The 6^{th} International Conference on the Physics of Optical Materials and Devices &

The 5th International Workshop of Persistent and Photostimulable Phosphors

BOOK OF ABSTRACTS

Editors: Dr. Miroslav Dramićanin

Dr. Bruno Viana

Dr. Mathieu Allix

Published and printed by: Društvo za razvoj nauke Srbije, Belgrade

Print run: 150

ISBN-978-86-904450-0-4

August 2022, Belgrade, Serbia

ICOM&IWPPP 2022

The 6th International Conference on the Physics of Optical Materials and Devices

&

The 5th International Workshop of Persistent and Photostimulable Phosphors

BOOK OF ABSTRACTS

PHOTOLUMINESCENT PROPERTIES OF THE Eu³⁺ ION IN YNbO₄-LuNbO₄ SOLID SOLUTION

Milica Sekulić, Ljubica Đačanin Far, Tatjana Dramićanin, Aleksandar Ćirić, Miroslav D. Dramićanin, <u>Vesna Đorđević</u>

Center of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade, Serbia, vesipka@vinca.rs

Lanthanide (Ln) activated phosphors are a major topic in both basic and applied science. The trivalent europium ion (Eu³⁺) is well recognized for its intense luminescence in the orange/red spectral region, making it useful for a wide range of applications. Because Eu³⁺ has an even number of electrons in its 4f shell ([Xe]4f), the ion has non-degenerated ground (${}^{7}F_{0}$) and excited (${}^{5}D_{0}$) energy states, as well as non-overlapping ${}^{2S+1}L_{J}$ multiplets, resulting in emission spectra that are predictable in relation to the host material site symmetry.

The solid-state reaction synthesis method was used to make a set of five Eu-doped $Y_xLu_{1-x}NbO_4$ samples (x=0-1) with a fixed Eu concentration (5%). All the structures crystallize as beta-Fergusonite, in which the Eu ion replaces the Y or Lu ion in a large, low-symmetry octahedron. The excitation and emission spectra of the Eu³⁺ ion in all composition hosts show characteristic *f-f* transitions from which Stark energy levels were calculated.

Specific features and energy positions of the distinctive ${}^5D_0 \rightarrow {}^7F_1$ magnetic dipole transition were determined when measured with higher resolution and spectra deconvolution was utilized. The maximum ΔE splitting of the 7F_1 manifold's Stark splitting and the asymmetry ratio R all show Y/Lu content-dependent trends.

Calculations based on Judd-Ofelt theory were utilized to determine specific quantities. The lowest non-radiative deexcitation rate was observed with x = 1, resulting in the conclusion that LuNbO4 is a better host-matrix for Eu³⁺ emission than other compositions.

Acknowledgments:

This research was funded by NATO Science for Peace and Security Programme under grant id. [G5751].