and (d) AR_CPU_1.4M coating.

In the Electrochemical Impedance Spectroscopy (EIS) study, spectra were recorded
at ambient temperatures over a range of overpotentials between 0 mV and 200 mV. The
accompanying Nyquist plots, depicted in the aforementioned figure, manifest as a distorted
semicircle. This pattern suggests that the Randles equivalent circuit may be apt for modeling
and discerning other EIS-related attributes.

Notably, as the overpotential range shifts between 100 mV and 200 mV, a diffusion
tail emerges, giving rise to what is termed the Warburg impedance. This impedance
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exhibits a frequency dependence; at lower frequencies, the Warburg impedance increases
due to the extended diffusion distance of the reactants. The acquired EIS spectra were
modeled using a hybrid Randles circuit, incorporating a constant phase element (CPE)
in lieu of the double layer capacitance (Figure 4). This substitution accounts for the
non-ideal behavior of the double layer. Additional parameters integrated in the model
are the diffusion coefficient, electrolyte resistance, and charge transfer resistance. These
parameters facilitated the derivation of the electrode surface roughness factor (σ) and the
single time constant (τ). For samples BM-CPU-1.4M and AR-CPU-1.4M, the roughness
factor was approximately 50, which correlates with the electrode’s active surface area.
Consequently, the active surface area post electrodeposition was approximately 50 times
greater than the electrode’s geometric surface. Concurrently, the double layer capacitance
showcased favorable metrics, suggesting potential applications for this e-waste-derived
material in capacitors and supercapacitors (refer to Table 3). While the roughness factor
and double-layer capacitance values for the ball-milled and aqua regia-treated samples
are relatively congruent, the AR-CPU-1.4M sample demonstrates superior attributes. A
distinguishing feature between the two samples, underscoring the enhanced properties
of the AR-CPU-1.4M sample, is its substantially lower charge transfer resistance across all
examined overpotentials compared with its counterparts [15–17].
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Figure 4. The electrical circuit used to fit the EIS spectra.

Table 3. EIS parameters for all electrodeposited samples.

T (K) −η (mV) Re (Ω cm2) Rct (Ω cm2) α Cdl (µF cm−1) σ τ (s)

BM-CPU-1.4M

298.15

0 0.518 790.0 0.937 1121.4 56 0.886

50 0.513 510.1 0.928 1247.9 62 0.637

100 0.511 228.5 0.925 1231.6 62 0.282

150 0.581 76.5 0.932 802.1 40 0.061

200 0.514 22.5 0.955 449.9 22 0.010

EM-CPU-1.4M

298.15

0 0.561 150.2 0.912 406.2 20 0.061

50 0.559 140.4 0.916 401.9 20 0.056

100 0.557 121.2 0.919 392.9 20 0.048

150 0.542 123.3 0.891 356.6 18 0.044

200 0.546 52.3 0.909 227.7 11 0.012

HM-CPU-1.4M

298.15

0 0.575 1199.1 0.869 139.2 7 0.167

50 0.568 1858.0 0.870 129.6 6 0.241

100 0.565 1593.0 0.873 117.5 6 0.187
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Table 3. Cont.

T (K) −η (mV) Re (Ω cm2) Rct (Ω cm2) α Cdl (µF cm−1) σ τ (s)

298.15
150 0.565 1161.0 0.879 103.9 5 0.121

200 0.561 721.3 0.887 86.3 4 0.062

AR-CPU-1.4M

298.15

0 0.545 206.3 0.779 1269.4 63 0.262

50 0.547 117.8 0.776 1037.2 52 0.122

100 0.544 67.5 0.773 788.6 39 0.053

150 0.545 39.8 0.785 565.1 28 0.022

200 0.557 22.7 0.819 373.3 19 0.008

3.3. Elemental Composition and Morphological Characteristics

The elemental composition and morphological properties of both the electrolytic
bath and the electrodeposited coating of the AR-CPU-1.4M electrode were assessed using
scanning electron microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), and
Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The AR-CPU-
1.4M electrode was chosen for detailed examination due to its superior electrochemical
performance in the hydrogen evolution reaction, as evidenced by the Tafel and EIS analyses.

After electrochemical characterization, the surface of the electrode was analyzed with
scanning electron microscopy with Energy-Dispersive X-ray Spectroscopy (SEM/EDX).

SEM micrographs of the electrodeposited coating display a surface characterized by a
distinctive rough texture and a commendable surface evolution. A significant feature that
can be observed in the micrographs is the tendency of the deposited metals to aggregate.
Particularly in Figure 5d, formations reminiscent of gold ‘islands’ are apparent. EDS
analysis confirms that these ‘islands’ are formed by gold particles (Figure 6).

Notably, these elemental structures are nanoscale in nature; the gold particles exhibit
diameters ranging from 10 to 20 nm. Under high magnification in the SEM micrographs,
the presence of these electrodeposited gold particles is unequivocally discernible, which is
further corroborated by EDS analysis.

Utilizing EDS analysis, the elemental composition of the electrodeposited coating was
investigated. As delineated in Table 4, copper and gold prominently dominate the coating’s
composition. Additionally, notable quantities of silver and aluminum were observed. These
observations are consistent with our anticipations, reflecting the intrinsic composition of
the CPUs initially used for dissolution.

Table 4. EDS elemental analysis of electrode surface for sample AR-CPU-1.4M.

Element Weight % Atom %

Al 0.554 1.442
Cu 83.921 92.839
Ag 0.607 0.394
Au 14.918 5.324

Through ICP analysis, we sought to monitor the fluctuations in metal concentrations
throughout the electrodeposition process. The results, presented in Figure 7, distinctly
show the successful detection of our target elements, with their concentrations registering
a marked decrease as the process progressed. These data further elucidate the prominent
copper deposition observed in the EDX analysis, attributable to the high concentration of
dissolved copper present in the electrodeposition bath.
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4. Conclusions

One of the foremost considerations for the optimal harnessing of metals from e-waste,
particularly CPUs, rests upon the process of sample preparation. Our methodologies
encompassed different grinding techniques aimed at achieving a refined particle size dis-
tribution and improved surface area. The inherent distinction between these techniques
revealed crucial findings. Specifically, the ball mill approach facilitated a particle frac-
tion that was most conducive for further processing in comparison with other protocols.
Nonetheless, it is vital to note that, even after exhaustive grinding durations, the entirety
of the CPU material remained incompletely processed. This sheds light on the inherent
challenges tied to achieving optimal particle morphology and, by extension, reiterates the
importance of refining our sample preparation approaches. Thus, the relationship between
particle size distribution and electrochemical behavior underscores the need for meticulous
attention during this phase of the process.

The hydrogen evolution reaction (HER) serves as an informative metric for gauging the
efficiency of our electrodeposited coatings. Notably, the AR-CPU-1.4M electrode, amongst
our samples, demonstrated superior electrocatalytic properties, which warranted further
morphological and elemental exploration. SEM micrographs of this particular electrode
depicted a surface rich in topographical details. These findings were reinforced by the
EDS and ICP analyses, which showcased a pronounced influence of gold and copper on
the coating’s composition. The results resonated with the inherent composition of CPUs,
providing a rationale for the element clustering observed in our analyses. Particularly
notable was the nanoparticulate nature of the gold deposits and their impact on the catalytic
activity of the electrode.

Furthermore, a systematic examination of the deposition bath unveiled a high concen-
tration of dissolved copper, which offered insights into the prominent copper deposition
observed in the EDX analysis. Given the pivotal role of copper in hydrogen evolution and
the established correlations between metal concentration and deposition outcomes, these
observations afford valuable perspectives for tailoring our sample preparation techniques
and electrodeposition protocols.

Our foray into the realm of harnessing e-waste as a repository for catalytic metals,
especially for hydrogen production, has been insightful. The emphasis on nuanced sample
preparation has reiterated its significance in governing the efficiency of the subsequent
electrochemical processes. The AR-CPU-1.4M electrode, in particular, has underscored
the potential that lies within optimally processed e-waste. The correlation between the
detailed morphological and elemental characteristics and the electrocatalytic activity of
the electrode demonstrates the interconnectedness of our preparation techniques and the
resultant electrochemical behavior. It is, therefore, evident that the sustainable and efficient
utilization of e-waste, especially in the context of hydrogen production, mandates an
integrative approach that bridges meticulous sample preparation, in-depth morphological
understanding, and electrochemical expertise. In advancing the narrative of the circular
economy, this work has not only highlighted the vast potential of e-waste but has also
illuminated pathways to optimally harness it.
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