

COIN2022

CONTEMPORARY BATTERIES AND SUPERCAPACITORS

INTERNATIONAL SYMPOSIUM BELGRADE 2022

> PROGRAM AND BOOK OF ABSTRACTS

June 1-2, 2022, Serbian Academy of Sciences and Arts Belgrade, Serbia

COIN2022

CONTEMPORARY BATTERIES AND SUPERCAPACITORS

INTERNATIONAL SYMPOSIUM BELGRADE 2022

Program and Book of Abstracts

June 1-2, 2022, Serbian Academy of Sciences and Arts Belgrade, Serbia

Book title:	Contemporary Batteries and Supercapacitors - International Symposium Belgrade 2022 - Program and Book of Abstracts
Publisher:	University of Belgrade – Faculty of Physical Chemistry, Belgrade, Serbia
Organizers:	University of Belgrade – Faculty of Physical Chemistry, Belgrade, Serbia
	National Institute of Chemistry, Ljubljana, Slovenia
	University of Montenegro, Faculty of Metallurgy and Technology, Podgorica, Montenegro
	Serbian Academy of Sciences and Arts, Belgrade, Serbia
Editor:	Milica Vujković
Assisted Editor:	Željko Mravik
Technical Editors:	Branislav Milovanović
	Tamara Petrović
Typesetting	
and prepress:	Jana Mišurović,
	Aleksandra Gezović
Cover design:	Marko Perutović
	2dnetwork d.o.o
	Gračanička 2/1 81400 Nikšić
Printing:	Serbian Academy of Sciences and Arts
	Kneza Mihaila 35, 11000 Beograd
	https://www.sanu.ac.rs/
Publication year:	2022
Print-run:	55 copies

СІР - Каталогизација у публикацији - Народна библиотека Србије, Београд

621.35(048)

INTERNATIONAL Symposium Contemporary batteries and supercapacitors (2022; Beograd)

Contemporary batteries and supercapacitors : COIN2022 : program and book of abstracts / International Symposium Belgrade, June 1-2, 2022 ; [editor Milica Vujković]. - Belgrade : University, Faculty of Physical Chemistry, 2022 (Beograd : SASA). - II, 51 str. : ilustr. ; 25 cm

Tiraž 55. - Str. [13]: Preface / Editors. - Bibliografija uz većinu apstrakata.

ISBN 978-86-82139-86-7

а) Батерије - Апстракти

Electrochemical Properties of Active Carbon Materials Obtained from Biowaste

<u>Vladimir Dodevski</u>¹, Milan Kragović¹, Milena Rosić¹, Sanja Krstić¹, Maria Čebela¹, Marija Stojmenović¹ and Jelena Gulicovski¹ ¹Departmant of Materials "VINČA" Institute of Nuclear Science – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia e-mail: yladimir@vinca.rs

Activated carbons were successfully prepared using biowaste as a cheap and renewable raw material. Carbonization was performed on biomass first under nitrogen N₂ atmosphere at 850°C, and then were physical activated at different temperatures and different times of activation in atmosphere of carbon dioxide CO₂. The influence of temperature and time of activation on physical, structural and morphological properties was studied by XRD, Raman spectroscopy, FTIR, BET, SEM analysis. The increase of temperature and activation time leads to the increase of specific surface area of carbon material. The charge storage ability was evaluated and systematically studied by means of Cyclic Voltammetry and Impedance method. The specific discharge capacitance of activate carbon materials in different pH–aqueous electrolytes (KOH, Na₂SO₄ and H₂SO₄), increases with the surface area, indicating that the double layer charging is controlled primarily by the development of surface porosity. The active carbon material with the most developed porosity maintained a high capacitance of 110.06 Fg⁻¹ in KOH, 80.62 Fg⁻¹ in Na₂SO₄ and 126.9 Fg⁻¹ in H₂SO₄, at a very high scan rate of 300 mVs⁻¹. The micro/mesoporosity, depending on the type of aqueous electrolyte, was found to control not only the specific capacitance of materials, but also the hydrogen storage, C–H bonding and the relaxation time of adsorption.