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After the metabolic syndrome and its components, thyroid disorders represent

the most common endocrine disorders, with increasing prevalence in the last

two decades. Thyroid dysfunctions are distinguished by hyperthyroidism,

hypothyroidism, or inflammation (thyroiditis) of the thyroid gland, in addition to

the presence of thyroid nodules that can be benign or malignant. Thyroid cancer

is typically detected via an ultrasound (US)-guided fine-needle aspiration biopsy

(FNAB) and cytological examination of the specimen. This approach has

significant limitations due to the small sample size and inability to characterize

follicular lesions adequately. Due to the rapid advancement of high-throughput

molecular biology techniques, it is now possible to identify new biomarkers for

thyroid neoplasms that can supplement traditional imaging modalities in

postoperative surveillance and aid in the preoperative cytology examination of

indeterminate or follicular lesions. Here, we review current knowledge regarding

biomarkers that have been reliable in detecting thyroid neoplasms, making them

valuable tools for assessing the efficacy of surgical procedures or adjunctive

treatment after surgery. We are particularly interested in providing an up-to-date

and systematic review of emerging biomarkers, such as mRNA and non-coding

RNAs, that can potentially detect thyroid neoplasms in clinical settings. We

discuss evidence for miRNA, lncRNA and circRNA dysregulation in several

thyroid neoplasms and assess their potential for use as diagnostic and

prognostic biomarkers.

KEYWORDS

thyroid disorders, thyroid cancer, biomarkers, mRNA, non-coding RNAs, miRNA,
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1 Introduction

Thyroid cancer is the most common endocrine malignancy and

the ninth most common cancer overall (1). It is classified as

differentiated thyroid cancer (papillary, follicular, or Hürthle cell),

medullary thyroid cancer (MTC), or anaplastic thyroid cancer,

depending on its origin (2–4). Differentiated thyroid cancer (DTC)

originates from follicular thyroid cells and accounts for roughly 90% of

thyroid cancers (2). When adequately treated, DTC has a favourable

prognosis compared to other malignancies, with a 20-year survival

rate approaching 90% (5). Types of thyroid diseases are presented on

Figure 1. According to the 2022 World Health Organization (WHO)

guidelines, the classification of thyroid neoplasms is based on

histopathology and molecular pathogenesis. Some adaptations and

new terminology, especially for malignant thyroid neoplasms, are

implemented to improve their management (6).

Nearly 50 years ago, biomarkers were first utilized to detect and

manage malignant thyroid neoplasia (7, 8). Since then, several

biomarkers have been confirmed as highly reliable in detecting

malignant thyroid disorders and represent valuable tools used in the

postoperative assessment of the effectiveness of surgical and radio-

ablative procedures or chemotherapeutic treatment (9) (Figure 2).

For thyroid cancer diagnosis, ultrasound-guided fine-needle
Frontiers in Endocrinology 02
aspiration biopsy (FNAB) and the cytological examination of the

specimen are combined (10). However, this approach has

limitations due to the small sample size (11) and the inability to

characterize follicular lesions adequately. Sometimes it could be

challenging to differentiate follicular variant of papillary thyroid

carcinoma (FVPTC) or follicular thyroid carcinoma FTC) from

benign thyroid neoplasms with a follicular growth pattern.

Nondiagnostic, indeterminate, or suspicious lesions account for

15%-25% of cases investigated by US-guided FNAB, with 30%

eventually revealing to be malignant (12, 13).

Furthermore, circulating biomarkers like calcitonin (CT), Tg,

and TgAb are routinely used in postoperative monitoring. They

cannot distinguish between benign and malignant neoplasms or

low- and high-risk malignant lesions in the preoperative stage (10).

Therefore, there is an urgent need to identify a molecular biomarker

that can complement traditional imaging modalities in

postoperative surveillance and assist cytology examination in

indeterminate or follicular lesions preoperatively. This article

reviews the present state of thyroid neoplasm biomarkers and

their benefits and limitations. We are particularly interested in

providing a complete update on recently discovered biomarkers

with promising therapeutic uses for diagnosing and managing

thyroid neoplasms.
FIGURE 1

Types of thyroid diseases. Hypothyroidism is a medical condition in which the thyroid gland produces insufficient levels of thyroid hormones, and
hyperthyroidism is a medical condition caused by high levels of thyroid hormones in the blood. Thyroid nodules are small lesions within the thyroid
gland, and goiter is a thyroid gland enlargement that can be diffuse or nodular. Thyroid cancer is the most common endocrine malignancy and the
ninth most common cancer. Depending on the origin, it is classified as differentiated thyroid cancer, medullary thyroid cancer, or anaplastic thyroid
cancer. Some adaptations and new terminology exist in the 2022 WHO classification of thyroid tumors. Thyroiditis is inflammation of the thyroid
gland, associated with normal, high or low levels of thyroid hormones in the blood.
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1.1 Search strategy

We performed a systematic literature search on PubMed and

MEDLINE for English and non-English articles with English

abstracts published between 1990 and 2023. The top search terms

were: thyroid disorders, thyroid neoplasms, thyroid cancer,

biomarkers, mRNA, non-coding RNAs, miRNA, lncRNA,

circRNA, and thyroid therapy. The search retrieved original peer-

reviewed articles, further analyzed, focusing on emerging RNA and

immunological biomarkers that could detect and manage thyroid

neoplasms in the clinical setting. To avoid the exclusion of relevant

studies, we adopted the “related articles” function of PubMed to

identify other potentially relevant literature. We specifically focused

on including the most recent findings published in the past

five years.
2 Detection of messenger RNA
biomarkers in circulating cells

The periodic determination of serum Tg levels in DTC patients

is used to detect recurrent or metastatic disease (14). The method’s

low sensitivity and the interference of TgAbs with the assay limit the

use of Tg as a tumor marker (15). An alternative approach is

monitoring mRNA levels for Tg (TG mRNA) and TSH receptor
Frontiers in Endocrinology 03
(TSH-R mRNA) in circulating thyrocytes. Circulating cells have

been thought to be an indication of malignant potential. The

detection and quantification of mRNAs only found in cancerous

cells is an indirect method of determining the presence of cancerous

cells in the bloodstream. This approach has promising clinical

potential, according to research conducted over the last two

decades (16).
2.1 Thyroglobulin mRNA as a potential
biomarker for thyroid cancer

Tg mRNA detection in blood samples is proposed as a potential

tumor biomarker for the following reasons: i) Malignant tumors

shed cells that can be isolated from the peripheral circulation (13);

ii) Tg mRNA is present in blood samples from DTC patients with

known metastases (17). However, the assumption that Tg mRNA

originates only from circulating thyroid cancer cells or

micrometastases is questioned by experimental evidence showing

that Tg mRNA is also present in benign thyroid neoplasms and

healthy individuals (18, 19). Specifically, Ringel and colleagues (20)

demonstrated that RT-PCR amplified Tg mRNA from blood

samples of 77 patients who had undergone thyroidectomy for

DTC, 68 of whom received levothyroxine (L-T4) for TSH

suppression. For comparison, they show Tg mRNA detected with
FIGURE 2

Overview of Identification of Biomarkers of Thyroid Neoplasms. A conventional approach for detecting and monitoring thyroid neoplasms relies on
fine-needle aspiration biopsy (FNAB) and measurements of traditional biochemical markers, such as TSH, FT4, Tg, TgAb, and TPOAB. Novel RNA-
based markers of thyroid neoplasms are identified by expression profiling of the thyroid gland tissue and/or blood samples of patients using high-
throughput platforms for RNA analysis and identification, such as next-generation sequencing. Other emerging biomarkers of thyroid neoplasms are
identified using flow cytometry, ELISA assays, genetic tests, and immunohistological analyses.
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either thyroid bed or metastatic iodine-avid tissue in 26 of 33

patients (79%) on L-T4 therapy, and serum Tg detected in only 12

of these 33 patients (36%), which strongly argues in favor of

increased sensitivity of Tg mRNA detection. However, Tg mRNA

was detected by RT-PCR in healthy controls, suggesting that other

sources of Tg mRNA may influence the specificity of detection.

These findings indicate that small numbers of thyroid cells are

present in the circulation and are most likely the source of Tg

mRNA detectable using a highly sensitive method like RT-PCR

(18). Other potential sources of Tg mRNA that can interfere with

the specificity of detection have been suggested, such as

lymphocytes (21) and renal cells (22). Also, increasing the

number of amplification cycles can influence RT-PCR specificity,

resulting in a significant increase in false-positive results in healthy

subjects (23).

Several studies have found significant overlap in Tg mRNA

values among various thyroid disorders and, in some cases, healthy

controls (24–26). Illegitimate Tg transcription and splice variants

that appear more common than previously thought were proposed

to compromise the specificity of Tg mRNA detection (23, 27).

Careful selection of primers to amplify Tg mRNA that avoids

contamination with known splice variants may overcome this

problem and significantly increase the assay’s sensitivity and

specificity (28, 29). Other studies have pointed to additional

problems (sample collection methodology, sample storage, RNA

isolation, primer selection, and amplification cycles) discerning Tg

mRNA originating from circulating malignant thyrocytes from

other sources (23). Tg mRNA detection, for example, can occur

in thyroid disorders such as thyroiditis, wherein thyroid tissue is

destroyed. Inadequate evidence supports using Tg mRNA as a

reliable preoperative screening tool. Existing evidence suggests

that Tg mRNA detection may play an essential role in thyroid

cancer surveillance in patients where serum Tg determination is of

limited value due to the presence of TgAb prior to surgery.
2.2 The potential of TSHR mRNA as a
thyroid cancer biomarker

Thyroid-stimulating hormone receptor (TSHR), mRNA has

been studied as a thyroid cancer marker in pre-surgery diagnosis

(30), detecting malignancy in indeterminate FNA results (31),

monitoring thyroid cancer recurrence (28, 30, 31), and predicting

tumor aggressiveness (32). Preoperative TSHR mRNA

measurements yielded results comparable to FNAB specimen

cytology (30, 33, 34). TSHR mRNA had a sensitivity of 76% and

specificity of 96% in detecting malignancy in preoperatively

diagnosed follicular lesions (33). The most important finding of

this study is a transitory increase in TSHR mRNA levels in patients

with goitres whose blood was drawn following FNAB (33). This

result is especially significant because only a few studies

investigating TSHR mRNA detection report when blood samples

are taken, that is, before or after FNAB. For samples collected after

FNAB of lesions suspicious of malignancy, artificially elevated levels
Frontiers in Endocrinology 04
of TSHR mRNA may be observed in patients with a high likelihood

of malignancy (35).

A study analyzing the usefulness of TSHR-mRNA combined

with neck ultrasonography (US) in the management of thyroid

nodules with Bethesda III-V cytology reported sensitivity ranging

from 33%-79%, depending on the classification of the lesions

(Bethesda III-V) (31). Negative TSHR mRNA results combined

with US results can reliably rule out cancer. Furthermore, after total

thyroidectomy, TSHR mRNA levels are significantly reduced (30).

Consistently elevated postoperative levels predict residual disease or

disease recurrence. In patients with persistent disease and increased

TgAb levels, the TSHR mRNA assay showed reasonable

sensitivity (36).

The limitations of this method are the same as those described

in the case of Tg mRNA. Numerous factors influence the sensitivity

and reproducibility of detection, ranging from sample collection to

primer selection. Another issue with using TSHR mRNA to detect

thyroid cancer is that its presence in the bloodstream does not

entirely reflect its expression in thyroid tissue, as the thymus,

pituitary gland, kidney, heart, and retro-orbital tissues also

reportedly express TSHR mRNA (37–39). For instance, in Graves’

ophthalmopathy, increased expression of TSHR in orbital

fibroblasts and adipocytes is a critical step in the disease

pathogenesis (38).
3 Non-coding RNAs as thyroid
disease biomarkers

An increasing body of evidence demonstrates the crucial role of

regulatory non-coding RNAs (ncRNAs) in initiating and

progressing various diseases (20, 40–42). Non-coding RNAs

account for nearly 98% of the human transcriptome and include

a wide range of transcripts with diverse functions. Short ncRNAs

(sncRNAs) and long ncRNAs (lncRNAs) are the two types of

ncRNAs (43–45). Short ncRNAs have less than 200 nucleotides,

including microRNAs (miRNAs), small interfering RNA, and

PIWI-interacting RNAs (46). The short miRNA molecules (20-25

nucleotides) are involved in the post-transcriptional regulation of

gene expression (Figure 3). They mainly interact with the 3′-
untranslated region of the target mRNA, suppressing their

translation through RNA-interference mechanisms. lncRNAs are

ncRNAs longer than 200 nucleotides and represent a group of

diverse molecules that regulate gene expression and cellular

function and play a key role in tumorigenesis and tumor

progression (47–49). lncRNAs serve as a precursor of miRNAs

molecules and they can either directly or indirectly affect miRNAs

via competitive binding, thus influencing gene expression at both

the nuclear and cytoplasmic levels (Figure 4). circRNAs are

covalently closed, circular RNAs formed through alternative back-

splicing of protein-coding exons. Many ncRNAs were expressed

differently in thyroid carcinoma tissues (50–53). Here we briefly

summarize recent findings on ncRNAs relevant to the diagnosis and

prognosis of thyroid neoplasms.
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3.1 Specific microRNA (miRNA) expression
profiles have been linked to malignant
thyroid neoplasms

miRNAs are small, non-coding RNA molecules that regulate

mRNA at the post-transcriptional level in various biological

processes such as proliferation, apoptosis, and cell differentiation

(54). Regulation of miRNA expression is an essential factor in

tumor development and progression. miRNA expression profiles

differ between malignant and healthy tissue (55), individual tumor

subtypes, and primary and metastatic tumors. Tetzlaff and
Frontiers in Endocrinology 05
colleagues (56) found that specific miRNA expression profiles

correlate with genetic mutations commonly found in DTCs.

Unlike circulating mRNA, miRNAs are protected from nucleases

in the bloodstream by binding to proteins or being encased in

exosomes or microvesicles (57), and they can remain intact in

paraffin-fixed tissue samples (58). Also, miRNAs are resistant to

environmental conditions such as room temperature (59) and easily

detectable in blood samples, suggesting they could work well as

circulating biomarkers (60). In contrast to mRNA, miRNAs are

thought to be markers of pathological processes rather than direct

products of tumor cells.
FIGURE 3

Mechanism of action of miRNAs. miRNAs are transcribed from DNA sequences into primary miRNAs (pri-miRNAs), which undergo endolytic
processes to produce mature miRNAs. Pri-miRNAs are transcribed in the nucleus by RNA polymerase II and cut to approximately 70 nucleotide-long
pre-miRNA molecules that are exported to the cytoplasm by the endoribonuclease DROSHA or by components of the splicing machinery. Mature
miRNA duplexes are produced after further processing by the type III endoribonuclease DICER, which is associated with RNA-binding proteins. The
mature miRNA guide strand joins with proteins to form the silencing complex, which binds to complementary sequences on target mRNA.
Depending on the level of complementarity between miRNA and target mRNAs, two outcomes are possible: target mRNA slicing or translational
inhibition, with subsequent target mRNA decay.
FIGURE 4

Mechanisms of action of lncRNAs. lncRNAs can regulate gene expression by (A) serving as precursors of miRNAs to affect the regulation of miRNAs
directly; (B) acting as a sponge of miRNAs and inhibiting the degradation of mRNAs targeted by miRNAs; (C) lncRNAs can also function as scaffolds
to form ribonucleoprotein (RNP) complexes; (D) lncRNA can inhibit the binding of a transcriptional regulatory factor, by directly interacting with
them and acting as a “decoy”, which abolishes their action.
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Several studies aim to identify and analyze miRNA signatures

distinguishing benign from malignant thyroid neoplasms which

clinicians could use in postoperative monitoring (56, 61–67).

Combining sequencing and quantitative RT-PCR revealed

overexpressed miR-151-5p and miR-222 levels in PTC patients’

serum and tissue samples compared to goiter patients and healthy

controls (61). The level of both miRNAs decreased after

thyroidectomy to levels found in healthy individuals. Subsequent

studies have identified other circulating miRNAs associated with

PTC, such as miRNA-146b, miRNA-579, miRNA-95, miR-29b,

miRNA-190, miR-25-3p and miR-451a (62, 63, 66) (Table 1). miR-

146b is one of the most overexpressed miRNAs in PTC, and its

expression positively correlates with the presence of a malignant

thyroid neoplasm, making this miRNA a potential biomarker (71,

72). miR-146b-5p regulates cell proliferation and invasion and is

up-regulated during the epithelial-mesenchymal transition, thus

playing a role in PTC progression (96). Its importance as a

possible biomarker is shown in multiple studies’ findings showing

that several miRNA panels, including miR-146b, can accurately

differentiate between malignant and benign lesions in FNAB

specimens (97–100). Furthermore, circulating miR-146b levels

have been indicated as a reliable and valuable serological marker

for distinguishing between PTC and benign lesions (62, 101).

Detection of miR-146b expression in various thyroid nodules by

in situ hybridization analysis in formalin-fixed paraffin-embedded

specimens (102) has demonstrated a remarkable diagnostic value in

distinguishing PTC from poorly differentiated thyroid carcinoma,

follicular adenomas, FTC, or anaplastic thyroid carcinoma (102).

Higher miR-146b-5p and miR-21 levels were associated with

considerably lower PTC patient survival rates. MiR-146b-5p has

been recommended as a diagnostic and prognostic marker for PTC

due to its high expression in PTC but not in other tissues

investigated (102). In addition, a study of thyroid cancer samples

from The Cancer Genome Atlas (TCGA) revealed that miR-146b-

5p-mediated regulation of the interleukin-1 receptor-associated

kinase 1 gene (IRAK1) distinguishes the conventional PTC form

(103). This finding is supported by a recent study reporting the

involvement of NF-kB/IL6/STAT3 signaling cascade in controlling

miR-146b-5p synthesis, whose increased levels downregulate the

expression of pro-inflammatory mediators such as IRAK1 (104). It

should also be noted that miR-146b deregulation was associated

with aggressive tumor behavior in BRAF-positive clinical PTC

specimens (105) and that patients with BRAF mutations exhibited

increased miR-146b expression in comparison to BRAF wild-type

controls (106).

miR-221 and miR-222, which share the same seed sequence, are

also interesting, as they have altered expression in thyroid cancer

based on several independent studies (68, 69) (see Table 1). The

target of miR-221 and miR-222 in thyroid cancer is the mRNA of

tumor suppressor and cell cycle regulator p27 (also known as

CDKN1B) (70). Also, some downregulated miRNAs, directly or

indirectly, regulate the proliferation and progression of thyroid

cancer. For instance, a study of the miRNA expression profile in

PTC showed that the expression of miR-137 was downregulated

(73). miR-137 targets the mRNA of CXCL12, a chemokine up-

regulated in PTC and associated with thyroid cancer cell
Frontiers in Endocrinology 06
proliferation, migration, and invasion (73, 74). The binding of

CXCL12 to its receptor CXCR4 activates oncogenic pathways

such as MAPK, ERK1, and ERK2 (107). These findings suggest

that miR-137 functions as a tumor suppressor in PTC and support

previous findings that the CXCL12/CXCR4 axis is a potential target

for cancer treatment (73, 108) (Table 1).

miR-375 is significantly overexpressed in MTC compared to

normal thyroid tissues, and there is a strong relationship between

miR-375 tissue expression, tumor aggressiveness, and patient

outcomes, implying a critical involvement in MTC pathogenesis

(109, 110). Circulating miR-375 levels have been considered a

promising prognostic marker for advanced MTC (111). A recent

study reinforced the findings that serum miR-375 could be a

diagnostic and prognostic marker of MTC, distinguishing

between MTC patients and controls with a 92.6% sensitivity and

a 97.6% specificity (112).

A 2022 study by Nieto and colleagues uses combinatorial

mRNA and miRNA expression as prognostic indicators of

thyroid cancer recurrence (75). They developed a risk score

model based on detailed bioinformatics and experimental mRNA,

miRNA, and somatic mutation analysis in recurrent tumors. They

used total RNA sequencing data from 501 thyroid cancer samples,

including 455 non-recurrent and 46 recurrent tumor specimens,

retrieved from The Cancer Genome Atlas (TCGA). They conducted

functional gene analyses in cell-based assays in multiple thyroid cell

lines and assessed the prognostic value of the genes using the TCGA

datasets (75). This study identified 40 mRNAs, 39 miRNAs, and 59

genetic variants as potential biomarkers of thyroid cancer

recurrence. In particular, miR-486 and miR-1179 exhibited

significant effects on inhibiting thyroid cancer cell migration in

vitro, whereas deletion of miR-486 and miR-1179 increased in vitro

cellular migration (75–77).

It is important to note that miRNA-based tests for classifying

indeterminate thyroid nodules are already finding application in the

clinical routine. The currently marketed panels combine tumor

genotyping with gene and/or targeted miRNA expression profiling.

To refine the risk stratification of cytologically indeterminate

nodules, Interpace Diagnostics combines a genotyping panel

(ThyGeNEXT) with a miRNA expression classifier optimized to

have a high negative predictive value for thyroid cancer (113). For

patients in Bethesda III or IV categories, tests can be performed on

cells directly collected by FNAB or from smear slides prepared for

cytologic evaluation (114). Samples are first evaluated by

ThyGeNEXT, which represents a targeted DNA and RNA next-

generation sequencing panel that includes gene fusions and hotspot

mutations in several genes (115). A ThyraMIR panel, which uses

quantitative RT-PCR to quantify the relative expression levels of 10

miRNAs, is used for further risk stratification. Thyroid nodules

negative for ThyGeNEXT and ThyraMIR are considered low risk

for non-invasive follicular thyroid neoplasm with papillary-like

nuclear features (NIFTP)/cancer. MTC is recognized by the

upregulation of specific miRNAs, such as miR-375, in the

ThyraMIR panel (116). Concerning cancer probability, the results

of both tests can be stratified into negative, moderate and positive,

and may aid clinicians in deciding upon further clinical

surveillance, lobectomy or thyroidectomy, respectively (113).
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Also, other miRNA gene expression classifiers have been developed

to improve diagnostics of Bethesda III and IV categories, such as

Rosetta GX Reveal (117) and the Brazilian mir-THYpe (118), but

they require further extensive multicenter studies to confirm their

performance (119).
3.2 Long non-coding RNAs as potential
biomarkers for thyroid cancer

Long non-coding RNAs (lncRNAs) are non-coding RNAs with

a length of more than 200 nucleotides that have been shown to
Frontiers in Endocrinology 07
mediate epigenetically controlled cancer progression mechanisms

(120–122). lncRNAs regulate the expression of genes, including

oncogenes or tumour-suppressive genes, either by binding directly

to the target gene or by recruiting transcriptional regulators that

promote chromatin modifications or DNA methylation (123, 124).

lncRNAs can directly interact with proteins, such as transcription

factors, DNA methyltransferases (DNMTs), RNA binding protein,

and heterogeneous nuclear ribonucleoprotein (hnRNP) (120, 125,

126), to regulate their function in cancer progression (127).

lncRNAs can also act by making complexes with miRNA, mRNA,

or proteins to control the functions of the target protein in the

cytoplasm (128). In addition, a recent discovery unveiled a new
TABLE 1 Potential non-coding RNA biomarkers of malignant thyroid neoplasms.

Name Target Function References

miRNAs

miR-222 p27 (CDKN1B) Cell cycle regulation, proliferation, and migration (68–70)

miR-146b SMAD4, IRAK1, NFkb, EGFR Cell cycle, proliferation, migration, and invasion of PTC cells (71, 72)

miR-25-3-p SOCS4 Metastasis and invasion of tumor PTC/FTC cells (66)

miR-221 p27 (CDKN1B) Tumor suppressor; cell cycle regulator (68–70, 168, 169)

miR-137 CXCL12 Thyroid cancer cell proliferation, migration, and invasion (73, 74)

miR-486 KIAA1199 (CEMIP); Fibrillin-1 Invasion and metastatic potential of PTC cells (75, 76)

miR-1179 HMGB1 Migration of PTC cells (75, 77)

lncRNAs

HOTAIR miR-488-5p PTC-associated lymph node metastasis (78, 79)

TNRC6C-AS1 miR-513c-5p Apoptosis of thyroid cancer cells (80)

AB074169 KHSRP Tumour cell proliferation (81)

ZFAS1 miR-590-3p Inhibition of apoptosis and stimulation of proliferation of PTC cells (82)

AFAP1-AS1 miR-155-5p ATC progression (83)

TUG1 miR-145 Thyroid cancer cell proliferation (84)

UNC5B-AS1 – Proliferation, migration and invasion of PTC cells (85)

LOC100129940-N Wnt/b-catenin Invasion and progression of PTC (86)

LINC00313 miR-4429 Proliferation and migration of PTC cells (87, 170)

HOXA-AS2 miR-520c-3p PTC cell migration and invasion (88)

MALAT1 miR-200-3p Cell proliferation, apoptosis, migration, invasion, and autophagy formation in ATC (89)

BANCR TSHR Development of malignant thyroid nodules (90, 91)

circRNAs

hsa-circ-u0058124 miR-218–5p PTC proliferation and metastasis (92)

circ-ITCH miR-22-3p Initiation and progression of PTC (93)

circ-NEK6 miR-370-3p Thyroid cancer progression (94)

circ-BACH2 miR-139-5p Cell proliferation, migration and invasion (95)
PTC, Papillary thyroid cancer; ATC, Anaplastic thyroid cancer; CDKN1B, Cyclin Dependent Kinase Inhibitor 1B; SMAD4, SMAD Family Member 4, IRAK1, Interleukin 1 Receptor-Associated
Kinase 1, NFkb, Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells, EGFR, Epidermal Growth Factor Receptor; SOCS4, Suppressor Of Cytokine Signaling 4;CXCL12, C-X-C
Motif Chemokine Ligand 12; CEMIP, Cell Migration Inducing Protein; HMGB1, High Mobility Group Box 1;HOTAIR, HOX Transcript Antisense RNA; KHSRP, KH-Type Splicing Regulatory
Protein; ZFAS1, ZNFX1 Antisense RNA 1; AFAP1, AS1-Actin Filamentin-1 Antisense RNA; TUG1, Long non-coding RNA Taurine-Upregulated Gene 1; UNC5B, AS1- UNC5B Antisense RNA
1; LINC00313, Long Intergenic Non-Protein Coding RNA 313; HOXA, AS2- HOXA Cluster Antisense RNA 2; MALAT1, Metastasis Associated Lung Adenocarcinoma Transcript 1; BANCR,
BRAF-Activated Non-protein Coding RNA; TSHR, Thyroid Stimulating Hormone Receptor; circ-ITCH, Circular RNA Itchy E3 Ubiquitin Protein Ligase; circ-NEK6, CircularRNA NEK6
(NIMA Related Kinase 6); circ-BACH2, Circular RNA BACH2 (BTB Domain And CNC Homolog 2).
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regulatory mechanism involving lncRNAs, in which lncRNAs

function as a competitive endogenous RNA (ceRNA) by

competing with other transcripts for shared miRNAs (129). In

the ceRNA network, lncRNAs can act as miRNA sponges,

increasing the expression of downstream mRNA.

Several studies have determined the expression of lncRNA

alteration during PTC tumorigenesis (130). For instance, the

lncRNA HOTAIR (HOx Transcript Antisense RNA), which

regulates the miR-488-5p/NUP205 axis, was overexpressed in the

serum of PTC patients with lymph node metastasis (78, 79).

Therefore, determining lncRNA-HOTAIR in PTC patients’ tissue

samples has been recommended as a biomarker for PTC prognosis

(131) (Table 1). Microarray analysis identified several differentially

expressed lncRNAs related to thyroid cancer, such as TNRC6C-

AS1, that can cause DNA demethylation via the Hippo signaling

pathway, promoting apoptosis of thyroid cancer cells (80, 132).

AB074169, which has a role in cell proliferation, was significantly

down-regulated in PTC, suggesting that this lncRNA may have an

anticancer role in PTC (81). In another study, Tong and colleagues

demonstrated that the increased expression of lncRNA ZFAS1

contributed to the progression of PTC by inhibiting apoptosis

and stimulating the proliferation of PTC cells (82). Subsequent

research has identified several other lncRNAs whose altered

expression is involved in thyroid cancer cell metastasis and

invasion, including AFAP1-AS1 (83), TUG1 (84), UNC5B-AS1

(85), LOC100129940-N (86), LINC00313 (87), and HOXA-AS2

(88). The lncRNAs MALAT1, HOTAIR, and BANCR are

significant factors in the initiation and progression of thyroid

cancer and are proposed as biomarkers for early detection and

diagnosis (89–91, 133) (Table 1).

Even though the expression profile of lncRNAs in thyroid

cancer has yet to be fully characterized and validated, more and

more studies suggest lncRNAs as promising novel thyroid cancer

biomarkers. However, further research and clinical validation are

required to confirm its role in thyroid cancer progression.
3.3 Circular RNAs

circRNAs with one or more miRNA-binding sites can act as

RNA sponges, binding miRNAs and regulating the expression of

miRNA-repressed downstream target genes (Figure 5) (134).

Recently, several novel regulatory networks containing circRNAs

that may serve as potential PTC biomarkers were discovered. For

example, Yao and colleagues show that hsa-circ-u0058124 (Homo

sapiens circRNA u0058124) promotes PTC cell proliferation,

tumorigenicity, and metastasis and is associated with poor

prognosis in PTC patients (92) (Table 1). has-circ-u0058124

regulates the expression of miR-218–5p target gene NUMB and

inhibits the NOTCH3-GATAD2A signaling axis in vitro and in vivo

(92). The hsa-circ-0058124/NOTCH3/GATAD2A axis is critical for

PTC tumorigenesis and invasiveness. This study identifies a novel

potential biomarker panel that may represent a target for

therapeutic intervention in PTC progression (92). Another study

by Wang and colleagues shows that the expression of circRNAs is
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lower in PTC tissues than in normal adjacent tissues and that the

circ-ITCH/miR-22-3p/CBL/b-catenin pathway is involved in the

initiation and progression of PTC (93). Chen and colleagues also

show that circ-NEK6 targets miR-370-3p and promotes thyroid

cancer progression by activating the Wnt signaling pathway (94)

(Table 1). Cai and colleagues also show that repression of circ-

BACH2 expression in PTC cells reduces cell proliferation,

migration, and invasion, implying that circ-BACH2 is a novel

oncogenic RNA that can serve as a PTC marker (95). In addition

to these studies, a study published in 2021 used RNA deep

sequencing to determine the expression patterns of circRNAs in

PTC and identified several other circRNAs as promising and

effective PTC biomarkers (135).
3.4 Clinical limitations of mRNAs and
non-coding RNAs as thyroid
neoplasm biomarkers

Although substantial research focused on examining circulating

mRNA as potential diagnostic biomarkers of thyroid neoplasms, Tg

and TSHR mRNA have not been widely accepted as accurate and

valid biomarkers of thyroid neoplasms. There is insufficient

evidence that Tg mRNA determination can be used as a

preoperative screening tool, even though some reports suggest

that the results may be comparable to serum Tg measurements,

especially in TgAb-positive patients. Conflicting results in the

literature may be due to methodological differences such as

sample handling, mRNA isolation, primer design and number of

amplification cycles. In addition, illegitimate Tg and TSH mRNA

transcription may confound results. For instance, cell shedding

resulting in Tg mRNA detection may occur in benign thyroid

disorders such as thyroiditis, where destruction of thyroid tissue

occurs. In the case of TSH mRNA, its detection may reflect extra-

thyroidal mRNA expression since TSHR mRNA expression has

been documented in multiple organs, such as the thymus, pituitary,

retro-orbital tissues, heart and kidney.

Non-coding RNAs have gained momentum as a novel research

target, with several promising miRNA, lncRNA and circRNA

candidates identified and studied as potential diagnostic

biomarkers of thyroid neoplasms. In particular, exciting progress

has been achieved with the clinical application of commercially

available miRNA-based panels, such as ThyraMIR (developed by

Interpace Diagnostics). Also, evidence suggests several novel

lncRNAs and circRNAs as potential diagnostic biomarkers of

thyroid disease. However, further large-scale studies are necessary

to validate promising experimental findings and examine the

potential for their translation into the clinical setting.
4 Additional emerging biomarkers of
thyroid neoplasms

Tumour cell load determination, immunological markers,

circulating levels of BRAF V600E, and galectin were the most
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promising biomarkers for thyroid neoplasms diagnosis. Tumour

load is determined using flow cytometry, which counts the

number of circulating tumor cells in patients with metastatic

medullary thyroid cancer (136). This method assumes that

aggressive tumors shed more cells in the circulation, making

circulating tumor cell enumeration a reasonable approach for

assessing metastatic potential. In this regard, Xu and colleagues

reported that higher tumor cell count signifies poorer outcomes

in patients with metastatic medullary cancer (137). However,

they found no statistically significant differences between patients

with metastatic DTC and surgically treated controls with no

evidence of disease recurrence (137). Angell and colleagues

(138) also proposed measuring circulating levels of myeloid-

derived suppressor cells to indicate DTC risk and extent

because mean levels of these cells were higher in patients with

DTC than those with benign TN and increased with the TN

malignancy stage. The flow cytometry-based techniques are well-

suited for postoperative monitoring after total thyroidectomy,

where detecting a significant number of circulating cells could

suggest the presence of residual disease or its recurrence. Studies

in larger cohorts of patients are required to validate the

correlation between a load of circulating tumor cells and their

malignant potential and establish the quantitative cut-off values

for the detection of circulating cells in the diagnosis and

surveillance of DTC.

Thyroid neoplasms have been studied using circulating

immunological biomarkers as potential biomarkers. Multiplex

ELISA immunoassays have been used to assess interleukins as

potential biomarkers that distinguish between individuals with
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thyroid neoplasms and healthy individuals (139). Compared to

healthy controls, patients with benign and malignant TN had

significantly higher levels of several interleukins (IL-6, IL-7, IL-10,

and IL-13) and considerably lower levels of IL-8. A two-marker

panel combining IL-13 and IL-8 showed high accuracy in screening

for thyroid neoplasms (139). Also, multiplex ELISA immunoassay

revealed an association between DTC recurrence and levels of

soluble FAS ligand involved in the induction of apoptosis (140)

and interferon a (141). This finding suggests a potential role of

soluble FAS ligands in DTC surveillance. Recently, Lu and

colleagues also used the flow cytometry approach to monitor the

expression of T cell subsets and plasma cytokines in a cohort of 191

patients, including 79 patients with PTC and 58 with TNs. The

study reported high activities of CD8+HLA-DR+and CD8+CD38+,

together with increased levels of TNF-a in the PTC group

compared to healthy controls. They proposed using a

combination of immunological biomarkers such as CD8+HLA-

DR+, CD8+CD38+, and TNF-a as valuable biomarkers for the early

detection of PTC (142).

Another potential biomarker of thyroid neoplasms is BRAF

V600. BRAF (the B-isoform of Raf kinase) oncogene is serine–

threonine kinase and activator of the MAPK signaling cascade.

Most mutations were discovered in exon 15, where a valine to

glutamic acid substitution at residue 600 results (V600E) from a T-

to-A transversion at nucleotide 1799. This mutation leads to

constitutive activation of BRAF kinase and chronic stimulation of

the MAPK pathway and is tumorigenic (143). Most PTC contain

mutations in the BRAF gene, seen in 30% to 77% of these

carcinomas in different ethnicities (144). The BRAF V600E
FIGURE 5

Mechanisms of actions of circRNA. circRNA can regulate gene expression by (A) acting as miRNA sponges; (B) interacting with various cellular
proteins; (C) interfering with protein translation; (D) modulating protein-protein interactions; and (E) modifying the transcription of genes.
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mutation accounts for 99% (145), while other variants (like K601E)

are present in 1%–2% of thyroid malignancies (146). BRAF somatic

mutations have been reported in many human cancers, with the

highest frequency in melanoma and thyroid cancer (147, 148).

According to histological subtype analysis, it was discovered

that circulating BRAF V600E is more common in conventional PTC

(72%) than the follicular variant (54%) (149). BRAF V600E somatic

mutation evaluation in FNAB specimens is a powerful diagnostic

tool for PTC. It was suggested that measuring BRAF V600E levels in

the blood might be used instead of invasive procedures like biopsy

or FNAB (150). BRAF V600E is one of the most represented

somatic mutations in PTC; it is an appropriate marker for this

disease (146).

The prognostic significance of the BRAF V600E mutation was

investigated on 102 PTC patients who were diagnosed between

1985 and 1992. The authors analyzed the presence of the BRAF

V600E mutation and correlated the presence of the mutation with

the outcome and other clinicopathological features of PTC patients.

The survival trend of PTC patients was analyzed according to the

presence or absence of BRAF V600E mutation in tumor tissue. This

15-yr follow-up study showed that BRAF V600E-positive PTC

patients have worse outcomes in terms of persistent disease and a

lower survival rate (151). Nevertheless, multivariate analysis

revealed that BRAF V600E mutation is a poor prognostic factor

independent from other prognostic features (age, tumor size,

vascular invasion).

In a large multicenter study, Tao et al. investigated the impact of

lymph node metastasis (LNM) on PTC mortality with BRAF gene

status in 2638 persons. Conventional PTC (CPTC) is the most

common histological type, accounting for 70-75% of all PTC (152).

The authors investigated the relationship between LNM and BRAF

mutations in PTC patients. The probability of mortality in PTC

patients with LNM has been shown to be closely associated with

BRAF status. This is particularly evident in CPTC, where LNM had

no effect on mortality in individuals with wild-type BRAF but

significantly increased mortality in those with BRAF gene

mutation (153). These findings contradict the long-held belief

that LNM increases mortality in all PTC patients. Mortality is

associated with the BRAF V600E mutation.

In a study by Damiani et al. (154), the prognostic potential of

BRAF V600 was evaluated in a prospective study where 160 PTC

patients were enrolled and were submitted to total thyroidectomy

with a 2-10 years follow-up. According to the study’s findings,

neither in patients who underwent radioiodine ablation treatment

(RAI) nor in those who received more conventional care illness

persistence did not correspond with the somatic BRAF V600E

mutation. According to the findings of this study, BRAF V600E

cannot be used as an independent predictive tool.

In 2012, the study was performed on 107 PTC patients in the

Korean population. BRAF V600E mutation was present in 79% of

the patients included in the study. The authors showed that in the

population of Korean patients, BRAF V600 mutation does not

correlate with prognostic factors such as extrathyroidal

extensions, multifocality, tumor size, gender, age and lymph node
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metastases. This study concludes that in the Korean population of

PTC patients, BRAF V600E does not indicate the aggressiveness of

the tumor and that it has no prognostic value (155).

Because of inconsistent results in published articles, the

relevance of BRAF V600E as a prognostic biomarker is

controversial, and the analysis of BRAF mutation as a single,

independent prediction factor cannot be employed in clinical

practice (156).

Galectin family proteins, such as galectin-1 and galectin-3, have

been considered for a long time as reliable histological markers of

thyroid neoplasms since their mRNA expression levels are

significantly altered in PTC (157). Proteomic profiling has also

suggested galectin-1 as a potential thyroid cancer biomarker (158).

In a recent study, Fanfone and colleagues aimed to develop imaging

probes for non-invasive diagnosis of thyroid cancer. They identified

the peptide (P7) that explicitly targeted galectin-1 by phage display

and coupled it to imaging probes, such as near-infrared dye (CF770)

or ultra-small superparamagnetic particles of iron oxide (USPIO),

for non-invasive detection of galectin-1 expression in PTC by

fluorescence or magnetic resonance imaging. The peptide-

functionalized imaging probe showed an exceptional specificity

(100%) and a high sensitivity (75%) of PTC detection, confirming

the ability of this peptide to discriminate between malignant and

benign TNs (159). Galectin-3, a carbohydrate-binding protein

involved in tumor progression and metastasis (160), has also been

investigated as a PTC tissue marker due to its specificity in the

differential diagnosis of thyroid cancer (161, 162). Recently, the

diagnostic utility of galectin-1 and galectin-3, alone or in

combination with TPO, HBME-1 (Hector Battifora Mesothelial-

1), and CK19 (cytokeratin 19), in benign and malignant TNs, was

investigated to determine the utility of each marker or their

combination for the accurate and reliable preoperative diagnosis

of thyroid cancer (163). HBME1 is a monoclonal antibody that acts

on the microvillous surface of mesothelial cells and is expressed

explicitly in thyroid cancers but not benign lesions (164, 165). CK19

is an immunohistochemical stain expressed strongly in thyroid

cancers (165, 166). According to the findings reported by Arcolia

and colleagues, the combination of galectin-3 with CK19 and

HBME1 is the most informative marker panel for the diagnosis of

PTCs, with high specificity (97%) and sensitivity (95%) (163).

Finally, it should be noted that conventional diagnostic

methods are not only limited to distinguishing between benign

and malignant thyroid neoplasms but also distinguishes between

different benign thyroid disorders. Hence, there is a need to identify

novel biomarkers that discriminate between benign conditions with

similar clinical presentations, such as destructive thyroiditis, which

leads to thyrotoxicosis, and Graves’ disease. In a recent cross-

s e c t i ona l s tudy , Fu j i t a and co l l e ague s used l iqu id

chromatography-tandem mass spectrometry to measure serum

diiodotyrosine (DIT) and monoiodotyrosine (MIT) levels to

identify such biomarkers (167). They found serum DIT and MIT

levels were significantly higher in destructive thyroiditis patients

than in Graves’ disease patients, and serum DIT levels had high

diagnostic accuracy (sensitivity, 84.6%; specificity, 77.3%; P =
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0.001), implying that serum DIT levels may serve as a novel

diagnostic biomarker for differentiating destructive thyroiditis

from Graves’ disease (167).
5 Prospects and challenges for the
clinical application of novel thyroid
neoplasms biomarkers in the future

Next-generation sequencing (NGS) has become an

irreplaceable, highly efficient, and accurate diagnostic tool that

has revolutionized the diagnosis and management of thyroid

cancer, allowing for the development of future personalized

treatments. We are seeing exciting progress in discovering and

validating novel biomarkers for thyroid neoplasms, with an ever-

expanding list of biomarkers to establish the diagnosis, guide

targeted therapy, predict clinical outcomes, and tumor response

to therapy. Non-coding RNAs such as microRNAs, lncRNAs, and

circRNAs appear to be the most promising markers. In addition,

novel immunohistochemical (IHC) marker panels that are

available, easy to use in the clinical setting, and cost-effective are

also of particular interest. Immunotherapeutic approaches to

thyroid cancer treatment are still being investigated, and future

advances in this research field will complement the ongoing

validation of novel biomarkers to ensure their appropriate

application in clinical practice.
6 Conclusions

Due to the rapid advancement of high-throughput molecular

biology techniques, it is now possible to identify novel

biomarkers for thyroid neoplasms that can supplement or

replace existing biomarkers. Current circulating biomarkers,

such as Tg or TgAb, are routinely used in postoperative

monitoring; however, at the preoperative stage, they cannot

distinguish between benign and malignant neoplasms or

between low- and high-risk malignant lesions. Several new

targets are emerging as potentially useful prognostic circulating

biomarkers for thyroid cancers. Evidence for miRNA, lncRNA

and circRNA dysregulation in several thyroid neoplasms and

their potential use as sensitive diagnostic and prognostic

biomarkers is particularly interesting. However, the data

currently available in the literature is derived from small-scale

clinical studies in specific patient cohorts. Thus, further

validation is required to demonstrate their potential for clinical

application. Large-scale studies are needed to confirm and

validate novel biomarkers in the diagnosis, prognosis, and

surveillance of thyroid neoplasms, such as miRNAs, lncRNAs,

and circRNAs.
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