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Dragoš Inta 7,8,† and Stefan Borgwardt 7,†

1 Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences—National
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Abstract: The increasing prevalence of depression requires more effective therapy and the under-
standing of antidepressants’ mode of action. We carried out untargeted metabolomics of the prefrontal
cortex of rats exposed to chronic social isolation (CSIS), a rat model of depression, and/or fluox-
etine treatment using liquid chromatography–high resolution mass spectrometry. The behavioral
phenotype was assessed by the forced swim test. To analyze the metabolomics data, we employed
univariate and multivariate analysis and biomarker capacity assessment using the receiver operating
characteristic (ROC) curve. We also identified the most predictive biomarkers using a support vector
machine with linear kernel (SVM-LK). Upregulated myo-inositol following CSIS may represent a
potential marker of depressive phenotype. Effective fluoxetine treatment reversed depressive-like
behavior and increased sedoheptulose 7-phosphate, hypotaurine, and acetyl-L-carnitine contents,
which were identified as marker candidates for fluoxetine efficacy. ROC analysis revealed 4 signifi-
cant marker candidates for CSIS group discrimination, and 10 for fluoxetine efficacy. SVM-LK with
accuracies of 61.50% or 93.30% identified a panel of 7 or 25 predictive metabolites for depressive-like
behavior or fluoxetine effectiveness, respectively. Overall, metabolic fingerprints combined with
the ROC curve and SVM-LK may represent a new approach to identifying marker candidates or
predictive metabolites for ongoing disease or disease risk and treatment outcome.

Keywords: depressive-like behavior; prefrontal cortex; fluoxetine; metabolomics; ROC curve; support
vector machine-linear kernel

1. Introduction

The leading cause of disability and one of the main sources of global burden of dis-
ease worldwide in adults is major depressive disorder (MDD), known as depression, a
common mental disease with a complex neurobiological basis. Different hypotheses are
used to understand the pathogenesis of depression, including changes in the synthesis and
metabolism of monoamine neurotransmitters, mainly serotonin (5-hydroxytryptamine, or
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5-HT), disturbances in their receptor function, or changes in signal transduction pathways
at the post-receptor level [1–3]. To investigate the molecular mechanism underlying depres-
sion and evaluate the efficacy of antidepressants, we used a well-validated animal model
for chronic psychosocial stress, chronic social isolation (CSIS). The depressive-like behavior
induced by CSIS in rats is accepted to resemble the effects of perceived isolation in humans
that may contribute to the development of depression [4–6]. The prefrontal cortex (PFC) is
one area of the brain that experiences structural and functional changes in depression [7–10].
Its dysfunction has been associated with cognitive impairment, including decision-making
and working memory, as a common symptom of depression [11]. A previous study
has shown that CSIS in adult male Wistar rats compromises the hypothalamic–pituitary–
adrenal (HPA) axis activity and impairs the glucocorticoid negative feedback response in
the extrinsic HPA axis structure such as PFC [12,13], as found in depressive patients [14,15].
Additionally, alterations in mitochondrial dynamics, oxidative phosphorylation, mitochon-
drial biogenesis, and the production of antioxidant enzymes have been revealed in the PFC
of serotonin transporter knockout rats [16]. Recently, a proteomics study in the PFC of CSIS
rats has shown that depression-like behavior is associated with compromised mitochon-
drial membrane integrity; CSIS affected mitochondrial transport and energy processes as
well as synaptic neurotransmission and oxidative stress [17].

Depression is frequently treated with selective serotonin reuptake inhibitors, such as
fluoxetine (Flx), which improve serotonergic neurotransmission by inhibiting its reuptake
transporter [18]. This drug reversed depressive-like behavior in the rat CSIS model of
depression [17,19]. Effective Flx treatment of CSIS rats altered mitochondrial bioenergetics,
vesicle-mediated transport, and synaptic signaling in the PFC [17,20]. Additionally, Flx
stimulates neurogenesis and neural plasticity in various brain regions [21–23]. Although
Flx has been proven to be effective in depressive patients, the response rate is low (60–70%
of patients), and the mechanisms of action have not been defined yet. Moreover, the
identification of metabolic biomarkers and the establishment of a strategy for their screening
and application are needed. Therefore, new approaches are required for a more detailed
examination of the pathobiology of depression and the mode of antidepressant action, as
well as the identification of biomarker candidates for depression pharmacotherapy.

It has been shown that mental and behavioral changes have been associated with
metabolic alterations [24]. Metabolomics is a study for identifying metabolite changes in cel-
lular processes and presents characteristic small-molecule fingerprints related to the patho-
physiology of depression in both clinical research [25,26] and animal experiments [27–29],
as well as following antidepressant treatments [30,31]. Indeed, metabolic changes in the PFC
of rats that showed depressive-like behavior following chronic unpredictable mild stress
were found in amino acid metabolism, energy metabolism, lipid metabolism, oxidative
stress, and the synthesis of neurotransmitters [29]. Hence, we investigated the application
of liquid chromatography–high resolution mass spectrometry (LC–HRMS)-based untar-
geted metabolomics in CSIS (6-week) rats, and CSIS rats with chronic Flx treatment (lasting
three weeks of 6-week CSIS), and controls. To analyze metabolomics data, univariate (t-test)
and multivariate partial least square-discriminant analysis (PLS-DA) were performed. A
classical receiver operating characteristic (ROC) curve analysis was used to assess the
molecular marker performances of each metabolite for a binary outcome. For deeper data
analysis, a support vector machine with linear kernel (SVM-LK), as a machine-learning
classification model, was applied to identify a subset of predictive metabolites that have
the potential to enable the more accurate diagnosis of a depressive phenotype or effective
antidepressant treatment [32,33]. The correlation between metabolites and immobility time
in the forced swim test (FST) was investigated to test whether the level of metabolites
could reflect behavior despair in the CSIS model. To date, no studies have examined the
PFC metabolic fingerprints of adult male CSIS rats in combination with Flx treatment. In
addition, this is the first study where obtained metabolic fingerprints were used for the
identification of marker candidates for the designation of depressive-like behavior follow-
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ing CSIS and effective Flx treatment in CSIS rats, and the most-contributing predictive
metabolites for binary-group classification (CSIS vs. Control and CSIS + Flx vs. CSIS).

2. Results
2.1. Behavioral Testing

The FST results are presented in Figure 1. For immobility time, a significant main effect
of CSIS (F1.23 = 13.07, p < 0.01) and effects of time (F2.46 = 15.10, p < 0.001), CSIS × time
(F2.46 = 4.34, p < 0.05), and Flx × time (F2.46 = 8.43, p < 0.001) were found. A significant
increase in immobility time in CSIS + Flx and CSIS at the 3-week test compared to baseline
(*** p < 0.001) was revealed. At the 6-week test, only the CSIS group differed from baseline
(*** p < 0.001).
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Figure 1. Behavioral results in control, fluoxetine-treated controls (Control + Flx), chronic social 
isolation (CSIS) and fluoxetine-treated CSIS (CSIS + Flx) rats in the forced swim test (FST) at 
baseline and at the end of the 3rd and 6th week. Differences between different groups compared to 
controls (baseline) were considered statistically significant at *** p < 0.001, * p < 0.05. Immobility—
CSIS or CSIS + Flx (3 weeks) vs. CSIS (baseline) as well as CSIS (6 weeks) vs. CSIS (baseline) *** p < 
0.001; Swimming—CSIS or CSIS + Flx (3 weeks) vs. CSIS (baseline) * p < 0.05 and CSIS (6 week) vs. 
CSIS (baseline) *** p < 0.001; Climbing—Control + Flx and CSIS (6 weeks) vs. Control + Flx and 
CSIS (baseline) * p < 0.05. Significant differences between groups obtained via a three-way 
repeated-measures ANOVA, followed by Duncan’s post hoc test. Data are expressed as the mean ± 
standard deviation (± SDEV); n = 6–8 rats per each group. 
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Figure 1. Behavioral results in control, fluoxetine-treated controls (Control + Flx), chronic social
isolation (CSIS) and fluoxetine-treated CSIS (CSIS + Flx) rats in the forced swim test (FST) at baseline
and at the end of the 3rd and 6th week. Differences between different groups compared to controls
(baseline) were considered statistically significant at *** p < 0.001, * p < 0.05. Immobility—CSIS or
CSIS + Flx (3 weeks) vs. CSIS (baseline) as well as CSIS (6 weeks) vs. CSIS (baseline) *** p < 0.001;
Swimming—CSIS or CSIS + Flx (3 weeks) vs. CSIS (baseline) * p < 0.05 and CSIS (6 week) vs. CSIS
(baseline) *** p < 0.001; Climbing—Control + Flx and CSIS (6 weeks) vs. Control + Flx and CSIS
(baseline) * p < 0.05. Significant differences between groups obtained via a three-way repeated-
measures ANOVA, followed by Duncan’s post hoc test. Data are expressed as the mean ± standard
deviation (± SDEV); n = 6–8 rats per each group.

For swimming behavior, a significant main effect of CSIS (F1.23 = 18.42, p < 0.001) and
effects of time (F2.46 = 7.56, p < 0.01), CSIS × time (F2.46 = 4.53, p < 0.05), and Flx × time
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(F2.46 = 9.88, p < 0.001) were observed. A significant decrease in swimming time in CSIS
+ Flx and CSIS at the 3-week test compared to baseline (* p < 0.05) was found. Only the
CSIS remained significantly decreased from baseline at the 6-week test (*** p < 0.001). No
significant main effects of CSIS or Flx treatment on climbing behavior were observed. The
reduced climbing of Control + Flx and CSIS rats at the end of the 6th week compared to the
baseline (* p < 0.05) was found.

2.2. PFC Metabolic Fingerprints following CSIS and/or Effective Flx Treatment and Controls

In the LC–HRMS analysis, a total of 117 metabolites in each sample were identified
(Supplementary Table S1). The list of statistically significant metabolite changes is presented
in Table 1.

Table 1. List of significantly changed metabolites following Flx treatment in control, CSIS and effective
Flx treatment in CSIS groups in the rat prefrontal cortex detected by LC-HRMS. False discovery rate
(FDR)-adjusted p-values (t-test) of <0.05 and fold change (FC) thresholds of >1.5.

Control + Flx
vs. Control CSIS vs. Control CSIS + Flx vs.

CSIS

Retention
Time
(min)

Metabolites FC p-Value p-
Adjusted FC p-Value p-

Adjusted FC p-Value p-
Adjusted

Metabolic
Pathway

11.28 N-acetyl-L-
arginine 0.27 1.00

× 10−5
1.20

× 10−3

Amino
acid

metabolism

5.57 Xanthine 0.61 1.95
× 10−3

3.80
× 10−2

Purine
metabolism

9.50 N1-methyl-
nicotinamide 0.65 7.26

× 10−4
2.12

× 10−2
Energy

metabolism

14.25
Sedoheptulose-

7-
phosphate

2.24 1.09
× 10−4

2.56
× 10−2 2.4 6.89

× 10−4
2.02

× 10−2
Energy

metabolism

4.16
2-hydroxy

glutaric
acid

2.28 6.84
× 10−4

2.12
× 10−2

Energy
metabolism

4.62 Indoxylsulfate 2.57 2.49
× 10−3

4.16
× 10−2

Organic
acids and

deriva-
tives

10.09
Stachydrine

(proline
betaine)

5.08 3.10
× 10−5

1.80
× 10−3

Amino
acid

metabolism

11.98 Myo-
inositol 1.56 2.69

× 10−4
3.15

× 10−2

Inositol
phosphate
metabolism

7.10 Hexanoyl
carnitine 0.45 2.60

× 10−4
2.02

× 10−2
Lipid

metabolism

7.98 Xanthosine 0.62 6.83
× 10−4

2.02
× 10−2

Purine
metabolism

5.32 Riboflavin 0.64 9.14
× 10−4

2.14
× 10−2

Riboflavin
metabolism

11.65 Hypotaurine 1.62 1.16
× 10−3

2.25
× 10−2

Lipid
metabolism

8.75 Acetyl-L-
carnitine 3.31 5.24

× 10−4
2.02

× 10−2
Lipid

metabolism

2.3. Multivariate Data Analysis

PLS-DA was performed to determine the discrimination between groups based on the
metabolomics dataset. Dimensionality reduction resulted in the organization of samples
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based on two components. The key parameters, R2 and Q2, in pair-wise groups were higher
than 0.5 (Table 2), indicating that models were robust and had good fitness and prediction.
The Control + Flx was clearly distinguished from the Control group in the PLS-DA plot
(Figure 2a). Additionally, the PLS-DA score plot (Figure 2b) shows that the CSIS group
had a distinctive metabolic profile from the control group, and a clear separation was also
observed between the CSIS + Flx and CSIS group (Figure 2c).

Table 2. PLS-DA classifier performances.

Group Comparison No of Component R2 a Q2 b Accuracy

Control + Flx vs. Control 5 0.99953 0.92444 1

CSIS vs. Control 5 0.99587 0.29245 0.84615

CSIS + Flx vs. CSIS 5 0.99636 0.86544 1
a Measure of goodness of fit of the model; b Measure of predictive ability of the model.
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Moreover, Supplementary Figures S1–S3 provide dendrogram (A) and heatmaps (B)
of the hierarchical cluster analysis, i.e., metabolite changes for pair-wise comparisons

2.4. Marker Candidate Identification

ROC curve based on the area under the curve (AUC) values revealed metabolites
with the best marker preferences in the rat PFC of depressive-like behavior and effectively
Flx-treated rats (Table 3).

Table 3. List of PFC metabolites with the best marker preferences for depressive-like behavior and
effectively Flx-treated rats.

Metabolites

CSIS vs.
Control

AUC p-Value Fold Change

Myo-Inositol 1.000 2.69 × 10−4 1.56
Methylnicotinamide 0.95238 2.40 × 10−3 0.75

cAMP 0.92857 1.13 × 10−2 1.66
NAD 0.90476 2.03 × 10−2 1.76
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Table 3. Cont.

Metabolites

CSIS vs.
Control

AUC p-Value Fold Change

Sedoheptulose-7-
phosphate 1 6.89 × 10−4 2.40

Hypotaurine 0.982140 1.16 × 10−3 1.62
Riboflavin 0.982140 1.29 × 10−3 0.64

Acetyl-L-carnitine 0.964290 5.24 × 10−4 3.31
Hexanoylcarnitine 0.964290 2.60 × 10−4 0.45

Xanthosine 0.946430 6.83 × 10−4 0.62
Aconitate 0.928570 4.69 × 10−3 0.71
Cytosine5 0.910710 2.98 × 10−3 1.39

5-Methylcytosine 0.910710 5.77 × 10−3 0.76
Myo-Inositol 0.910710 3.57 × 10−3 0.76

According to ROC analysis, myo-inositol with AUC = 1 had the best molecular candi-
date preferences for CSIS group designation (Figure 3a). Sedoheptulose-7-phosphate (1),
hypotaurine (0.98214) and acetyl-L-carnitine (0.96429) had the greatest AUC (in parenthesis)
values of classical ROC analysis and were the most significant marker candidates following
effective Flx treatment in CSIS rats (Figure 3b–d).
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Figure 3. PFC molecular marker candidates in depressive-like behavior following CSIS (a) and
effectively Flx-treated animals (b–d) based on a classical ROC curve with AUC values. ROC curves are
presented with 95% confidence interval and AUC values. Box-and-whisker plots display individual
variable distributions within each group. Red dots (ROC curves) and red lines (box-and-whisker
plots) represent the optimal cut-off value between the groups.



Int. J. Mol. Sci. 2023, 24, 10957 7 of 17

2.5. SVM Classification

The SVM-LK classifier showed the optimal classification performances with accu-
racy of 61.50% in predicting depressive-like behavior in CSIS rats with a panel of seven
contributing PFC metabolites. An accuracy of 93.3% with a panel of 25 contributing PFC
metabolites was achieved to classify Flx-treated CSIS rats from CSIS rats, representing nor-
malized behavior and Flx effectiveness. The SVM-LK classifiers with the most contributing
metabolites are presented in Table 4.

Table 4. SVM-LK-based binary classification performance for pair-wise comparisons of the PFC
metabolite samples.

CSIS vs. Control CSIS + Flx vs. CSIS

Accuracy 61.50% Accuracy 93.30%
Sensitivity 66.70% Sensitivity 85.70%
Specificity 57.10% Specificity 100.0%

Balanced Accuracy 61.90% Balanced Accuracy 92.90%
Predictive metabolites Predictive metabolites

Metabolites FC Metabolites FC

Tyrosine 0.91 PLK 0.82
Methylnicotinamide 0.75 Phenylalanine 0.91

Hypoxanthine 0.78 Decanoylcarnitine 0.93
Asparagine 1.16 Histidine 0.90
Succinate 1.26 Pantothenic acid 0.97

Valine 0.84 Tyrosine 0.85
Serine 1.15 Inosine monophosphate 0.78

Alanine 0.95
Phosphatidylcholine 1.04

Glycerophosphocholine 0.71
Fumarate 0.87
Thymine 0.92
Carnitine 0.88

Cytidinemonophosphate 1.12
Creatine 1.04

Cystathionine 0.75
Adenosinediphosphoribose 0.81

N-Acetylaspartylglutamicacid 0.73
C6sugaralcohol 0.71

Succinate 1.10
Indoxylsulfate 1.65

Cytidinediphosphocholine 1.19
Guanosinemonophosphate 1.19

Dihydroxyacetone phosphate 1.24
Xanthine 0.77

2.6. Correlation of Behavioral Phenotype with the Metabolomics Data

A Pearson correlation analysis was conducted between all metabolites and immobility
time at 6 weeks in FST. The results are shown in Table 5.

Table 5. Statistically significant Pearson correlation (0.4 < r < −0.4), p < 0.05, between the PFC
metabolites and immobility time in the FST.

Metabolites r p

Sedoheptulose-7-phosphate −0.5698 3.70 × 10−3

Indoxylsulfate −0.4942 1.41 × 10−2

Cytosine −0.4642 2.24 × 10−2

C6H13O9P −0.4622 2.30 × 10−2

Urocanic acid −0.4517 2.70 × 10−2
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Table 5. Cont.

Metabolites r p

Saccharopine 0.4093 4.71 × 10−2

Adenosinediphosphoribose 0.4121 4.54 × 10−2

Acetylcholine 0.4362 3.31× 10−2

Adenine 0.4585 2.43 × 10−2

Guanosine 0.4667 2.15 × 10−2

Acetylarginine 0.4669 2.15 × 10−2

NAD 0.5001 1.28 × 10−2

Riboflavin 0.5359 7.00 × 10−3

cAMP 0.5521 5.20 × 10−3

Myo-Inositol 0.5932 2.30 × 10−3

A moderate positive correlation of myo-inositol with immobility time in the FST
between CSIS and control groups, and a moderate negative correlation of sedoheptulose-7-
phosphate with immobility time in the FST between CSIS + Flx vs. CSIS, were revealed.
These findings show that altered metabolite levels could reflect depression-like behavior in
CSIS rats.

3. Discussion

The obtained metabolic fingerprints revealed metabolites that were significantly al-
tered in depressive-like behavior following CSIS and effective Flx treatment. We also
proposed marker candidates and a panel of predictive metabolites, contributing the most
to group designation or binary classification, respectively.

Following CSIS stress, rats showed depressive-like behavior, assessed by an increased
immobility time in FST, as a measure of behavior despair. This result is consistent with
previous studies of CSIS-induced depression-like behavior assessed by sucrose preference
and open field tests [17,34,35]. Chronic Flx treatment (15 mg/kg/day) significantly reduced
the immobility behavior of CSIS rats, implying that Flx reversed depressive-like symptoms
in stressed rats, indicating an antidepressant effect.

A possibly affected pathway related to depressive-like behavior might be the phos-
phoinositide pathway, with myo-inositol (MI) being significantly altered between CSIS
and control. It is a component of phosphatidylinositols, membrane phospholipids that can
also participate as second messengers [36]. In the brain, MI is synthesized de novo from
D-glucose-6-phosphate by endothelial cells located at the blood–brain barrier or through
interconversion between inositol derivatives. It can be transferred across the blood–brain
barrier, originating from the diet or other organs [37,38]. As it is more prevalent in astro-
cytes, a major glial cell type, than in neurons [39], the elevation of MI level in our study
might reflect glial activation, indicating changes in astroglia cell metabolism, which have
the ability to release pro-inflammatory cytokines and free radicals, causing functional brain
impairment [40–43]. In keeping with previous studies, CSIS resulted in the impairment
of rat PFC function by pro-inflammatory mediators such as interleukin-1 beta and tumor
necrosis factor alpha or compromised glutathione antioxidant defense [17,44]. The re-
vealed significant, positive correlation between increased immobility behavior and MI level
(r = 0.5932) is compatible with the idea that MI is at least in part involved in the depressive-
like behavior of CSIS rats. Additionally, the increased level of MI might change second
messenger systems, which could lead to alterations in inositol trisphosphate signaling
and its role in intracellular calcium mobilization [45], which can trigger apoptosis [46,47],
already confirmed in the PFC of CSIS rats [7,48].

Although differential MI content has been reported depending on the model species
and brain regions [49–52] or age [53–55], MI has been suggested as a metabolic marker for
depression [56]. In line with this, the classical ROC analysis in our study identified MI
as the best candidate to discriminate CSIS from controls. In terms of showing predictive
metabolites for CSIS classification from controls, SVM-LK revealed a panel of seven metabo-
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lites, of which four were amino acids such as tyrosine, asparagine, valine, and serine that
may contribute to or reflect depression-like behavior. The strongest decrease was found in
valine level (FC 0.84). Given that valine is associated with cognitive performance [57], a
decrease in its content is likely connected to changes in cognitive function as a hallmark
of depression. Conversely, the highest increase was revealed in succinate levels (FC 1.26)
contributing the most to group designation. Succinate is a substrate of the TCA cycle and
higher levels may indicate the stimulation of the TCA cycle to increase energy demand and
to aid cells in coping with stress.

Effective Flx treatment in CSIS rats caused more obvious metabolic perturbations in the
PFC, whereby six metabolites were found different by univariate analysis. One of the most
prominent changes was the significant elevation of acetyl-L-carnitine (ALC) which also had
one of the best molecular candidate preferences for Flx efficacy group designation (AUC
0.964). This metabolite has been demonstrated to exert antidepressant effects by improving
mitochondrial energy, the regulation of neurotransmission, and neural plasticity [58]. Thus,
it facilitates the transport of activated long-chain fatty acids into the mitochondria to
undergo subsequent β-oxidation. Generated acetyl-CoA increases mitochondrial energy
production by entering the TCA cycle, or it can be incorporated into glutamate, glutamine,
and GABA [58,59]. The capability of ALC treatment to decrease oxidative stress has also
been reported [60]. Given that mitochondrial oxidative stress has been described in the
PFC of CSIS rats [17], we may suppose that an increase in ALC levels aimed to restore
normal mitochondrial function and rats’ behavioral normalization. Preclinical and clinical
data indicate that ALC is more rapidly effective than Flx and promotes structural plasticity
in the limbic brain region [61–63]. Furthermore, it has been demonstrated that ALC and
Flx have equal antidepressant efficacy, with ALC efficacy being noticed after 3 days of the
treatment and lasting for two weeks after cessation of its application [64,65]. Additional
studies using CSIS paradigms would provide more insight into the possible therapeutic
effectiveness of ALC in protecting the brain.

The content of sedoheptulose-7-phosphate, an intermediate in the pentose phosphate
pathway, was increased following effective Flx treatment in CSIS as well as control rats. Its
increased levels may be linked to the production of ribose 5-phosphate, which is needed
for nucleotide synthesis, or NADPH, which provides electrons to antioxidants combat-
ing harmful oxygen molecules [66]. In addition, elevated contents of stachydrine and
2-hydroxyglutaric acid, which are implicated in the metabolism of amino acids and energy
production, respectively, were found in Flx-treated controls. Although Flx did not alter
the behavior phenotype in control rats, altered metabolites may suggest adaptive cellular
responses to chronic Flx treatment. Additionally, hypotaurine, as the metabolic precursor
of taurine, whose content was increased in effectively Flx-treated rats, may also act as an
antioxidant by scavenging highly reactive hydroxyl radicals [67]. Based on the AUC of clas-
sical ROC analysis, sedoheptulose-7-phosphate (1), hypotaurine (0.982), and ALC (0.964)
were suggested as marker candidates for differentiating effective Flx treatment behavioral
outcomes. SVM-LK achieved a better performance in predicting effective Flx treatment in
CSIS rats compared to CSIS than predicting CSIS compared to control. The best accuracy
of classification was attained for a panel of 25 metabolites, including decanoylcarnitine
and L-carnitine, both mitochondrial metabolites. Although predictive metabolites were
not significantly changed by univariate analysis, the pattern of recognition of a particular
class is influenced by absolute values of the most significant, or predictive, variables as
well as the existence of complex interactions between these variables [68]. Altogether,
this approach would require a substantially larger number of biological replicates and
training-set size for a more accurate distinction between the examined groups.

Furthermore, we found a decline in the contents of xanthosine, riboflavin, and hex-
anoylcarnitine following effective Flx treatment in CSIS rats (Table 1). Given that xanthosine
may be a result of higher oxidative stress caused by purine catabolism [69], we can as-
sume that Flx may be associated with a reduction in oxidative stress and consequently a
decline in xanthosine levels. The same tendency was observed for riboflavin, also known
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as vitamin B2, that neurons and astrocytes obtain from the blood through the blood–brain
barrier. According to the literature, Flx suppressed the metabolism of riboflavin due to
its involvement as an important cofactor in tryptophan metabolism and a crucial methyl
donor in the conversion of homocysteine [70]. Given that we did not detect changes in the
tryptophan or cysteine metabolic pathways in our study, a reduced riboflavin level may
arise from its decreased uptake from the bloodstream. Moreover, a decrease in hexanoyl-
carnitine levels was detected, and it was also revealed as one of the marker candidates by
the classical ROC/AUC value (0.964) to discriminate effective Flx treatment in CSIS rats.
This metabolite promotes the transport of medium-chain fatty acids into the mitochondria.
Moreover, it may be concluded that alterations of aforementioned metabolites reversed the
behavioral alterations following CSIS and were involved in the effective Flx treatment in
CSIS rats. The limitation of the present study is that only six or eight animals per group
were investigated. Increased animal numbers should be considered for future experiments.

4. Material and Methods
4.1. Animals

We used adult male Wistar rats (2.5 months of age, 300–350 g weight) bred in the
Animal Facility of “VINČA” Institute of Nuclear Sciences, National Institute of the Republic
of Serbia, University of Belgrade. Rats were kept under standard conditions in groups of up
to four per cage with a 12 h light/dark cycle, a humidity level of 55 ± 10%, a temperature
of 20 ± 2 ◦C, and free access to food (commercial rat pellets) and water ad libitum. All
experimental procedures were approved by the Ethical Committee for the Use of Laboratory
Animals of the “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of
Serbia, University of Belgrade, which follows the guidelines of the EU-registered Serbian
Laboratory Animal Science Association (SLASA). The study protocol was approved by the
Ministry of Agriculture, Forestry, and Water Management—Veterinary Directorate, ethics
committee, license number 323-07-02256/2019-05. Rats were monitored daily.

4.2. Fluoxetine Hydrochloride Administration

Flunisan tablets (containing 20 mg of fluoxetine hydrochloride, Hemofarm, Vršac,
Serbia) were crushed, dissolved in distilled, sterile water with the aid of ultrasound, and
filtered through Whatman No. 42 filter paper. Ultra-Performance Liquid Chromatography
analysis was used to determine the concentration of Flx solution [71]. We recorded a
total loss of 25% in drug concentration throughout the preparation method, which was
accounted for during drug administration (15 mg/kg/day) [35]. The solution of Flx was
administered according to rat weight measured once a week. Flx serum concentrations were
similar to those reported in the serum of patients effectively treated with Prozac [35,72].

4.3. Experimental Design

The experimental design is graphically represented in Figure 4. A CSIS model was
employed as previously described [17]. At the onset of the experiment (week 0), rats
(n = 50) were randomly assigned into two groups: control (n = 20, housed in groups of up
to four) and CSIS (n = 30, housed individually, with no tactile or visual contact). For the
first 3 weeks, rats were not exposed to any additional experimental procedures. During the
second 3-week period, half of each group of rats was treated daily with intraperitoneal (i.p.)
Flx solution (15 mg/kg/day) (Control + Flx and CSIS + Flx); the remaining rats were admin-
istered daily i.p. injections of physiological solution (Control + Vehicle and CSIS + Vehicle).
The assessment of depressive-like behavior and effectiveness of Flx treatment in rats were
performed according to the results of immobility time in the FST. The test was performed
before the start of the experiment (week 0, baseline) and at the end of the 3rd and 6th weeks.
Given that depression in humans induced by social factors is associated with a higher risk
of mortality in males [73] and that metabolic changes depend on the estrous cycle [74], the
experiments were conducted only in male rats.
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4.4. Forced Swim Test

The FST was performed to evaluate the depressive-like behavior of rats undergoing
the CSIS procedure and the antidepressant-like effect of Flx, as previously described [17].
Rats were individually placed into plexiglass cylinders (height 45 cm, diameter 28 cm)
filled with water (24 ± 1 ◦C) up to a height of 33 cm. During the 5 min long test, immobility,
climbing, and swimming were recorded [75], and results were analyzed by two observers
blinded to the experimental conditions. Immobility was defined as floating in the water
without making any effort but making movements to keep one’s head above the surface.
Rats following CSIS that showed immobility increases >20% at the end of the 3rd and
6th week of testing compared to baseline, were designated as CSIS. Flx-treated CSIS rats
that showed a decrease in immobility behavior >20% at the end of the 6th week relative to
CSIS at the end of the 3rd or 6th week, were designated as responsive to Flx treatment. Rats
following CSIS which showed no immobility increase compared to baseline (CSIS resilient),
and CSIS + Flx rats which showed no immobility decline at the end of the 6th week (Flx
resilient) compared to CSIS rats, were not included in the current study. The final number
of animals per group was 6–8.

4.5. Metabolomics Analysis by LC–HRMS
4.5.1. Optimization of Sample Preparation for LC–HRMS Analysis

Once all the behavioral testing was completed, the rats were anesthetized with a
mixture of ketamine/xylazine (120/16 mg/kg) and sacrificed by decapitation. The PFC
was dissected from the brain on ice, frozen with liquid nitrogen rapidly, and stored at
−80 ◦C until further analysis.

The frozen PFC samples were pulverized using the Cellcrusher (Kisker Biotech GmbH
& Co. KG, Steinfurt, Germany). The tissue was weighed (~10 mg) and metabolic profiling
was performed as described previously [76] with minor modifications. Briefly, metabo-
lites were extracted using 500 µL of methanol/acetone/acetonitrile/water (1/1/1/0.75,
v/v/v/v) containing 2.5 µM Metabolomics Amino Acid Mix Standard (Cambridge Isotope
Laboratories, Andover, MA, United States). After mixing for 15 min at 4 ◦C at 1000 rpm
(ThermoMixer Eppendorf), samples were sonicated for 1 min and vortexed for 10 s. Af-
ter incubation for 2 h at −20 ◦C, samples were centrifuged for 10 min at 14,000 rpm at
4 ◦C. The collected supernatants were evaporated to dryness in a vacuum concentrator
(SpeedVac Concentrator, ThermoFisher Scientific, Waltham, MA, USA). The dry extracts
were reconstituted in 50 µL of methanol/acetonitrile (1:1) and vortexed for 15 sec followed
by centrifugation at 14,000 rpm for 10 min at 4 ◦C. The supernatants were transferred to
LC/MS vials, and LC–HRMS analysis was performed. Pooled quality control samples (QC)
were prepared in the same manner to ensure data quality and linearity. All solvents were
of LC-MS-grade quality and were purchased from Merck (Darmstadt, Germany).
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4.5.2. Metabolic Profiles Analyzed by LC–HRMS

LC–HRMS analysis was performed using a Dionex Ultimate 3000 RS LC-system
coupled to an Orbitrap mass spectrometer (QExactive, ThermoFisher Scientific, Bremen,
Germany) equipped with a heated-electrospray ionization (HESI-II) probe. Extracted
metabolites were separated on a SeQuant ZIC-HILIC column (150 × 2.1 mm, 5 µm) using
water with 5 mM ammonium acetate as eluent A and acetonitrile/eluent A (95:5, v/v) as
eluent B. The gradient elution was set as follows: isocratic step of 100% B for 3 min, 100% B
to 60% B in 15 min, held for 5 min, returned to initial conditions in 5 min and held for 5 min.
The flow rate was 0.5 mL/min. Data was acquired based on a full MS/data-dependent
MS2 (top 10) experiment. Data processing was performed using Compound Discoverer 3.1
(ThermoFisher, CA, USA). Metabolites were identified based on exact mass, retention time,
fragmentation spectra and isotopic pattern. We used an in-house library [76] as well as
the online library mzCloud. The final output data includes the compound name, retention
time (RT), exact mass-to-charge (m/z) ratio, and peak area.

4.5.3. Metabolite Data Statistic and Analysis

We used the web-based tool MetaboAnalyst5 (http://www.metaboanalyst.ca/) (ac-
cessed on 17 March 2023) to perform statistical analysis of metabolome data. Briefly, peak
areas were normalized by the total sum scaling method followed by a log transformation
(base10). Metabolites were further applied to the univariate analysis for pair-wise group
comparisons using a t-test and FC. Metabolites with FDR-adjusted p-values of <0.05 and
FC thresholds of >1.5 were considered statistically significant [77]. Then, multivariate
analysis was performed using PLS-DA, which maximizes the discrimination between the
two groups by incorporating known classification information. Estimated values of R2

were used to explain the model fitness, and Q2 was described for the predictive accuracy of
its class mode.

4.6. Identification of Marker Candidates

For assessing the molecular marker performance for each metabolite as a marker
candidate, firstly ROC curve analysis AUC evaluation were applied using MetaboAnalyst
5.0 Biomarker Analysis tool [78]. Metabolites with AUC > 0.9 were discussed in terms of
marker capacity. The proportion of correctly classified rats with effective Flx treatment
is measured by sensitivity, or the true-positive rate; the proportion of correctly identified
control subjects is measured by specificity, or the true-negative rate.

4.7. SVM-LK-Based Binary Classification

SVM is one of the most prominent supervised machine learning algorithms, which
shows the best predictive performance (balanced, accuracy, sensitivity, and specificity for
each pairwise combination of variables, compared to other machine learning approaches in
diseases and drug treatment [79–82] and also in precision medicine [32]. Accuracy is de-
fined as the percentage of correctly classified samples. Therefore, to obtain the best possible
diagnostic model, and to account for possible interactions between the features (which are
ignored by the ROC/AUC analysis), we selected the input features for the SVM model using
a greedy forward-selection method. This method selects feature combinations that maxi-
mize the predictive accuracy of the model in the CV1 test data, stopping at 50% of features.
Moreover, a 10-times-repeated 3 × 3 nested cross-validation procedure was conducted
with SVM-LK in order to avoid information leakage between subjects used for training and
validating the models, and to enhance the generalizability of the models in new data by
eliminating biased estimation. Further details are given in Supplementary Material S1.

4.8. Statistical Analysis

The behavioral data were analyzed with a three-way repeated-measures ANOVA,
factor treatment (levels: vehicle and Flx), conditions (levels: control and CSIS) and test
as a repeated measure (levels: baseline (weeks 0, 3, and 6) using Statistica 12. Significant

http://www.metaboanalyst.ca/
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differences between the groups were examined using Duncan’s post hoc test. The number
of individual measurements was n = 6–8. In order to explore whether the intensity of
metabolites could reflect despair in the CSIS model, the Pearson correlation analysis was
used to identify the metabolites and immobility time at the 6th week in FST.

5. Conclusions

In summary, distinct PFC metabolic fingerprints of CSIS rats and/or following effective
Flx treatment were revealed by LC–HRMS. An increased content of MI following CSIS
may indicate depressive-like behavior. MI, which is involved in the phosphoinositide
pathway, was also selected as a marker candidate for CSIS. Sedoheptulose-7-phosphate,
hypotaurine, and ALC may be marker candidates for the treatment effect of Flx. A panel
of 7 or 25 predictive metabolites, obtained by SVM-LK, could be used for binary group
classification (CSIS vs. Control and CSIS + Flx vs. CSIS, respectively). Moreover, identified
rat PFC-metabolite marker candidates, along with predictive metabolites and possibly
involved pathways, may further elucidate the molecular mechanisms of a depressive
phenotype and a mode of Flx action.
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