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Abstract: This paper highlights the potential of Sargassum algae, recovered from raw beach seaweed
wastes, as a valid source of valuable sodium alginate. Alginate is a biodegradable, highly attractive
polysaccharide widely used in food, pharmaceuticals, and biomedicine applications. The aim of
this work is to employ a new eco-sustainable and cost-effective extractive method to obtain alginate
as a raw material from pollutant organic Sargassum seaweeds. Algae were exposed to microwave
pre-treatment under static and dynamic conditions, and three different extractive protocols were
followed: (a) conventional, (b) hot water and (c) alkaline method. All samples were characterized by
GPC, SEM, FTIR/ATR and TGA. It was found that alginate’s best performances were obtained by the
microwave dynamic pre-treatment method followed by alkaline extractive protocol. Nevertheless, the
microwave pre-treatment of algae allowed the easiest breaking of their cell walls and the following
fast releasing of sodium alginate. The authors demonstrated that microwave-enhanced extraction is
an effective way to obtain sodium alginate from Sargassum-stranded seaweed waste materials in a
cost-effective and eco-sustainable approach. They also assessed their applications as mulching films
for agricultural applications.

Keywords: alginate; microwave-assisted extraction; Sargassum algae

1. Introduction

Sargassum algae are brown free-floating seaweed belonging to the Phaeophycean family.
They can be found worldwide in maritime temperate and tropical regions, providing refuge,
shelter, and food for many animal species, such as sea turtles and shrimps. In recent years,
their wide diffusion ashore has gone out of control, even to the point of forming dense
clumps of slowly beach-fouling rotting weeds, yielding toxic solid waste alongside urban
beaches. In the United States, beach fouling has become a major problem in some urban
areas, particularly along the Gulf Coast. Recently, the territory of the Virgin Islands declared
a state of emergency due to an unprecedented bloom of seaweed along its coast, which
caused widespread beach-fouling and posed a serious risk to public health [1]. Indeed,
when developing as harmful algae blooms, this phenomenon can cause serious problems
to coastal traffic of boats and swimmers up to fish survival, since they strongly deplete
water oxygen, light and space on the sea floor [2,3]. Nevertheless, these harmful brown
seaweeds represent a valid source of alginate, a well-known and exploited biopolymer,
which plays a key role as a structural component of the plant seaweeds. Actually, alginates
are designed to be the seaweed’s main skeletal compound since their hydrogels, located

Polymers 2023, 15, 2979. https://doi.org/10.3390/polym15142979 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15142979
https://doi.org/10.3390/polym15142979
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-7971-7589
https://orcid.org/0000-0002-3370-195X
https://doi.org/10.3390/polym15142979
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15142979?type=check_update&version=1


Polymers 2023, 15, 2979 2 of 15

in the intercellular walls of the algae, are responsible for the mechanical strength and
flexibility required to withstand the force of the water in which the seaweeds grow. In
addition, they play a healthy role in protecting seaweeds against environmental stressors
and sea pathogens [4,5].

In the cell tissue, alginates are mainly found as insoluble gels of mixed calcium, mag-
nesium, sodium and potassium salts; they are extracted from the grounded thallium upon
the collapse and subsequent transformation of their tissue into a brown mass [6]. Actually,
alginic acid is a complex mixture of oligo-polymers, derived from the polymerization of
two types of monomers, β-D-mannuronic acid (M) and α-L-guluronic acid (G), linked
through glycosidic junction points between the C1 and C4 positions of adjacent monomers.
Thus, a linear chain of repeating units (polymannuronic acid (MM), polyguluronic acid
(GG) and a mixed polymer (MG) including also sequences like GGM and MMG are formed.
In particular, the mannuronic acid forms linear and flexible conformation due to the
β (1–4) linkages; whereas the guluronic acid gives rise to α (1–4) linkage, introducing in this
way a buckled and folded structure able to develop steric hindrance around the carboxyl
groups. For this reason, the G-block segments provide rigid conformations responsible
for a pronounced stiffness of the macromolecular chains. The ratios of the three types of
blocks, MM, GG and MG, determine the physical properties of alginates since alginates
with high M content evidence higher viscosity [3,4], whereas alginates with high G content
show higher gelling properties in the presence of divalent cations, developing the form of
well known “egg-box” structure (see Figure 1). The earlier statements reflect the enormous
applicative versatility of the polymer, strictly dependent on the guluronate residues content
and on the average number of consecutive guluronate moieties in G-blocks structures
and the molecular mass weight distribution. The resulting polysaccharide, alginate, is
biodegradable and biocompatible and can be widely used in food, pharmaceutical and
biomedical applications, due to their emulsifying, stabilizing, and gelling properties [7].

Polymers 2023, 15, x FOR PEER REVIEW 2 of 16 
 

 

alginates are designed to be the seaweed's main skeletal compound since their hydrogels, 

located in the intercellular walls of the algae, are responsible for the mechanical strength 

and flexibility required to withstand the force of the water in which the seaweeds grow. 

In addition, they play a healthy role in protecting seaweeds against environmental stress-

ors and sea pathogens [4,5]. 

In the cell tissue, alginates are mainly found as insoluble gels of mixed calcium, mag-

nesium, sodium and potassium salts; they are extracted from the grounded thallium upon 

the collapse and subsequent transformation of their tissue into a brown mass [6]. Actually, 

alginic acid is a complex mixture of oligo-polymers, derived from the polymerization of 

two types of monomers, β-D-mannuronic acid (M) and α-L-guluronic acid (G), linked 

through glycosidic junction points between the C1 and C4 positions of adjacent mono-

mers. Thus, a linear chain of repeating units (polymannuronic acid (MM), polyguluronic 

acid (GG) and a mixed polymer (MG) including also sequences like GGM and MMG are 

formed. In particular, the mannuronic acid forms linear and flexible conformation due to 

the β (1–4) linkages; whereas the guluronic acid gives rise to α (1–4) linkage, introducing 

in this way a buckled and folded structure able to develop steric hindrance around the 

carboxyl groups. For this reason, the G-block segments provide rigid conformations re-

sponsible for a pronounced stiffness of the macromolecular chains. The ratios of the three 

types of blocks, MM, GG and MG, determine the physical properties of alginates since 

alginates with high M content evidence higher viscosity [3,4], whereas alginates with high 

G content show higher gelling properties in the presence of divalent cations, developing 

the form of well known “egg-box” structure (see Figure 1). The earlier statements reflect 

the enormous applicative versatility of the polymer, strictly dependent on the guluronate 

residues content and on the average number of consecutive guluronate moieties in G-

blocks structures and the molecular mass weight distribution. The resulting polysaccha-

ride, alginate, is biodegradable and biocompatible and can be widely used in food, phar-

maceutical and biomedical applications, due to their emulsifying, stabilizing, and gelling 

properties [7]. 

 

 

Figure 1. (a) Alginate chemical structure and (b) “Egg-box” model. 

The purpose of this work is to employ new eco-sustainable and cost-effective extrac-

tive methods to obtain alginate from Sargassum raw seaweed waste and to use it as a bi-

opolymer matrix for agricultural mulching films. Finalized to this specific aim, sodium 

alginate extraction and purification do not need to be pushed up to the extremely high 

level of purity required by pharmaceutical standards. Indeed, for agricultural applica-

tions, the retaining of protein, cellulose fractions, fibers and colored pigments, represents 

an added value in terms of agronomic and mechanical performances of the mulching films 

on the soil [8]. 

When dealing with sodium alginate extractive methods, conventional protocols in-

volve the use of aggressive organic chemicals for the removal of polyphenols and bleach-

ing, large volumes of hot water, dilute acid, dilute alkali and long extraction times. As a 

consequence, final alginate properties are strongly influenced by the use of aggressive 
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The purpose of this work is to employ new eco-sustainable and cost-effective extractive
methods to obtain alginate from Sargassum raw seaweed waste and to use it as a biopolymer
matrix for agricultural mulching films. Finalized to this specific aim, sodium alginate
extraction and purification do not need to be pushed up to the extremely high level of
purity required by pharmaceutical standards. Indeed, for agricultural applications, the
retaining of protein, cellulose fractions, fibers and colored pigments, represents an added
value in terms of agronomic and mechanical performances of the mulching films on the
soil [8].

When dealing with sodium alginate extractive methods, conventional protocols in-
volve the use of aggressive organic chemicals for the removal of polyphenols and bleaching,
large volumes of hot water, dilute acid, dilute alkali and long extraction times. As a
consequence, final alginate properties are strongly influenced by the use of aggressive
extractive methods, sometimes leading to polymer chemical degradation [9,10]. There-
fore, conventional methods need to be suitably substituted or synergized with sustainable
extractive methodologies, allowing for the optimal conditions to obtain high extraction
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yields and high-performing output. In the last decade, mechanical and physical techniques,
such as microwave-assisted extraction (MAE), have been successfully applied to extract
several biologically active compounds from a wide variety of natural resources [11,12].
Generally, the compounds obtained through MAE enjoy similar or better yields in compari-
son with conventional extraction processes, using less energy, time and solvent volume,
thus resulting in a more eco-sustainable process. Up to date, there are only a few pa-
pers reported in the literature related to the use of the MAE approach to extract alginate
from different algal species (Ascophyllum nodosum [13,14], Nizimuddinia zanardini [15] and
Saccharina latissima [16]) and isolation of macromolecular fractions from targeted Sargassum
algae. In fact, MAE has been investigated for the isolation of polyphenols [17,18] and
fucoidan polysaccharide [19,20] from Sargassum algae, but to the best of our knowledge
there is only one report of MAE application to extract alginate from this algae family. In
this particular paper, the power level (70; 80; 90 and 100%) and microwave exposure time
(between 15 and 18 min) were optimized for the extraction of alginate [21]. Framed in this
context, in the present paper, recovered Sargassum algae wastes, have been used in order
to extract sodium alginate by both the conventional protocol and a mild MAE method, in
which power density and duration were optimized. In order to enhance the exposure to
microwave radiation and minimize the exposure time, a specially designed laboratory-
scale fluidized bed was used in the microwave cavity. Fluidized bed technology is long
known for its favorable features leading to proper uniformity treatment [22,23]. In this
work, the microwave extractive approach combined with a fluidized bed for the isolation
of polysaccharides from the biomass is reported. Two different regimes were tested on
the quality of extracted alginate: static conditions where dry algae were exposed to the
specific power and microwave radiation, and dynamic conditions where algae hydrated
in water were introduced to a fluidized bed in a microwave cavity at the same operating
condition as static ones (the same power and exposure time). The use of the new MAE
extractive method could provide an eco-sustainable and cost-effective approach for the
one-pot extraction of alginate including proteins, minerals and colored pigments. The
whole components were used to prepare alginate-based films for agricultural practices
such as mulching. Spectroscopic (FTIR-ATR), morphological (SEM), thermal (TGA) and
structural (GPC) analyses were performed in order to validate the efficiency of the MAE
method and the potential usage of extracted alginate films in agriculture applications.

2. Materials and Methods
2.1. Chemicals

Sargassum algae were kindly supplied from Lianyungang Zhongda Seaweed Industrial
Co., LTD (Lianyungang, China). The seaweed was rinsed thoroughly in fresh water to
remove sediments and surface contamination. The seaweed was dried in an oven under
vacuum at 40 ◦C for 24 h and stored in a refrigerator at 4 ◦C until further use. The
chemicals used in this study are hydrochloric acid, sodium carbonate, absolute ethanol,
acetone (purchased from Sigma Aldrich, Italy) and commercial alginate (purchased from
Lianyungang Zhongda Seaweed Industrial Co. Ltd., China).

2.2. Pre-Processing by Microwave Exposure

The microwave exposure experiments were conducted in triplicates in a laboratory
prototype, allowing for the enforcement of optimal power density, duration, thermal regime
of working air and exposure uniformity [24,25]. To optimize the exposure to microwave
radiation, a laboratory-scale fluidized bed was exploited by inserting it in the microwave
cavity. The rig consisted of a process cavity equipped with a system of psychrometric air
control (Figure 2). The process air was dehumidified and pressurized (Ceccato, mod. CDX9
and S4 Fonolife, Brendola, Italy) to be injected at the bottom of a fluidized bed reactor, and
placed in the cavity. Air was pressure-regulated manually, to come up with the desired
flow rate at the nozzle outlet way, and read by two flow meters (CS Instruments, mod.
VA500, Harrislee, Germany) on two parallel branches. The working air stream was sent
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to the two-flow branch through a battery of three Ranque-Hilsch vortex tubes (AiRTX,
Cincinnati, OH, USA), each one related to a different nominal (optimal) flow rate. By
means of related valves, the air was streamed through the most appropriate tube of the
battery to approximately minimize the entropy production inherent to the irreversible
thermal conditioning in the vortex tube, which emerged as a spurious tube heating after
a several runs. At the battery exit, therefore, either flow branch (carrying a hot or cold
air stream) could be operated by automated valves whose operation allows to mix the air
up to the desired thermal regime Ta (monitored by a dedicated resistance thermometer
(Elsi, Lainate, Italy). Before reaching the process cavity, the air was ducted to an insulated
relaxation plenum attached to a nozzle and to the distribution plate at the bottom of a glass
fluidized bed reactor, by means of a silicon tube. The nozzle was flush mounted through
the cavity ceiling by means of a proper electromagnetic gasket.
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Figure 2. A scheme of the rig for the microwave bed.

The distributor plate at the bottom of the reactor, and the reactor’s top lid (which
included proper apertures for exhaust air) were held in place by Teflon flanges. The reactor
was held in place by a rigid wired pedestal, and an optical fiber thermometer fed by a
signal conditioner (Ipitek, mod. LT-X5 and LT-X5O, Carlsbad, CA, USA) was inserted at the
reactor bottom, to read the fluidization temperature Tf. The data were acquired by a service
computer. The process cavity had a net capacity of 0.022 m3 and was provided by a MW
waveguide and magnetron group (Samsung Electronics Italia, mod. CM1039, Cernusco
s.N., Italy) producing a fixed MW power level of 991 W, whose measurement was ensured
by using a power clamp meter (Fluke, mod. 345, Everett, WA, USA). To avoid air and
vapor pressure build-up in the cavity proper, an exhaust balancing fan was provided to the
lateral grille, normally intended to vapor discharge, while the grille on the magnetron side
was sealed up. The exhaust fan also provided the air flow seeping through the interspace
between the external side of the cavity wall and the cavity’s external case, in order to
avoid overheating of the magnetron group. Different MW power levels were provided
by insertion of carefully weighted buffer water quantities, placed in the cavity. Different
working times were measured by means of a service stopwatch that drove the ON/OFF
switch of the magnetron power supply. The effective MW exposure time is set by imposing
a magnetron working duration ∆tON, followed by a resting or relaxation duration ∆tOFF.
109 Several “cold” tests (i.e., with no exposure to microwaves of the fluidized bed) were
conducted to ascertain the optimal fluid regime for proper fluidization, hence, to offer a
uniform exposure to microwaves.
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2.3. Alginate Extraction

Dried chopped Sargassum particles (particle size between 50–80 mm) underwent
three different polysaccharide extraction methods. The first one was performed following
the traditional protocol, involving a demineralization process in dilute acid solutions
(0.1 M HCl) for 24 h at room temperature and speed of 200 rpm, and following polymer
solubilization in alkaline medium (3 wt% Na2CO3) for 3 h at 90 ◦C and speed of 200 rpm.
The second and third ones consisted of a previous exposure of dried chopped substrate
to controlled microwave energy in a dedicated prototype, allowing to enforce optimal
power density and duration under static and dynamic conditions [25]. Static conditions
considered the use of dry algae in a microwave exposed to the energy of 3 W/g for 30 min,
with ∆tON/∆tOFF set up 10/50 s. The dynamic conditions correlated to the microwave
procedure under the same operative conditions, but this time algae in a wet state, i.e., algae
immersed in water, were exposed to the microwave chamber. The mass flow rate of biomass
ranged between 0.6 and 0.8 g/min. The pre-treated raw algae particles were then subjected
to alginate extraction by using three different routes: (a) hot water treatment for 3 h at 90 ◦C
and 200 rpm; (b) conventional method as described above and (c) alkaline hot treatment
(3 wt% Na2CO3) for 3 h at 90 ◦C and 200 rpm. Following extraction methodologies, the
solutions were precipitated in absolute ethanol, washed once in acetone for 30 min and
dried. All extracts were further dissolved in water at a constant concentration (1 wt%),
poured on Petri dishes, and allowed to dry, in order to obtain alginate-based films.

2.4. Yield of Extracted Alginate

The sodium alginate yield (%) obtained in this research plan is calculated using the
following equation:

Yield (%) =
mass o f dry alginate

mass o f dry algae
× 100

2.5. Morphological Analysis of Samples

Morphological analysis of raw and treated substrate samples was performed by means
of an FEI Quanta 200 FEG Scanning Electron Microscope (SEM) (Hillsboro, Oregon, USA).
SEM analyses were performed at room temperature, in high vacuum mode, using a large
field detector (LFD) and an acceleration voltage of 20 kV. Prior to the observation, the
sample surfaces were coated with a homogeneous layer (18 ± 0.2 nm) of Au-Pd alloy by
means of a sputtering device (MED 020, Bal-Tec AG, Maschinenbau, Switzerland).

2.6. GPC

Gel permeation chromatography was performed using a GPC Max Viscotek equipped
with a TDA 305 composed of refractive index (RI), low angle light scattering (LALS), right
angle laser light scattering (RALS), and viscometer (IV) detectors. The column set consisted
of a pre-column TSK PWXL and TSK Gel GMPWXL. All the samples were dissolved up to
a concentration of ∼=0.5–0.7 mg/mL and eluted in MilliQ water containing 0.2% NaN3 and
0.1 M NaNO3 to avoid any polymer agglomeration phenomena. After complete dissolution,
samples were filtered through a 0.22 µm CA filter. The injection volume was 100 µL and
the flow rate was 0.5 mL/min. The measurements were performed in duplicate at 40 ◦C,
according to the temperatures of the columns and detectors.

2.7. FTIR/ATR

Attenuated Total Reflection Fourier Transform Infrared (FTIR-ATR) spectroscopy
was carried out on dried films. The spectra were collected on a Perkin–Elmer Spectrum
100 spectrometer (Waltham, MA, USA), equipped with a Universal ATR diamond optical
crystal and ZnSe focusing elements sampling accessory. All the samples were analyzed at
room temperature in the range of 4000–650 cm−1, recorded as an average of 16 scans with a
resolution of 4 cm−1. Before testing, all samples were dried in an oven at 60 ◦C for 24 h.
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2.8. Thermal Analysis

Thermogravimetric analyses (TG) were performed by using a thermogravimetric
analyzer Mettler-Toledo TG-SDTA 851 thermobalance, equipped with a differential thermal
analyzer instrument. About 5 mg of samples were placed in an open ceramic crucible and
heated from 25 ◦C up to 600 ◦C at a speed rate of 10 ◦C/min, under a nitrogen flow of
30 mL/min. Before the tests, a blank curve was measured and subtracted from the single
thermograms, to correct instrumental drift [26].

3. Results and Discussions
3.1. Extraction Yield

The different extraction and pre-treatment methods of alginates with sample codes and
obtained alginate yields are presented in Table 1. The yield of untreated alginate obtained
by using conventional methods (demineralization and alkaline treatment) is 32%. This
result is expected, since it is known that a high yield of alginates can be obtained by iterating
demineralization and alkalinization processes to push the extraction up to high yields,
depending on extraction time and temperature [27–30]. However, this method requires
a large amount of solvents, high energy consumption and very long extraction times.
Actually, this procedure leads to a very neat polymer necessary due to the expected final
applications in food, pharmaceuticals, and biomedical sectors. As previously mentioned,
with regard to applications in agriculture, alternative, eco-cost-effective extraction routes
can be carried out. Preliminary results showed that alginate could not be extracted in
water from untreated algae. On the other side, microwave pre-treatment allowed the
breakup of algae cell walls and the easier release of alginate in water (samples A2 and A5).
However, the extraction yield is below 5%. Rostami et al. also obtained the lowest yield
of alginate for the water-treatment (3.8%) [31]. The amount of extracted alginate from
pre-treated algae increased up to 20–24% when the alkaline extraction method was used,
and to 32–36% when the acid+alkaline method was used. This result was in some way
expected since it is well known that acid treatment represents an essential step in the
extraction of alginate, because it converts alginate-magnesium or calcium salts into alginic
acid, thus allowing easier solubility and conversion into water-soluble sodium-alginate
during the following alkaline extraction process [10]. On the other side, when only alkaline
treatment is used, the extraction of alginate occurs through an ion-exchange reaction, with
reduced solubility of alginate in extractive solution. Regarding microwave pre-treatments,
the dynamic condition provides a slightly higher release of alginate from the cell walls than
static conditions. The obtained yield values are similar to those reported in the literature for
alginate MAE from Ascophyllum nodosum [13] and for conventional extraction method from
Madagascan brown algae [32], but higher from ultrasound-assisted alginate extraction and
alginate alkaline extraction from Sargassum algae (13–15%) [33,34].

Table 1. The alginate extraction methods, its yield, and identification codes of samples.

Samples Sample Codes Extraction Method Yield, %
Untreated algae A1 Conventional method 32

MAE treated algae under static conditions A2 Hot water method 3
MAE treated algae under static conditions A3 Conventional method 32
MAE treated algae under static conditions A4 Alkaline method 20

MAE treated algae under dynamic conditions A5 Hot water method 1
MAE treated algae under dynamic conditions A6 Conventional method 36
MAE treated algae under dynamic conditions A7 Alkaline method 24

3.2. SEM

The micrographs of raw (a) and microwave-treated algae surfaces under static
(b) and dynamic (c) conditions are shown in Figure 3. SEM micrograph of raw algae
(a) reveals a rough and uneven surface, with the presence of large and irregularly spread
domains. Deep morphological changes could be detected in seaweed surfaces after con-
trolled microwave treatments (Figure 3b,c). Namely, the surface became more smoothed,
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homogeneous and characterized by the presence of interwoven, jagged fibrous domains.
This morphological structure was preserved also on the surface of algae pre-treated under
dynamic conditions. Anyway, in this case, some regular-shaped holes, probably due to
water evolution previously entrapped in the cell walls matrix, are observed. Actually, it is
purported here that microwave energy, penetrating into the material structure, produced
an intense volumetric heat source, due to molecular friction of both polar solvents and
conductive migration of dissolved ions. As a consequence, the water molecules evaporate
easily, breaking the external vegetable tissues and probably inducing a sort of ion exchange,
responsible for subsequent sodium alginate extraction by means of the sole mild extraction
method (hot water) [35].
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Figure 3. SEM micrographs of: (a) untreated algae, (b) microwave pre-treated algae under static
conditions and (c) microwave pre-treated algae under dynamic conditions.

In Figure 4, the SEM morphology of alginate surface films is reported. In order to not
overburden the paper, only one micrograph has been reported and discussed for each kind
of extraction procedure. Specifically, A6, A5 and A7 film surfaces of alginates extracted
after dynamic microwave exposure pre-treatments have been discussed. From the analysis
of the A6 sample (Figure 4a), it is worth highlighting a very wrinkled and rough surface
with the presence of thin and high polymer edges and holes likely associated with the
presence of some fibers physically engaged to the polymer matrix and to polymer-salts
complexes formed during the solvent casting of the polymer. Actually, it is very likely that
some raw and native components, like cellulose fibers and minerals strictly linked to brown
seaweeds, could remain unaffected in the conventional method extracted polymer since the
occurring extraction procedure is intentionally not driven up to extreme purity and quality
levels [36]. Regarding A5 and A7 sample micrographs related to alginates extracted in hot
water (Figure 4b) and alkaline solutions (Figure 4c), it is possible to highlight substantially
different surfaces, more regular, smoother and homogeneous, likely due to the peculiar
extraction procedures able to provide a tight structural packing organization with a good
macromolecular interconnection.
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3.3. GPC

The molecular weight distributions of all extracted alginates are presented in Table 2,
and the chromatograms have been reported in Figure 5. GPC analysis was also performed
on commercial alginate, used as a reference. The first attempt was to investigate the extrac-
tion of alginate from untreated and microwave-pre-treated algae in hot water. Alginates
extracted in hot water (samples A2 and A5) elute as multimodal distribution with very
broad polydispersity, indicating an extraction of different polymer fractions (see Figure 5a).
GPC chromatograms of all alginates extracted by conventional and alkaline method dis-
plays one main broad peak and in A3 and A4 with one small shoulder (see Figure 5b,c).
Microwave pre-treatment under static conditions appears to negatively influence the qual-
ity of obtained alginate, which is evidenced by lower values of Mw and η, in comparison
to the untreated algae. On the other side, when microwave dynamic conditions are applied
to algae, the alginates extracted by the conventional method are with higher viscosity
(6.94 dL/g) and molecular weight (458,570 Da) than those obtained from untreated al-
gae and microwave-pre-treated algae under static conditions. It appears that microwave
treatment under static conditions (dry algae used) is a more aggressive approach, causing
not only the change in morphology but also inducing the start of degradation of polymer
units. There are some reports in the literature, that at certain conditions (time, power,
etc.), microwave irradiation can induce the depolymerization of alginate, but also of other
polysaccharides [37–39]. Apparently, the presence of water and algae in a microwave
chamber (dynamic conditions) promotes an easier release of polymer fractions from cell
walls but minimizes the side effects of the microwave regime.

Table 2. Molecular weight and viscosity of extracted and commercial alginate.

Sample Mn, Da Mw, Da η, dL/g
A1 53,232 382,332 6
A2 6000 7.5 × 106 3
A3 72,673 196,232 4
A4 53,477 298,704 7
A5 12,672 458,570 2
A6 85,221 458,570 7
A7 90,518 419,130 6
Commercial alginate 48,054 80,520 5
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The data in the literature show a broad spectrum of Mw and η values for extracted
alginate, which is probably the consequence of different algae species, different extraction
methods and extraction parameters. The values of Mw obtained in this work are higher
than for alginate produced from Sargassum algae by ultrasound-assisted extraction fol-
lowed by a demineralization process in lemon juice and an alkaline process in Na2CO3
(80–112 kDa) [40]. On the other side, Santagata et al. obtained alginates of a similar Mw
range (262–438 kDa) as in this work, by varying the extraction time and acid/alkaline
conditions during ultrasound-assisted extraction of alginate from Sargassum algae [41]. The
viscosity values obtained in this work are in the range between 1.98 and 6.9 dL/g, which are
similar to those reported for alginates extraction from Sargassum algae by alkaline method
varying operative parameters (range between 1 and 6 dL/g) [42,43]. On the other side,
the conventional extraction method provided alginates with viscosity values in the range
between 4 and 15 dL/g [44,45].

Nevertheless, all extracted alginates in this work have higher Mw than commercial
alginate, whereas all samples except hot water treated samples and A3 sample have higher
viscosity, suggesting that alternative extraction protocols with reduced amounts of solvents
and energy can provide alginate of high quality.

3.4. FTIR/ATR

The FTIR/ATR spectra of extracted alginates by MAE under dynamic conditions are
presented in Figure 6 and compared with the FTIR/ATR spectrum of commercial alginate.
The FTIR spectra of alginates extracted under static conditions are not presented, because
of the overlapped peaks and no significant changes in comparison to the corresponding
alginates obtained by MAE under dynamic conditions. From the analysis of the curves,
it is worth highlighting that all the extractive methods used in this work are effective
in the releasing of sodium alginate from cell tissue. In fact, similar peaks related to
asymmetric (1600 to 1610 cm−1) and symmetric (1400–1410 cm−1) stretching vibration of
carboxylate O–C–O sodium alginate group can be detected in the spectra of all extracted
alginates [29,46]. The intensity of these peaks is mostly pronounced in A4 and A7 samples,
as expected considering that the alkaline extractive phase allows the solubilization of
alginic acid in the form of carboxylated groups. Moreover, the peaks in the region between
1100 and 1000 cm−1 related to C-C, C-O and C-O-C stretching vibrations of the pyranose
ring are mostly marked in A4 and A7 samples.
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A particularly interesting area for analysis of polysaccharides is the anomeric re-
gion between 950 and 700 cm−1. Generally, alginate displays two peaks in this region,
one around 810 cm−1 and one as a small shoulder peak around 780 cm−1 corresponding
to mannuronic and guluronic acid, respectively [47]; these peaks are also detected in the
spectrum of commercial alginate. Regarding extracted alginates, these two peaks are no-
ticed only in FTIR spectra of A1, A2, A4, A5 and A7 samples but at a significantly reduced
intensity, in comparison to the commercial alginate. In addition, the shoulder peaks of
small intensities at 950 cm−1 and shoulder peak at 890 cm−1 are found in the FTIR spectrum
of commercial alginate, which is ascribed to the C-O stretching vibration of uronic acid
and of C1–H deformation vibration of mannuronic acid, respectively [48–50]. The peak
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at 950 cm−1 is detected in all spectra of extracted alginates, and an additional peak of
small intensity at 905 cm−1 related to the α-l-guluronic asymmetric ring vibration can be
seen, too [49]. It is interesting to note that a narrow peak of strong intensity is located at
870–880 cm−1 in spectra of all extracted alginates, except in the case of A2 and A5 (hot
water extraction). Although at that IR frequency is usually C1-H deformation vibration
of β-mannuronic acid, the change of peak shape from wide shoulder to narrow peak, and
peak intensity from weak to strong, indicates that this is a new peak related to another
functional group in alginate. It is found in the literature that peaks at 870–880 cm−1 are
typical of carbonate ions vibrations [51,52]. Hence, it is assumed that the peak detected in
that area mostly comes from the extent content of carbonate ions, with no or minimum
contribution of depolymerization reaction of alginate, since there was no repetitive process
of purification of extracted alginates. This result agrees with the results obtained by GPC
because some fractions of carbonates are detected, too.

Regarding the hot water extraction, the corresponding samples, A2 and A5, evidence
two stretching vibrational groups not detected in other samples; specifically, it is possible
to note a broad absorption peak around 1650 cm−1 overlapping with the carboxylate asym-
metric vibrational peak and another broad stretching mode at 1550 cm−1, corresponding to
amide I and amide II protein vibrations, respectively. Finally, a broad peak at 1250 cm−1

was ascribable to the asymmetric stretching vibration of the S=O group [40,53]. This out-
come suggests that by use of microwave pre-treatment and hot water extractive method,
besides alginate, some proteins and sulfated polysaccharides (such as fucoidan) could be
solubilized as well. Finalized to agricultural mulching application, the presence of protein,
as a nitrogen source, could represent an upgrading for the agronomic performance of films.
Overall, FTIR/ATR analysis reveals that the use of different extraction methods causes
changes in intensities of characteristic peaks, but not significant shifts in these peaks, thus
indicating that chemical structure does not change subsequently.

3.5. Thermal Analysis

TGA analysis of extracted alginates was performed, and their thermal behavior was
compared with the one of commercial alginate. Considering the very low sodium alginate
extraction yield of A2 and A5 samples and their complex structure, these samples have
not been considered in this analysis. In order to better visualize the thermal degradation
pattern and kinetics of selected samples, only DTG thermograms are shown (Figure 7),
whereas all corresponding parameters related to the degradation of samples are detailed in
Table 3.

Table 3. Thermal parameters of selected alginate samples: Weight loss at 100 ◦C (WL100,%) and
180 ◦C (WL180, %), temperature at which main degradation step starts (TONSET, ◦C) and temperature
at which the maximum degradation rate occurs (TDEG, ◦C).

Sample WL100,% WL180, % Tonset, ◦C Tdeg, ◦C
A1 6 15 180 246
A3 5 13 180 193; 243
A4 8 17 188 242
A6 5 13 180 192; 242
A7 6 16 185 243
Commercial alginate 9 13 215 235

The thermal degradation of commercial alginate occurs in two main steps: the first one
up to 100 ◦C corresponds to the evaporation of free water, and the second step, starting at
215 ◦C and peaking at 235 ◦C, is related to the decomposition process of alginate, which
involves a random split of the glycosidic bonds, vaporization and elimination of volatile
products [54]. All extracted alginates show the above-mentioned degradation steps during
the heating up to 600 ◦C, but also evidence of one more degradation step in the range
between 100 ◦C and 180 ◦C. The weight loss in this region is around 15% for all samples
and can be associated with the releasing of bound water [55], the dehydration of extent
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carbonate ions in the samples [56] and the degradation of some polyphenolic and/or
protein fractions [41]. It is hard to connect changes in this region with the variation in
extraction methods since the many complex degradation patterns are at the expense of
several different polymer and molecule fractions. On the other side, the onset degradation
temperature of Sargassum-derived alginates is shifted to lower values ranging between
27 and 35 ◦C, if compared with commercial alginate. The highest shift is detected for all
samples extracted by the conventional method. It is interesting to note that DTG diagrams
of A4 and A7 samples display a wide shoulder peak in the region between 180 and 330 ◦C,
whereas for the A3 and A6 samples doublet peak appears and is probably related to the
degradation of mannuronic residues at lower temperature, which is subsequently followed
by degradation of guluronic units. This result confirms that microwave pre-treatment
combined with the conventional extractive method causes partial hydrolysis of alginate.
The double peak during the thermal degradation of extracted alginate by the acid+alkaline
method is supported by literature data [57]. Although the Tonset temperature is significantly
lower for all extracts, the maximum thermal degradation of alginate macromolecular chains
is delayed by 10 ◦C, in comparison to the commercial alginate. In addition, there are no
significant differences (i.e., temperature shifts) in degradation pattern between two used
microwave pre-treatments samples. The only visible difference is that weight loss rate for
the A6 and A7 (microwave dynamic conditions) is lower than for the A3 and A4 (microwave
static conditions), which is evidenced in reduced peak intensity in the region between
180 and 330 ◦C. This result matches well with spectroscopic (FTIR-ATR) and molecular
(GPC) analysis.
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3.6. Potential Application

In order to evaluate the potential applications of alginate extracted from Sargassum
seaweed wastes, preliminary tests have been performed using them as mulching geo-
membrane on Hortensia Dienamann (HD) plant. Mulching polysaccharide-based films have
gained increased attention in agriculture to minimize weed appearance [58]. Namely, weed
represents one of the major issues in plant cultivation, due to competition for the plant
resources and attracting crop pests. The negative effects of uncontrolled growth of weeds
are more pronounced in container cultivations than in field cultivations, due to the reduced
availability of growing media. In this work, the A7 formulation was dissolved in water at
1 wt% concentration and sprayed on an HD pot and left for 90 days at 23 ◦C. The HD pot
was irrigated only with water and stored in the same conditions as alginate sprayed HD pot
was used as control. Figure 8 represents the untreated and treated HD pots after 3 months.
By comparing the untreated (Figure 8a) and treated (Figure 8b) plants, it is possible to
highlight a huge difference in terms of the uncontrolled growth of the weeds. Indeed, the
plant sprayed with alginate does not show any infesting weeds, providing a healthy growth
of the leaves, whereas untreated pot demonstrates a significantly high level of weed. Up to
date alginate oligosaccharides [59–61], gamma-irradiated alginates [62,63], and alginates
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capsules/films as matrices for bacteria/nutrients [64] have proved to be efficient as plant-
growth promoters. The preliminary HD pot result obtained in this work suggests that
extracted alginates preserving all the proteins, minerals, pigments, and bioactive molecules,
can provide a beneficial effect on the healthy growth of crops, without further modification
or additional nutrients.
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4. Conclusions

In this investigation, microwave-assisted extraction of alginate from Sargassum algae
under static and dynamic conditions using a fluidized bed in a microwave cavity was
reported. It was demonstrated that sodium alginate can be successfully extracted after both
microwave pre-treatment regimes, using mild extracting conditions. The yield of obtained
alginates was in the range between 20 and 36%, depending on extraction solvents. The
highest yields were obtained when the conventional protocol was applied (acid+alkaline
extractive method), and microwave pre-treatment was followed by the acid+alkaline proto-
col. The microwave pre-treatment method under dynamic conditions was the most efficient
approach to obtain alginates of higher molecular weights (419–458 kDa), as opposed to
the conventional methods of untreated algae (382 kDa). Although microwave dynamic
treatment followed by alkaline extraction produced lower yields of alginates (20–24%)
in comparison to the conventional protocol of untreated algae, this method is more time
and energy-efficient (extraction time approximately 3 h, in comparison of 28 h for A1
sample), requiring less amount of solvents to be used for extraction, and providing the
alginates of higher molecular weight and higher thermal stability. Overall, results related to
sodium alginate extraction from wastes of raw Sargassum algae, evidenced that controlled
microwave treatment under dynamic conditions could really represent a valid method to
obtain sodium alginate in a cost-effective and eco-sustainable method, by providing, at the
same time, an environmentally friendly approach finalized to the recovering, collection
and upgrading of urban beach raw waste materials.
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