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Abstract: In the search for environmentally friendly materials with a wide range of properties,
polymer composites have emerged as a promising alternative due to their multifunctional properties.
This study focuses on the synthesis of composite materials consisting of four components: bacterial
nanocellulose (BNC) modified with magnetic Fe3O4, and a mixture of BaTiO3 (BT) and polyvinylidene
fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence
of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated.
The obtained composite films’ structural characteristics, morphology, and dielectric properties are
presented. This research provides insights into the relationship between mechanical activation of the
filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way
for the development of materials with a wide range of diverse properties that support the concept of
green technologies.

Keywords: dielectric properties; multiferroic; laminate composite material; bacterial nanocellulose
(BNC); PVDF

1. Introduction

Hybrid materials are a broad research field, focusing on the synthesis of new and inno-
vative materials [1]. These materials offer unique properties that bring numerous benefits
to various aspects of human life. Key areas of interest include the development of sus-
tainable biosensors, active and intelligent packaging, renewable energy storage materials,
batteries, nanogenerators, and microchips [2–4]. However, creating such materials poses a
challenge due to the need to combine different material classes with the aim to develop a
flexible, biodegradable, biocompatible material with multiferroic properties. In this context,
it is crucial to consider the environmental impact of materials while meeting practical
criteria. Traditional packaging materials mainly are not sustainable, thus requiring the
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implementation of “green” technologies and the use of environmentally friendly materials.
The material that stands out for its unique characteristics is polyvinylidene fluoride (PVDF).
PVDF is a polymer widely used as a matrix material in various applications. It exhibits
exceptional electroactive properties and can exist in different crystalline phases, with the
beta phase being particularly desirable due to its superior electrical characteristics [5].
The activation of the beta phase in PVDF can be achieved through various processes and
treatments, such as temperature changes, deformation, particle size and shape, exposure to
air, and the addition of appropriate fillers [6–10]. Research has shown that incorporating
ceramic fillers, especially perovskite ceramic materials, is one of the most effective ways to
activate the beta phase of PVDF [11–13]. A filler that meets all criteria is barium titanate
(BaTiO3), known for its high die lectric constant and ferroelectric properties [14,15]. When
BaTiO3 is incorporated into the PVDF matrix, it enhances the electrical polarization and
improves the electroactive properties of the material [16,17]. Prior studies [18,19] also
demonstrated that mechanically activating BaTiO3 particles before combining with PVDF
can encourage β-phase crystallization in the matrix. This involves reducing particle size
without altering their ferroelectric tetragonal structure [19]. As a result, the filler addition
increases dielectric permittivity and promotes crystallization of polar β-phase crystals,
achieving the desired properties with lower filler concentrations.

On the other hand, bacterial cellulose has also gained significant attention in hybrid
materials research [20,21]. Bacterial cellulose is a biopolymer produced through the fer-
mentation of bacteria such as Gluconacetobacter xylinus. It possesses high purity, mechanical
strength, water resistance, and biocompatibility [22]. These properties make bacterial cellu-
lose attractive for various applications such as membranes, biofilters, cell culture media,
and even in skin and bone tissue repair [23–25]. Combining bacterial cellulose with other
materials like PVDF allows the creation of hybrid materials with improved mechanical
and electrical properties and the ability to tailor their characteristics for specific applica-
tions [26,27]. However, hybrid materials that combine PVDF with fillers such as BaTiO3
and bacterial cellulose hold great promise for the development of advanced materials with
enhanced mechanical, electrical, and biological properties. In addition to the combination
of PVDF, BaTiO3, and bacterial cellulose, the possibility of modifying bacterial cellulose
with magnetite (Fe3O4) is worth mentioning. Modifying bacterial cellulose with magnetite
allows the creation of a hybrid material with magnetic properties.

Very important features for intelligent packaging are dielectric properties. Hybrid ma-
terials developed for sensor applications can change their dielectric permittivity in contact
with humidity or by variation in temperature. Such change can be used for monitoring
the transportation and storage of products [28]. The relative dielectric constant (ε′) has a
significant physical implication as it delineates a material’s capacity to store and retain
electrical energy within its structure. Conversely, dielectric losses include the dissipation of
energy within the material itself. The loss tangent, denoted as tan δ, represents the ratio of
these two physical quantities, namely the relationship between dielectric losses (ε′′) and
relative dielectric constant (ε′) [29]. An increasing number of recent studies are focused
on the synthesis of layered composites to achieve high dielectric constants with minimal
losses, while also ensuring the preservation of composite flexibility [30–32].

Taking into account a variety of the properties that the BNC, PVDF, BT, and Fe3O4
possess, they represent a potentially brilliant combination. The idea of this research was
to synthesize and investigate a laminar multifunctional composite, where the first layer,
Fe3O4-modified BNC, will achieve connection with the PVDF/BT layer by hot press. So, the
base or matrix of the synthesized hybrid material is PVDF, while BNC with magnetite acts
as one filler, while BT acts as the other filler. Further influence of the mechanical activation
of BT on PVDF phase composition was linked with obtained dielectric properties of the
hybrid composite. BT was mechanically activated for 5, 10, and 20 min. The synthesized
films were characterized by SEM-EDS, XRD, PSA, and DS methods.
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2. Materials and Methods

In this research, PVDF powder with an average molecular weight of Mw~534,000
(Sigma-Aldrich, St. Louis, MO, USA) and BaTiO3 (BT) 99.5%, <2 µm (Sigma-Aldrich,
St. Louis, MO, USA) were used. An acetic acid bacteria (Komagataeibacter sp.) and
0.1 M NaOH solution was used to synthesize and subsequently purify bacterial nanocellu-
lose. FeSO4x7H2O (Acros Organics, Waltham, MA, USA), FeCl3x6H2O (Fisher Chemical,
Waltham, MA, USA), and NH3(aq) (Sigma-Aldrich, St. Louis, MO, USA) solutions were
used for further modifi cation of the bacterial nanocellulose. Ethanol from Merck was
utilized as a homogenizing medium for PVDF and BT powders.

2.1. Preparation of BNC/Fe3O4

Initially, the synthesis of bacterial nanocellulose (BNC) was performed via fermenta-
tion of acetic acid bacteria isolated from Kombucha [33]. The hydrogels were grown in a
YPM broth (yeast extract 5 g/L, peptone 3 g/L, and mannitol 25 g/L) for 7 days at 25 ◦C
under static conditions. The resulting BNC films were then purified and submerged in
a solution containing diluted iron salts (FeSO4x7H2O + FeCl3x6H2O) at a molar ratio of
2:1. Hydrogels were sonicated for 30 min. Subsequently, precipitation of magnetite was
achieved by the addition of NH3(aq) to bring the pH to approximately 12. The films were
then sonicated for an additional 45 min. After washing with distilled water to reach a
neutral pH, films were dried in an oven at 40 ◦C for 24 h.

2.2. Preparation of Multi-Component Composites PVDF/BaTiO3/BNC/Fe3O4

Commercial BaTiO3 was mechanically activated in a Retsch PM100 planetary mill
using a zirconium oxide jar and balls. Small 5 mm diameter balls were used. Mechan-
ical activation was carried out at intervals of 5, 10, and 20 min. The mass ratio of the
ball/sample was 20:1 and the rotation speed was 400 rotations per minute. The obtained
powders were labeled as BT5, BT10, and BT20. The synthesis of the PVDF/BT layer was
carried out in two steps. First, 5 wt% of the mechanically activated BT was homogenized
with PVDF in ethanol using an ultrasonic bath for 30 min. Ethanol was selected as the
medium because neither component is soluble in it. The suspensions were centrifuged
on a UNIVERSAL320 R device for 10 min and then left in an oven at 80 ◦C for 24 h to
completely evaporate the ethanol. The powder mixtures were labeled as PVDF, PVDF/BT0,
PVDF/BT5, PVDF/BT10, or PVDF/BT20, where PVDF was pure polymer without BT
addition and the rest of the samples contained non-activated and activated BT powders for
5–20 min. The multilayer composite of the PVDF/BT and BNC/Fe3O4 films were prepared
by hot pressing. The SERVITECpolystat200T press was used for this purpose. A 1.5 g of
the previously prepared homogeneous PVDF-based mixtures was evenly distributed on
the dry BNC/Fe3O4 film.

The samples were placed on square steel molds, 10 × 10 cm2 in dimension, which
were coated with Teflon to avoid sticking. The pressing was carried out under the fol-
lowing conditions: an initial heating of the press jaws for 6 min at a temperature of
185 ◦C, followed by a two-stage pressure ramping. At the beginning of the process,
a pressure of 20 bars was applied to the steel mold for 1 min, followed by a 2 min
hot pressing under 200 bars. In this way, five two-layer films were obtained, and the
resulting films were labeled as follows: PVDF/BNC/Fe3O4, PVDF/BT0/BNC/Fe3O4,
PVDF/BT5/BNC/Fe3O4, PVDF/BT10/BNC/Fe3O4, and PVDF/BT20/BNC/Fe3O4. We
kept the thickness of the films constant. All two-layer samples were (0.22 ± 0.01) mm thick,
while single BNC/Fe3O4 layers were (0.9 ± 0.01) mm thick, and single PVDF/BT layers
had a thickness of (0.13 ± 0.01) mm.

2.3. Characterization Techniques

The particle size distributions (PSA) of non-activated and activated BT samples, pure
PVDF, and PVDF/BT powder mixtures were analyzed using laser diffraction (Mastersizer
2000, Malvern Instruments, Malvern, UK). XRD characterization was performed on a
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Rigaku Ultima IV diffractometer using CuKα1,2 radiation and a D/TeX Ultra high-speed
detector. For BT powder samples and BNC/Fe3O4/PVDF/BT film samples, the range was
10◦ to 90◦ 2θ. The structural parameters (crystallite sizes and strains) were determined
using the RIR method and PDXL2 software with PDF2 Release 2012 database. SEM
(Scanning Electron Microscopy) and EDS (Energy-dispersive X-ray Spectroscopy) analysis
are techniques that are used to investigate the morphology and microstructure of synthetic
films. The samples were coated with gold for 100 s at 30 mA using a Bal-tec SCD 005 Sputter
coater. After preparation, samples were imaged on a JEOL JSM-6390LV device equipped
with software for EDS analysis, Oxford Instruments X-MaxN. Dielectric spectroscopy (DS)
measurements were performed using Hameg 8118 and Agilent 4285A RCL bridges. The
frequency dependence of the relative dielectric constant (ε′) and loss tangent (tan δ) was
recorded in the 20 Hz to 9 MHz frequency range using a sinusoidal excitation voltage of
1.5 V and a parallel capacitive measurement model (Cp). Measurements were conducted at
normal atmospheric pressure, 23 ◦C temperature, and 40% relative humidity.

3. Results and Discussion

Mechanical activation as a process for the reduction in particle size and increase in its
reactivity and surface activity has been widely used [34,35]. During milling, particles are
subjected to intense contact between each other as well as between particles and milling
media and jar walls. That leads to plastic deformations, particle and crystallite size reduc-
tion, and the formation of defective surfaces, which is highly active [36]. Figure 1 illustrates
the logarithmic distribution of particle sizes for the commercial BT and activated powders.
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The particle distribution is expressed by the following derived diameters d(0.1), d(0.5),
and d(0.9) presented in Table 1. The graphs display a bimodal distribution, with two distinct
fractions. The dominant fraction reveals that particles of the commercial barium-titanate
have a diameter of around 1.458 µm. With mechanical activation, the peaks of BT5, BT10,
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and BT20 shift to the left, indicating a decrease in particle size. The median mass diameter
of the volume distribution d(0.5) for BT5 was 1.115 µm, while for samples

Table 1. Tabular representation of particle distribution and sizes as a function of volume fraction for
samples BT0, BT5, BT10, and BT20.

BT0 BT5 BT10 BT20

d(0.1) (µm) 0.644 0.457 0.556 0.485

d(0.5) (µm) 1.458 1.115 1.336 1.244

d(0.9) (µm) 10.710 11.421 11.727 11.718

Span 6.904 9.831 8.361 9.026

BT10 and BT20, these values were 1.336 µm and 1.244 µm, respectively. The second
fraction extends in the range of particle diameters from 10 to 100 µm, and the volume
percentage compared to the first fraction indicates a smaller value. This fraction origi-
nates from agglomerates present in the commercial BT powder. Mechanical activation
for 5–20 min was not sufficient for complete agglomerate destruction but sufficient for
significant reduction in the biggest ones that were approximately 100 µm in size. The span
parameter, which refers to the width of the particle distribution, indicates that with the
activation time of BT, the distribution widens. The value of the span for BT is 6.904, while
for other samples BT5, BT10, and BT20, this value increases (Table 1).

According to the identified crystalline peaks presented on XRD patterns of the BT
powders, Figure 2a, the tetragonal crystal structure of the BT particles was confirmed
for non-activated powder and remains unaltered following the process of mechanical
activation. Due to a rise in structural disorder, the mechanically activated particles display
lower peak intensities of reflections with the diffraction profile broadening. The diffraction
of the BT powder, shown in Figure 2a, also shows that with a longer period of grinding,
there is a significant reduction in the intensity of the strongest reflections (101, 111, and 002)
as well as the widening of these reflections. Due to the grinding process, it is evident that
the crystallite sizes are decreasing, as well as the grains. This decrease in crystallite sizes
and grain sizes is a result of the mechanical activation (Table 2). Additionally, the reduction
in the intensity of the strongest reflections and the widening of these reflections indicates a
reduction in the degree of crystallinity of the obtained material.
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Table 2. Results of crystallite size display and their stress values for powder BT samples.

Sample
Name BT BT5 BT10 BT20

Phase Name
Crystallite Size

(Å)
Strain (%)

Crystallite Size
(Å)

Strain (%)
Crystallite Size

(Å)
Strain (%)

Crystallite Size
(Å)

Strain (%)

Perovskite
BaTiO3

491 (2) 0.000000 219 (9) 0.39 (7) 183 (9) 0.57 (8) 153 (7) 0.64 (5)
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Although this effect is evident in the BaTiO3 diffraction profiles (Figure 2a), it is less
pronounced in the BaTiO3/PVDF (Figure 2b) mixtures spectra. This is because the broad
diffuse response of the PVDF amorphous phase is present, and the BaTiO3 major peaks
(101) overlap with the PVDF α-phase peak at about 32◦ 2θ [14,37].

The XRD patterns of the multilayer films are shown in Figure 2c. The PVDF generally
occurs in various phase modifications depending on chain orientation. The stable one
is the α-phase. It is characterized by the appearance of about 18.5ons at about 18.5 and
20.2◦ 2θ, which is confirmed in diffractograms of all composite films. Further, the char-
acteristic reflections originate from the β-cellulose present. The main characteristic of all
polymer diffractograms is broad picks with low intensity, due to the high percentage of
the amorphous phase and low inter-chain structural order of the polymer. A significant
decrease in intensity was observed after the addition of the highly crystalline commercial
BT. A gradual decrease in the intensity of all observed reflections, with the addition of
mechanically activated BT, was noticed. The highest decrease is obvious for BT reflections,
but it can be seen that reflections of the PVDF also decrease with increasing filler milling
time. Since BT acts as a nucleation centre for PVDF crystallization, an increased number of
the BT particles, due to applied mechanical treatment, as well as increased specific surface
area and overall activity of it, obviously affect the crystallization behavior of PVDF, leading
to the formation of the smaller crystallites [38]. It was shown that submicron-sized particles
retard the movement of the polymer chain and impede the progress of crystallization [39].
The cellulose side of the multilayer film indicates the existence of pure cellulose without
the presence of any secondary phase like lignin. Nominally pure cellulose is impossible to
obtain from plants, but using bacteria for producing pure BNC is an often used method [40].
Further, it should be noticed that modification of the BNC with magnetite did not influ-
ence the phase stability of the original BNC. In the diffractograms of the composite, the
broad, low-intensity peaks of the magnetite were also detected. Such appearance of the
magnetite is due to the small crystallite size, which is a consequence of the controlled
precipitation process.

Based on the obtained microstructural parameters (Table 3), prolonged milling time
leads to a decrease in the crystallite size and an increase in the percentage of microstrain [41].
This is a result of the mechanical activation process caused by grinding, where the ap-
plied stress causes a reduction in the size of the grains and an increase in microstrain
within the material. The decrease in crystal size can be observed by analyzing the powder
diffraction pattern, where the broadening and significant decreases in reflection intensity
were observed.

Table 3. Microstructural parameters of the multi-layered film samples.

Sample Name PVDF/BNC/Fe3O4 PVDF/BT0/BNC/Fe3O4 PVDF/BT5/BNC/Fe3O4 PVDF/BT10/BNC/Fe3O4 PVDF/BT20/BNC/Fe3O4

Phase Name
Crystallite

Size
(Å)

Strai n (%)
Crystallite
Size (Å)

Strain (%)
Crystallite

Size
Å)

Strain (%)
Crystallite

Size
(Å)

Strain (%)
Crystallite

Size
(Å)

Strain (%)

α-PVDF 72 (5) 0.40 (3) 72 (7) 0.50 (4) 36 (3) 0.43 (5) 35 (2) 0.52 (3) 24.7 (4) 0.0000

Magnetite
Fe3O4

85 (3) 0.72 (2) 87 (4) 0.98 (3) 75 (6) 0.12 (4) 63 (4) 0.23 (4) 25.5 (2) 1.23 (6)

Cellulose I-β 77 (9) 0.71 (4) 68 (6) 0.74 (5) 42 (3) 0.73 (6) 41 (6) 0.75 (5)

Perovskite
Ba-TiO3

469 (9) 0.15 (6) 273 (22) 0.49 (5) 174 (39) 0.51 (4) 78 (4) 0.71 (3)

It is important to note that if the grinding process continues for a longer period of
time, it can lead to the complete destruction of the crystal structure and the formation of an
amorphous material [35]. This is because the mechanical stress applied during the grinding
process can cause the crystals to break down into smaller particles, eventually leading to a
loss of long-range order and the formation of an amorphous structure. Thus, it is crucial to
control the duration of the grinding process in order to achieve the desired microstructure
without causing severe damage to the material.
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The micrographs of the composite sample are shown in Figure 3. For each of the
five samples, two images are shown. The first image represents the cross section of the
sample, while the second image shows the corresponding EDS mapping for that sample.
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The BNC sides are characterized by a highly rough surface with a spherical Fe3O4
particle well-distributed overall surface. In contrast, the PVDF sides are much smoother
and more uniform with elongated PVDF chains. The cross-sectional images show a visible
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difference between the layers but also indicate that the film layers are well connected.
From the EDS mapping, it can be seen that Fe is mainly concentrated near the surface
of the cellulose layers, while BT particles are well distributed in the PVDF matrix. Such
occurrences can be connected to the preparation methods. The Fe3O4 was precipitated in
the presence of solid BNC hydrogels in a reacted container. The synthesized particles could
not penetrate deep into the BNC structure regardless of the ultrasound-assisted process.
On the other hand, the PVDF-based layers were prepared by homogenous mixing of the
BT and PVDF powders and afterward applying hot pressing to form this layer from a melt,
which leads to better homogeneity.

By comparing the PVDF film with PVDF/BT films of different BT activation times, the
following observations can be made. The value of the relative dielectric constant for pure
PVDF at lower frequencies is around 10, which is confirmed in the literature [6,42].

The value is quite stable up to 10 kHz, where there is a sudden drop due to a relaxation
process [43]. In Figure 4b, the dipolar relaxation can be observed as a peak or maximum
at around 90 kHz in the loss tangent spectrum. When comparing PVDF sample with
com posites PVDF/BT0, PVDF/BT5, PVDF/BT10, and PVDF/BT20, the following can be
noted. By introducing filler into the PVDF polymer matrix, the peaks of the dielectric loss
tangent are shifted toward higher frequencies, and this is seen as a sudden drop in the
epsilon spectrum compared to ε′ of pure PVDF, which is also confirmed in literature [43]. In
Figure 4a, it can be seen that different activation times of the filler BT, at the same BT mass
fraction of 5% in the PVDF/BT composite, have a different effect on the value of the ε′. For
sample PVDF/BT5, the highest value of ε′ is observed, followed by sample PVDF/BT10,
while sample PVDF/BT20 recorded a slight decrease in value at lower frequencies. As for
sample PVDF/BT0, where BT particles are not activated, the pose ε′ value remains at lower
frequencies, similar to pure PVDF.

To analyze the dielectric properties of the complex system and determine the im-
pact of BNC Fe3O4, we compared PVDF/BT composites with different activation times
to the corresponding bilayer samples of PVDF/BT (5,10,20) + BNC Fe3O4, i.e., sam-
ples PVDF/BT0/BNC/Fe3O, PVDF/BT5/BNC/Fe3O4, PVDF/BT10/BNC/Fe3O4, and
PVDF/BT20/BNC/Fe3O4.

Observing the loss tangent for samples PVDF/BT0 and PVDF/BT0/BNC/Fe3O4, it
can be seen that sample PVDF/BT0/BNC/Fe3O4 has higher tan δ values throughout the
frequency range compared to sample PVDF/BT0, especially at lower frequencies, while
they gradually decrease with increasing frequency. Moreover, regarding ε′, it is seen that
the value for sample PVDF/BT0/BNC/Fe3O4 is significantly higher than the value for
sample PVDF/BT0, especially at lower frequencies. As the frequency increases, these
differences decrease and become similar. It is also noticeable that sample PVDF/BT0 has a
fairly stable value of ε′ up to 100 kHz with a slight decrease in ε′ value.

The next comparative pair is samples PVDF/BT5/BNC/Fe3O4 and PVDF/BT5. Sample
PVDF/BT5/BNC/Fe3O4 has significantly higher loss tangent at low and medium frequencies
compared to sample PVDF/BT5, while at higher frequencies, these loss tangents are very similar.
In the epsilon spectrum, it can be seen that the values for sample PVDF/BT5/BNC/Fe3O4 are high
at low frequencies compared to sample PVDF/BT5, while these differences decrease with increas-
ing frequency. Comparing samples PVDF/BT10/BNC/Fe3O4 and PVDF/BT10 shows a similar
trend as the previous two pairs of samples. Regarding samples PVDF/BT20/BNC/Fe3O4
and PVDF/BT20, we see that the dielectric loss tangents for both samples have similar
values, but at medium frequencies, starting from 1 kHz, the value of the dielectric loss
tangent in sample PVDF/BT20/BNC/Fe3O4 is smaller than in sample PVDF/BT20. With
increasing frequency, the losses in sample PVDF/BT20/BNC/Fe3O4 decrease compared
to sample PVDF/BT20. As for ε′, it can be seen that both samples have stable values at
lower frequencies, with sample PVDF/BT20/BNC/Fe3O4 having an 8% higher value than
sample PVDF/BT20. In addition, sample PVDF/BT20/BNC/Fe3O4 has a more stable value
of ε′ in a wider frequency range up to 100 kHz, while sample PVDF/BT20 experiences a
sharp drop in epsilon value at 10 kHz.
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The samples PVDF/BT0/BNC/Fe3O4, PVDF/BT5/BNC/Fe3O4, and PVDF/BT10/BNC/
Fe3O4 have high loss tangent and an increase in relative dielectric constant in the lower
frequency range, which can be explained by space charge or interface polarization that
occurs due to the accumulation of charges at the interface between two different ma-
terials with different dielectric constant values. In the lower frequency range, sample
PVDF/BT20/BNC/Fe3O4 has a relatively small increase in dielectric constant (about 5%)
and in some sense stabilizes the dielectric constant in the entire measurement range com-
pared to pure PVDF samples. Sample PVDF/BT20/BNC/Fe3O4 also shows a reduction
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in loss tangent compared to samples PVDF/BT0/BNC/Fe3O4, PVDF/BT5/BNC/Fe3O4,
and PVDF/BT10/BNC/Fe3O4. The observed maximum of tan δ (Figure 4b) most prob-
ably originates from dipole orientation polarization which occurs due to the permanent
electric dipole moment of fluorine and hydrogen substituents located on opposite sides of
the polymer chain of PVDF perpendicular to the chain direction, also due to permanent
dipole moment of cellulose (BNC) surface hydroxyl groups. These groups orientate in
the direction of the external alternating electric field. The maximum of tan δ could give
information about relaxation time (frequency at which tan δ has maximum). It can be seen
that the maximum peaks shift toward higher frequencies with increasing activation time.
There is a disturbance in the local electric field at the interface between the polymer and
activated BaTiO3 particles, causing a change in relaxation time or frequency.

Based on the improved dielectric properties of sample PVDF/BT20/BNC/Fe3O4,
it could potentially be applied in various fields such as electronics, energy storage, and
sensing applications. For example, it could be used in the development of high-performance
capacitors, sensors, and transducers. The reduced losses and stable dielectric constant
make it a promising material for use in high-frequency applications.

4. Conclusions

The study aimed to create a versatile multilayer PVDF-based composite for intelligent
packaging. Constituted by PVDF/BaTiO3 and Fe3O4-modified bacterial nanocellulose
(BNC) hydrogels, these layers were merged via hot pressing. Structural, morphologi-
cal, and dielectric properties of the produced multilayer film were investigated. EDS
mapping affirmed uniform BT distribution within the polymer layer, while Fe3O4 par-
ticles concentrate at the cellulose surface. The impact of BT presence and duration of
the mechanical activation on the relative dielectric permittivity of the composites was
assessed. The addition of BT fillers into the PVDF matrix shifts the dipolar relaxation peak
of loss tangent to higher frequencies. Optimal results were achieved in the multilayer com-
posite (PVDF/BT20/BNC/Fe3O4) with extended BT activation time, displaying the best
dielectric performance and loss tangent reduction. Monolayered composite (PVDF/BT20)
found stable relative dielectric permittivity at lower and mid frequencies. Multilayered
PVDF/BT20/BNC/Fe3O4 exhibited an 8% higher value of
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