1st International Conference on Innovative Materials

in Extreme Conditions

PROGRAM

and BOOK OF ABSTRACTS

22-23 March 2022

Belgrade, Serbia

1st International Conference on Innovative Materials in Extreme Conditions

PROGRAM

and

BOOK OF ABSTRACTS

22-23 March 2022

Belgrade, Serbia

Program and Book of Abstracts of The 1st International Conference on Innovative Materials in Extreme Conditions (IMEC2022) publishes abstracts from the field of material science, physics, chemistry, earth, and computation science on the phenomena arising during the processing and/or exploitation of the innovative materials, which are presented at the international conference on innovative materials in extreme conditions.

Editors-in-Chief

Dr. Rer. Nat. Branko Matović Dr. Ivana Cvijović-Alagić Dr. Vesna Maksimović

Publisher

Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)

Printing layout
Dr. Ivana Cvijović-Alagić
Dr. Jelena Erčić
Press
Donat Graf d.o.o., Vučka Milićevića 29, 11306 Grocka, Belgrade, Serbia

ISBN 978-86-7306-158-0

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

66.017/.018(048)

INTERNATIONAL CONFERENCE ON INNOVATIVE MATERIALS IN EXTREME CONDITIONS

(1; 2022; BEOGRAD)

Program and book of abstracts / 1st International Conference on Innovative Materials in Extreme Conditions [i. e.] [(IMEC2022)], 22-23 March 2022 Belgrade, Serbia ; [organizers Serbian Society for Innovative Materials in Extreme Conditions [i. e.] (SIM-EXTREME) ... [et al.]] ; [editors-in-chief Branko Matović, Ivana Cvijović-Alagić, Vesna Maksimović]. - Belgrade : University, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME), 2022 (Belgrade : Donat Graf). - 65 str. : ilustr. ; 30 cm

Str. 3: Preface / editors. - Bibliografija uz pojedine apstrakte.

ISBN 978-86-7306-158-0 (VINS)

а) Наука о материјалима -- Апстракти б)
 Технички материјали -- Апстракти

COBISS.SR-ID 60606985

ORGANIZERS

Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)

Center of Excellence "Center for Synthesis, Processing and Characterization of Materials for Application in Extreme Conditions" (CEXTREME LAB), Vinča Institute of Nuclear Sciences -National Institute of the Republic of Serbia, University of Belgrade

Faculty of Science and Mathematics, University of Niš

Faculty of Mechanical Engineering, University of Belgrade

SPONSORS

Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade

Ministry of Education, Science and Technological Development of the Republic of Serbia

Chair

Chuir	
Prof. Dr. Rer. Nat. Branko Matović	Center of Excellence "CEXTREME LAB", Vinča Institute of
	Nuclear Sciences, University of Belgrade, Serbia

Advisory Board	
Prof. Dr. Rer. Nat. N.V. Ravi Kumar	Indian Institute of Technology Madras, India
Dr. Miladin Radović	Department of Materials Science and Engineering, Texas A&M University, USA
Assoc. Prof. Dr. Claus Rebholz	Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus
Prof. Gordana Bakić	Faculty of Mechanical Engineering, University of Belgrade
Prof. Vladimir Ivanov	Russian Academy of Sciences (RAS), Kurnakov Institute of General and Inorganic Chemistry, Russian Federation
Prof. Pavol Šajgalìk	Institute of Inorganic Chemistry, Slovak Academy of Sciences, Slovak Republic
Prof. Dr. Zoran Popović	Serbian Academy of Science and Art (SASA), Serbia
Prof. Pei-Zhong Feng	School of Materials Science and Engineering, China University of Mining and Technology, PR China
Prof. Lidija Ćurković	Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia
Dr. Vladimir Urbanovich	Centre of Science and Practice of Materials, National Academy of Sciences of Belarus, Belarus

V. Bakul Institute for Superhard Materials, National Academy of Sciences of Ukraine, Ukraine
Metallurgical Research Institute, Politehnica University of Bucharest, Romania
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Slovak Republic
Electric, Electronics and Computer Engineering Department, University of Catania, Italia
Serbian Academy of Science and Art (SASA), Serbia
Center of Excellence "CEXTREME LAB", Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia
Center of Excellence "CEXTREME LAB", Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS, Germany
Center of Excellence "CEXTREME LAB", Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia
Faculty of Science and Mathematics, University of Niš
Faculty of Mechanical Engineering, University of Belgrade

International Scientific Committee

Organizing Committee

Dr. Rer. Nat. Dejan Zagorac	Center of Excellence "CEXTREME LAB", Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia
Dr. Jelena Stašić	Center of Excellence "CEXTREME LAB", Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia
Dr. Tamara Minović Arsić	Center of Excellence "CEXTREME LAB", Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia
Dr. Marija Prekajski Đorđević	Center of Excellence "CEXTREME LAB", Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia
Dr. Maria Čebela	Center of Excellence "CEXTREME LAB", Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia
Dr. Marjan Ranđelović	Faculty of Science and Mathematics, University of Niš
Dr. Filip Veljković	Vinča Institute of Nuclear Sciences, University of Belgrade
Vladimir Pavkov	Center of Excellence "CEXTREME LAB", Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia

Scientific Secretary Dr. Jelena Erčić

Center of Excellence "CEXTREME LAB", Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia

Damage to a tube of output reheater due to gas corrosion

<u>Vladimir Pavkov</u>¹, Gordana Bakić², Vesna Maksimović¹, Miloš Đukić², Bratislav Rajičić², Aleksandar Maslarević³, Branko Matović¹

¹Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia ²Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia ³Innovation center Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia

One of the most responsible elements of modern steam boilers are steam superheaters and reheaters. These heating surfaces are inside the boiler chamber and consist of tubes connected to the inlet and outlet header. Due to the complexity of service conditions, boiler tubes are exposed to processes of gradual degradation, and consequently a decrease in operating performance and reliability.

In the operation of thermal power plants, irreversible metal losses resulting from corrosion can cause tube failure and plant outage. Considering the loss of materials, gas corrosion in the dry gas atmosphere due to the high temperature is of great importance. Gas corrosion can be expressed in the boiler tubing system due to the presence of sulfur compounds in the flue gases. For this reason, it must be borne in mind that the outer surface of a tube of final reheater has different damage mechanisms during operation, and one of them is gas corrosion. Gas corrosion causes material loss and provides a site for crack initiation and propagation, which can compromise the integrity of the pressure vessel.

In this paper, a tube of a final reheater from a 210 MW power plant was tested. The tube was in service 200,000 h at a working temperature of 540 °C and a maximum working pressure of 4.6 MPa. The tube is made of low alloy Cr-Mo-V steel, class 12H1MF (GOST). After long-term service, a rough surface and loss of the material in the form of a crater were observed on the outer surface of the tube as a result of the effect of gas corrosion, together with the change of microstructure due to elevated service temperature. The measured depth of damage to the tube is 120 μ m. The presence of gas corrosion on the tube was confirmed and measured by an optical microscope, Figure 1.

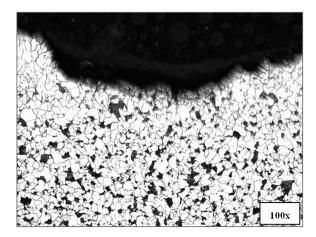


Figure 1. The microstructure of an outer surface of the reheater tube after 200,000 h of service