Book of abstracts

PHOTONICA2017

The Sixth International School and Conference on Photonics

& COST actions: MP1406 and MP1402

&H2020-MSCA-RISE-2015 CARDIALLY workshop

<u>CARDIALLY</u>

28 August – 1 September 2017

Belgrade, Serbia

Editors

Marina Lekić and Aleksandar Krmpot

Institute of Physics Belgrade, Serbia

Belgrade, 2017

ABSTRACTS OF TUTORIAL, KEYNOTE, INVITED LECTURES, PROGRESS REPORTS AND CONTRIBUTED PAPERS

of

The Sixth International School and Conference on Photonics PHOTONICA2017

28 August – 1 September 2017 Belgrade Serbia

Editors Marina Lekić and Aleksandar Krmpot

Technical assistance Marko Nikolić and Danica Pavlović

Publisher Institute of Physics Belgrade Pregrevica 118 11080 Belgrade, Serbia

Printed by Serbian Academy of Sciences and Arts

Number of copies 300

ISBN 978-86-82441-46-5

Effects of nanosecond laser pulses at 248 nm wavelength on multilayer CrN/(Cr,V)N coatings

<u>B. Gaković</u>¹, Suzana Petrović¹, P. Panjan², J. Kovač², V. Lazović³, C. Ristoscu⁴, I. Negut⁴ and I. N. Mihailescu⁴

¹Vinca Institute of Nuclear Sciences, University of Belgrade, Serbia ²Jožef Stefan Institute, Ljubljana, Slovenia ³Institute of Physics, University of Belgrade, Serbia ⁴National Institute for Lasers, Plasma and Radiation Physics, Magurele, Romania e-mail:biljagak@vinca.rs

The effects of UV nanosecond laser pulses on multilayer CrN/(Cr,V)N coatings were studied. In the experiment laser irradiation was performed in air at 248 nm wavelength and pulse duration of 25 ns. The surface composition and microstructure was analyzed depending on the initial content of vanadium in the coatings and number of accumulated laser pulses at a fluence of 0.17 Jcm⁻². Most of the absorbed laser energy was rapidly transformed into heat, producing intensive modifications of the composition and morphology of the multilayer structure. The result has shown that concentration of metallic components was homogeneously distributed inside the coatings. However, on the surface and in the sub-surface regions the contents of Cr and V were decreased due to oxidation. The composition and thickness of created mixture of oxides Cr_2O_3 and V_2O_5 depend on the number of laser pulses and initial V content. Laser induced surface morphology changes of the multilayer CrN/(Cr,V)N coatingswere registered at the irradiation areas: (i) grainy structures at peripheries, (ii) cracks and (iii) irregular closed shapes in the center.