

COIN2022

CONTEMPORARY BATTERIES AND SUPERCAPACITORS

INTERNATIONAL SYMPOSIUM BELGRADE 2022

> PROGRAM AND BOOK OF ABSTRACTS

June 1-2, 2022, Serbian Academy of Sciences and Arts Belgrade, Serbia

COIN2022

CONTEMPORARY BATTERIES AND SUPERCAPACITORS

INTERNATIONAL SYMPOSIUM BELGRADE 2022

Program and Book of Abstracts

June 1-2, 2022, Serbian Academy of Sciences and Arts Belgrade, Serbia

Book title:	Contemporary Batteries and Supercapacitors - International Symposium Belgrade 2022 - Program and Book of Abstracts
Publisher:	University of Belgrade – Faculty of Physical Chemistry, Belgrade, Serbia
Organizers:	University of Belgrade – Faculty of Physical Chemistry, Belgrade, Serbia
	National Institute of Chemistry, Ljubljana, Slovenia
	University of Montenegro, Faculty of Metallurgy and Technology, Podgorica, Montenegro
	Serbian Academy of Sciences and Arts, Belgrade, Serbia
Editor:	Milica Vujković
Assisted Editor:	Željko Mravik
Technical Editors:	Branislav Milovanović
	Tamara Petrović
Typesetting	
and prepress:	Jana Mišurović,
	Aleksandra Gezović
Cover design:	Marko Perutović
	2dnetwork d.o.o
	Gračanička 2/1 81400 Nikšić
Printing:	Serbian Academy of Sciences and Arts
	Kneza Mihaila 35, 11000 Beograd
	https://www.sanu.ac.rs/
Publication year:	2022
Print-run:	55 copies

CIР - Каталогизација у публикацији - Народна библиотека Србије, Београд

621.35(048)

INTERNATIONAL Symposium Contemporary batteries and supercapacitors (2022 ; Beograd)

Contemporary batteries and supercapacitors : COIN2022 : program and book of abstracts / International Symposium Belgrade, June 1-2, 2022 ; [editor Milica Vujković]. - Belgrade : University, Faculty of Physical Chemistry, 2022 (Beograd : SASA). - II, 51 str. : ilustr. ; 25 cm

Tiraž 55. - Str. [13]: Preface / Editors. - Bibliografija uz većinu apstrakata.

ISBN 978-86-82139-86-7

а) Батерије - Апстракти

Data-driven Design of New Mg-based Hydride Materials – A Synergy of Experiments and DFT

Katarina Batalović¹, Jana Radaković¹, Bojana Kuzmanović¹, Mirjana Medić Ilić¹, Bojana Paskaš

Mamula¹

¹Laboratory for nuclear and plasma physics CONVINCE Center of excellence for hydrogen and renewable energy VINCA Institute of the nuclear sciences – national institute of the Republic of Serbia, University of Belgrade e-mail: kciric@vin.bg.ac.rs

Hydrogen absorption/desorption is one of the key processes underlying many clean energy applications, such as thermal energy storage, hydrogen storage, hydrogen compression, and nickelmetal hydride batteries. For all those applications fast and reliable characterization of new materials, and in particular, information regarding energetics of hydride formation reaction is of main interest. In the last decades, DFT (density functional theory) approach showed good predictive potential for the ground state properties and calculation of hydride formation energies. Recently, MEGNet implementation [1] of graph neural networks showed promising results for fast and reliable prediction of formation energies for molecules and crystals. Here, we consider the development of a machine learning model based on the available DFT predicted structures and experimentally measured hydride formation enthalpies. The proposed model [2] is capable to predict hydride formation behavior for a wide variety of intermetallic compounds and distinguish the behavior of the polymorphs. In particular, based only on the crystal structure of the starting intermetallic compound, we were able to predict hydride formation enthalpy with accuracy comparable to DFT calculated values. Further, we demonstrate the application of this model for proposing new materials in Mg-Ni-M compound space with the desired enthalpy for hydrogen storage.

References:

[1] C.Chen, W.Ye, Y.Zuo, C.Zheng, S.P.Ong, Chem. Mater., Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals, 31 (2019) 3564.

[2] K.Batalović, J.Radaković, B.Paskaš Mamula, B.Kuzmanović, M.Medić Ilić, Predicting Heat of Hydride Formation by the Graph Neural Network – Exploring Structure-Property Relation for Metal Hydrides, preprint http://dx.doi.org/10.2139/ssrn.4055259

Acknowledgement

Sponsors

९९

The scientific man does not aim at an immediate result. He does not expect that his advanced ideas will be readily taken up. His work is like that of the planter — for the future. His duty is to lay the foundation for those who are to come, and point the way. He lives and labors and hopes.

Nikola Tesla

