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Abstract: The attention mechanism in natural language processing and self-attention mechanism in
vision transformers improved many deep learning models. An implementation of the self-attention
mechanism with the previously developed ConvLSTM sequence-to-one model was done in order to
make a comparative evaluation with statistical testing. First, the new ConvLSTM sequence-to-one
model with a self-attention mechanism was developed and then the self-attention layer was removed
in order to make comparison. The hyperparameters optimization process was conducted by grid
search for integer and string type parameters, and with particle swarm optimization for float type
parameters. A cross validation technique was used for better evaluating models with a predefined
ratio of train-validation-test subsets. Both models with and without a self-attention layer passed
defined evaluation criteria that means that models are able to generate the image of the global aerosol
thickness and able to find patterns for changes in the time domain. The model obtained by an
ablation study on the self-attention layer achieved better outcomes for Root Mean Square Error and
Euclidean Distance in regards to developed ConvLSTM-SA model. As part of the statistical test, a
Kruskal–Wallis H Test was done since it was determined that the data did not belong to the normal
distribution and the obtained results showed that both models, with and without the SA layer, predict
similar images with patterns at the pixel level to the original dataset. However, the model without
the SA layer was more similar to the original dataset especially in the time domain at the pixel level.
Based on the comparative evaluation with statistical testing, it was concluded that the developed
ConvLSTM-SA model better predicts without an SA layer.

Keywords: self-attention; ConvLSTM; spatio-temporal time-series image prediction; particle swarm
optimization; aerosol optical thickness; Kruskal-Wallis H Test

MSC: 68T07; 68T20

1. Introduction

One of the biggest uncertainties in climate modeling is aerosols with their movement
through the air. In fact, interaction with solar and terrestrial radiation by aerosols disrupts
the Earth’s radiative budget by scattering and absorbing sunlight. Aerosol effects, like
influencing cloud development or preventing clouds from forming, have effects in the
water cycle (indirect effect). Although their mass share in the atmosphere is relatively small,
they still have a great impact on the atmosphere and human health and can affect cloud
formations and influence weather patterns [1,2]. Since aerosol movements and dispersions
are connected with weather patterns it will be useful to understand the motion of aerosols
in order to predict weather patterns.

Satellite Terra/MODIS measures Aerosol Optical Depth (AOD), also known as Aerosol
Optical Thickness (AOT), by remote sensing at a wavelength of 550 nm. A thick layer
of aerosols will prevent the transmission of light by scattering or absorption through
the atmosphere from the ground to the satellite’s sensor, while a thin layer of aerosols
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allows enough light through to see the ground. AOT is a unitless value and is wavelength
dependent [1].

In the previous study, the authors developed models to forecast AOT sequences [3].
The sequence-to-one ConvLSTM model had the smallest errors and represents a basic
model in this study. The aim is to improve the model by adding the attention mechanism.
Attention and transformers are usually used for classification task but we analyzed the use
of the attention mechanism for recurrent prediction of satellite AOT image.

Mathematically, Deep Learning (DL) models represent the universal approximation
algorithm with the ability to learn any mapping function. The activation function is the only
nonlinear part of a neural network and it is probable that the composition of nonlinearities
in sequences will be able to express more complex nonlinear representations of the inputs.
The training curve shows that the model mathematically converges [4]. Transformers can
be applied to problems involving tensors as inputs and tensors as outputs in order to
memorize (Tensor2Tensor library) [4–6].

In this study commonly used techniques for hyperparameter tuning such as a grid
search, and particle swarm optimization (PSO) as a metaheuristics technique have also
been used [7]. Hybrid hyperparameter tuning strategy was implemented by orthogonal
gird search-metaheuristic search methodology merging grid search and swarm based meta-
heuristic optimization. The integer parameters or those that can be enumerated (e.g., the
neuron activation function) defining the DL algorithm are tuned using grid search while
real number valued parameters subject to constraints are obtained as outputs from PSO
algorithm. The two tuning strategies are applied in orthogonal and sequential way first
performing a grid search on a subset of parameters and then performing swarm based meta-
heuristic optimization on the complement. The orthogonality is not proven beforehand but
is considered in soft-computing sense and is dependent on domain expertise.

2. Data and Methodology
2.1. Pre-Training Process

In this study, satellite-retrieved AOT was used as a dataset MODAL2_E_AER_OD
that provides snapshots from 2000 to the present. This dataset, as input data for training
of DL models, covers the period from 18 February 2000 to 30 September 2022, with a
temporal resolution of 8 days, providing a total of 1041 snapshots in PNG format with
3600 × 1800 resolution. Input sequence of the model was 10 images by 144*288 pixels’
resolution with 3 channels RGB.

The model input was sequence of 10 images temporally distributed by 8 days, and
output is one image that represent 11th image as prediction for next 8 day. Difference
and improvement to previous research [3] was 10 times increasing of the database by
overlapping technique which shift input sequence of 10 images for one image (8 days)
instead for 10 images as in [3]. Larger database provides better and more accurate machine
learning results.

In the MODAL2_E_AER_OD dataset black pixels of the images represent spots where
the sensors could not make measurements, and the difference in data preparation compared
to the previous study [3] is that the unread i.e., black pixels were converted to white color
which indicate a zero AOT concertation. Therefore, the problem with loading and predicting
unknown values has been reduced on possible difference in useful range and the obtained
results are more comparative.

In Figure 1, dark brown pixels show high AOT concentration, while tan pixels show
lower concentration, and light-yellow areas show small amount of AOT.
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Figure 1. Global AOT concentration.

2.2. Literature Review and Related Work

Attention is the ability to focus on a specific target while simultaneously ignoring
others. Transformer uses a seq2seq, i.e., encoder-decoder architecture, and is able to process
a whole sequence with attention mechanism. Self-attention (SA) is a type of attention used
in transformer where focus is to one sequence and representation of its different parts. SA
in computer vision can capture long-range spatial-temporal dependencies as explained in
the study [8].

The transformer has no recurrent or convolutional structure [9]. Vision Transformer
(ViT) divides an image into a sequence of non-overlapping patches and then capture spatial
features in global context by SA mechanism [10]. Image patches are treated the same way
as tokens (words) in Natural Language Processing (NLP) and the sequence embedding
of linearly projected image patches is token. As an alternative to raw image patches,
hybrid architecture is when the patch embedding is applied to patches extracted from a
CNN feature map.. Every location of convolution layers corresponds to some location of
image. Position embeddings with classification input embedding should be added to token
(sequence embedding) [10].

The main mechanism in attention is scaled query-key dot product (Luong-style at-
tention [9,11]). Another type of attention is implemented through additive attention layer
(Bahdanau-style attention [12]). Attention consists of three matrices (query Q, key K, value
V) similar to database where data are indexed by keys, and retrieved by a query. If query,
key, value is the same, then is a self-attention. Self-attention, by backpropagation, reweights
its Q, K, and V matrices learned from the data. SA updates each component of a sequence
by grouping global information from the complete input sequence [9,13].

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (1)

The input is composed of keys and queries of dimension dk, and values of dimension
dv. The dot products grow in magnitude for large values of dk, putting the softmax function
with extremely small gradients. To prevent that the dot product is scaled by (dk)−1/2 [9].
Equation (1) is based on the equation for cosine similarity [14]. The last activation function
of a neural network is usually the softmax function in order to normalize the output
of a network and to convert the linear output into a probabilistic one. SA encodes the
embedding vector to three new vectors key, query, and value in order to compute the
similarity between the key and query, and after to determine the attention score with the
softmax function [9].
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The attention layer can help a neural network in memorizing the large sequences of
data. Attention helps to find the correlation between the states when the network reads
different tokens in the sequence. Therefore, an RNN with attention can handle a longer
sequence and focus on different parts while producing tokens [15]. Computing forward
attention requires performing inference to obtain the expectation of the annotation function,
i.e., the context vector. RNN takes two inputs at each time step (input and hidden state)
and to return the output of the hidden units for all the previous time steps it is necessary to
set return_sequences = True.

ConvLSTM model was integrated with SA mechanism in order to develop ConvLSTM-
SA model as presented in the several studies [8,16]. The comparison between the ConvLSTM-
SA model and ConvLSTM model was done and the main advantage is that memory cell of
previous time step is able to contain global past spatio-temporal information [16].

The evaluation of the ConvLSTM-SA model was done by several evaluation metrics
such as Cosine Similarity CS, Root Mean Squared Error RMSE and Euclidean Distance
EUCD. In previous research we used RMSE and CS [3], and a new metric is EUCD. The
purpose of a similarity measurement is to compare two vectors of pixels in order to compute
a single number which evaluates their similarity.

EUCD = d(X, Y) =
√

∑n
i=1(yi − xi)

2 (2)

where xi and yi are components of the X and Y vectors, respectively (X represents a 1D
vector of the image from the training dataset and Y represents a 1D vector of the predicted
image of the developed model). If a 2D image is converted into 1D array, vector with the
same number of pixels as image is obtained. EUCD shows high level of sensitivity so it is
appropriate for comparison.

3. Deep Learning Model

In the study [3] we performed comparison of four models and the ConvLSTM model
sequence-to-one had the best results. Therefore, the mention model is the basic model
in which we want to implement SA in order to get new model with better performances.
Luong-style attention and Bahdanau-style attention have good results with CNN models
but recurrent models should be implemented with SA. ConvLSTM-SA model is built using
Keras and since there is no SA layer in Keras we need to use an Attention layer and feed the
same tensor twice as SA is of multiplicative kind. Figure 2 shows the plot of ConvLSTM-SA
model with layers and hyperparameters.

The optimal parameters for both ConvLSTM2D layers were found by grid search
technique described in next chapter. Dropout and BatchNormalization are both added after
ConvLSTM2D layers to avoid overfitting, and both dropout values were calculated with
learning rate by PSO algorithm. The last layer is Conv2D in order to forecast a single image.
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Figure 2. Plot of ConvLSTM-SA model for sequence-to-one prediction.

4. Results and Discussion
4.1. Evaluation Criteria

The examination of the database is done in order to better understand the results
obtained by the model. Therefore, the two criteria for evaluation of the model performance
were conducted.

1. The model is capable to generate image of global AOT if metrics for predicted image
in comparation of an original image is equal or better than average difference of
randomly selected images from the database.

2. The model is capable to find patterns in time domain if metrics for predicted image
in comparation of an original image is equal or better than average difference of two
adjacent images from the database.

The average difference between two randomly selected images with 10,000 repetitions
and the average difference between two adjacent images from database were calculated.
The obtained results with standard deviation (STD) are shown in Table 1.

Table 1. Average difference with STD of AOT database images.

CS RMSE EUCD

1. criterion for evaluation 0.9950 ± 0.002 0.0931 ± 0.018 32.8803 ± 6.318

2. criterion for evaluation 0.9975 ± 0.001 0.0663 ± 0.013 23.3766 ± 4.493
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Test results based on the above criteria can be viewed in relation to the mean values
for the metrics given in the tables to which one standard deviation is added or subtracted
based on the uncertainty of the mean value. The models being tested can, based on the
stated criteria, fully able, partially able or not able them by observing the results during
cross validation.

4.2. Comparative Analysis

In order to compare model developed in this study we used for the reference model
our ConvLSTM sequence-one-model presented in previous work [3]. The obtained test-
ing results with new database (step 1 image instead of 10 images) with cross validation
technique are shown in Table 2.

Table 2. Cross validation with reference model.

Ratio
Train Validation Test

CS RMSE EUCD CS RMSE EUCD CS RMSE EUCD

70:20:10 0.9982 0.0736 23.1746 0.9985 0.0664 23.1272 0.9975 0.0665 23.0200

70:10:20 0.9982 0.0727 23.2243 0.9985 0.0670 23.2473 0.9976 0.0660 22.9765

20:70:10 0.9982 0.0741 23.3053 0.9986 0.0679 23.5969 0.9975 0.0668 23.1850

20:10:70 0.9982 0.0682 23.4433 0.9984 0.0682 23.6810 0.9976 0.0656 22.8610

10:70:20 0.9981 0.0752 23.6591 0.9986 0.0683 23.7524 0.9974 0.0680 23.5864

10:20:70 0.9984 0.0711 23.1147 0.9986 0.0665 23.0807 0.9976 0.0667 23.0897

The order of data during cross validation remains the same as in the original file.
The arrangement of the taken data groups has been changed based on the percentage
size, where 70% of the data is always for training, 20% is always for validation and 10%
is always for testing. From Table 2 the best CS value is 0.9976 and the best RMSE and
EUCD metrics are 0.0656 and 22.8610 from test subset, respectively. Thus, according to the
previous defined evaluation criteria reference model is able to generate global AOT image,
and partially able to find patterns in the time domain.

4.3. Hyperparameter Tuning

Hyperparameter tuning was done in three stages. The first and second stage were
based on grid search with two parameter types. First type string was used for best com-
bination of ConvLSTM2D activation functions. Second type integer was used for best
combination for size and numbers of filters in ConvLSTM2D layers. Third type float was
used with Particle Swarm Optimization (PSO) for searching in continuous space values for
dropout and dropout_1 from Figure 2, and learning rate value for training.

Two grid searches were performed. The first grid search was done in order to choose
the best activation function for ConvLSTM2D layers (one was for output layer activa-
tion) and the second grid search was done for recurrent_activation. During testing, we
noticed that with “linear” and “ReLu” activation functions in any combination, it is im-
possible to fit the model because during training, all metrics get NAN values, but in
combination with other functions it was possible. The obtained results show that the best
combination for model is “linear” function for output activation and “hard_sigmoid” for
recurrent_activation with CS = 0.9975, EUCD = 22.8787, and RMSE = 0.0662 for test dataset,
Figure 3.
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Figure 3. Grid search for activation functions through both ConvLSTM2D layers.

The second grid search was done in order to choose adequate number of filters with
filter size for both ConvLSTM2D layers.

In Figure 4, numbers on the X-axis represent the parameters that were examined,
e.g., 8, 16, 2, the number eight represents the number of filters in the conv_lst_m2d layer
of the model presented in Figure 2. The number 16 represents the number of filters in the
conv_lst_m2d_1 layer. The number two represents the square shape filter (kernel) size
for both ConvLSTM layers. The best combination was 32,32,3 with metrics CS = 0.9977,
EUCD = 22.3570, and RMSE = 0.0648 for test dataset.
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Figure 4. Grid search for number of filters and filters size.

The last stage in hyperparameters tuning was PSO, which as a swarm intelligence
algorithm was used to find the global minimum of the function with pyswarms Python
library [17]. PSO initializes the particle swarm position and velocities from uniform random
distribution subject to bounds of the search space, the iterative optimization approach
repeats the sequence of steps consisting of (1) calculating traveling velocity dynamically of
each particle; (2) updating particle’s personal best value; (3) updating global best value;
and (4) updating velocity and positionof each particle in the swarm, until the desired best
fitness value or maximum iteration count is met. The update of velocities v and positions x,
respectively, is done according to expressions:

v(t + 1) = wvi(t) + c1r1(pi − xi(t)) + c2r2
(

pg − xi(t)
)

(3)

xi(t + 1) = xi(t) + vi(t + 1) (4)
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where pi is the personal best position of the individual particle from previous iterations,
pg is the global best position in the swarm from previous iterations, w denotes inertia
parameter, c1 is parameter representing cognitive behavior (cognitive coefficient), while
c2 influences social behavior (social coefficient), r1 and r2 are random numbers from the
unit segment defining stochastic behavior of the algorithm, index i, ranging from 1 to N,
where N is the total number of particles, identifies each particle in the swarm and t is the
discrete time. These expressions reflect the nature of swarm based metaheuristics in which
individual and collective (social) behavior of agents in a swarm leads to complex behavior
of the system capable of reaching the desired optimal goal. In this study, five particles were
used in 50 iterations, where the set parameters cognitive = 1, social = 2.5, and inertia = 0.3
favoring the social moment of the PSO. The process of searching for optimal values in a
three-dimensional continuous space is shown in Figure 5.
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Figure 5. Particle Swarm Optimization for “dropout”, “dropout_1”, and “learning rate”.

As can be noticed from Figure 5, the PSO algorithm randomly searches for parameters
in the first ten iterations. From the tenth to the thirtieth iteration grouping near optimal
values for “dropout” and “dropout_1” can be noticed. For the last 20 iterations, the
PSO algorithm is mainly focused on finding the optimal value for “learning rate”. The
optimal values are 0.15649, 0.43055, and 0.00436 for “dropout”, “dropout_1”, and “learning
rate”, respectively. For these parameters metrics are CS = 0.9978, EUCD = 21.6647, and
RMSE = 0.0632 for test dataset. ConvLSTM-SA model was tested with the fully optimized
parameters from hyperparameters tuning.

Another evaluation was performed with cross validation on all images in database.
The obtained results are presented in Table 3.

Table 3. Cross validation of ConvLSTM-SA model with self-attention.

Ratio
Train Validation Test

CS RMSE EUCD CS RMSE EUCD CS RMSE EUCD

70:20:10 0.9987 0.0624 21.7002 0.9987 0.0625 21.6925 0.9978 0.0624 21.5246

70:10:20 0.9988 0.0619 21.2434 0.9988 0.0614 21.2196 0.9979 0.0613 21.2229

20:70:10 0.9987 0.0621 21.308 0.9987 0.0633 21.8114 0.9979 0.0615 21.1876

20:10:70 0.9987 0.0637 22.2504 0.9986 0.0652 22.5577 0.9979 0.0624 21.6773

10:70:20 0.9987 0.0623 21.5556 0.9988 0.0623 21.5717 0.9978 0.0633 21.7486

10:20:70 0.9987 0.063 22.045 0.9987 0.0636 22.0764 0.9977 0.0645 22.2383

Table 3 shows that the best results are CS = 0.9979, RMSE = 0.0613, and EUCD = 21.1876
for test subset. Based on the defined evaluation criteria from 4.1 Evaluation criteria, the
ConvLSTM-SA model is capable of producing a global AOT image and is capable of finding
patterns in the time domain.
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Table 4 shows statistical results from comparison between ConvLSTM-SA model and
reference ConvLSTM model from previous study [3].

Table 4. Statistical comparison between ConvLSTM-SA model and reference ConvLSTM model.

CS RMSE EUCD

AVG DIFF [%] AVG DIFF [%] AVG DIFF [%]

Train 0.99872
±4 × 10−3%

5 × 10−2

±1 × 10−2
6.25 × 10−2

±1.07%
−13.86
±3.63

21.68
±1.85%

−7.01
±2.04

Validation 0.99872
±7.5 × 10−3%

1.8 × 10−2

±1.1 × 10−2
6.3 × 10−2

±2.08%
−6.43
±2.44

21.82
±2.10%

−6.80
±2.45

Test 0.99783
±8.2 × 10−3%

3 × 10−2

±1.2 × 10−2
6.3 × 10−2

±1.9%
−6.06
±2.27

21.60
1.80%

−6.57
±2.10

From Table 4 it can be concluded that CS metrics has not been changed significantly,
but RMSE and EUCD show the best improvements of −13.86% and −7.01%, respectively.
The results for the test set should be considered the most objective, and thus the obtained
improvements are comparatively 0.03%, −6.06%, and −6.57% for CS, RMSE, and EUCD
metrics respectively.

4.4. Ablation Study on Self-Attention Mechanism

In order to evaluate impact and contribution of SA, we removed SA layer from
ConvLSTM-SA model. The testing was performed with the same hyperparameters. The
cross validation results are given in Table 5.

Table 5. Cross validation for ablation study of the ConvLSTM-SA model.

Ratio
Train Validation Test

CS RMSE EUCD CS RMSE EUCD CS RMSE EUCD

70:20:10 0.9987 0.0634 21.4830 0.9988 0.0619 21.4671 0.9979 0.0617 21.2680

70:10:20 0.9987 0.0627 21.2872 0.9988 0.0617 21.3075 0.9979 0.0610 21.1572

20:70:10 0.9988 0.0618 21.1337 0.9988 0.0625 21.5810 0.9979 0.0611 21.0578

20:10:70 0.9987 0.0624 21.3761 0.9987 0.0629 21.7307 0.9980 0.0597 20.7411

10:70:20 0.9987 0.0626 21.2960 0.9988 0.0617 21.3259 0.9979 0.0622 21.3959

10:20:70 0.9987 0.0622 21.2285 0.9988 0.0613 21.2381 0.9979 0.0622 21.3617

From Table 5 it can be concluded that the best values are CS = 0.9980 RMSE = 0.0597
and EUCD = 20.7411 for model without SA layer. For better presentation of the results
we made Table 6 with statistics for the model with and without SA. Based on the defined
evaluation criteria from 4.1 Evaluation criteria, the ConvLSTM-SA model without SA layer,
i.e., with ablation, is capable of producing a global AOT image and is capable of finding
patterns in the time domain.
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Table 6. Statistical comparison between ConvLSTM-SA model and model without self-attention
layer.

CS RMSE EUCD

AVG DIFF [%] AVG DIFF [%] AVG DIFF [%]

Train 0.99872
±4.1 × 10−3%

0
±5.8 × 10−3

6.25 × 10−2

±0.86%
−7.99 × 10−2

±1.37
21.30
±0.56%

−1.77
±1.93

Validation 0.99878
±4.0 × 10−3%

6.7 × 10−3

±8.5 × 10−3
6.2 × 10−2

±0.95%
−1.67
±2.28

21.44
±0.87%

−1.74
±2.27

Test 0.99792
±4.0 × 10−3%

8.4 × 10−3

±9.1 × 10−3
6.1 × 10−2

±1.54%
−2.00
±2.45

21.16
±1.15%

−2.02
±2.13

The biggest differences are in the test set, such as 0.008%, −2.00%, and −2.02% differ-
ence to the ConvLSTM-SA model for CS, RMSE, and EUCD respectively.

4.5. Statistical Tests

In order to better evaluate the SA mechanism with ConvLSTM model for predicting
the global AOT image, statistical testing was additionally performed. The statistical testing
was done on grayscale images for the sake of simplification, and it was shown that in
this way it is possible to statistically compare images of the same content [18]. The first
statistical testing refers to obtained images by prediction with ConvLSTM-SA model and
by model after remove SA, i.e., without SA layer. This tests the capabilities of the models in
terms of the quality of generated images. Another way of testing refers to statistical testing
of time series based on pixels. Time series for pixels were obtained based on all the values
that one pixel has in the test subset obtained by model prediction. This testing evaluates
the model’s ability to recognize changes in the time domain.

Considering that most statistical tests imply that the data being tested have a normal
distribution, the first test we performed was testing for the normal distribution of the data.
For this test, we used the normaltest method from the scipy.stats library, which is based on
skewness and kurtosis metrics [19]. The results of statistical testing are shown in Table 7.

Table 7. Results of statistical testing for predicted images and pixels in the time domain for the test
subset.

Object of Testing Sort of Testing Data Statistic p Value

Image

Normaltest
original 312.74 0.0156

ConvLSTM-SA 323.48 0.0033

ConvLSTM 187.11 0.0230

Kruskal–Wallis
H test

Original/ConvLSTM-SA 161.85 0.0823

Original/ConvLSTM 119.56 0.0992

ConvLSTM-
SA/ConvLSTM 151.82 0.0444

Pixel in time domain

Normaltest
original 137.12 0.0377

ConvLSTM-SA 55.34 0.0198

ConvLSTM 63.16 0.0537

Kruskal–Wallis
H test

Original/ConvLSTM-SA 52.04 0.0927

Original/ConvLSTM 29.80 0.2373

ConvLSTM-
SA/ConvLSTM 54.76 0.0848

Statistical testing of images was performed by comparing sequences of images, where
one sequence represents one horizontal row of pixels. The given results represent the
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total mean values of the testing, and the 0.05 value was taken as the limit value for the p
value [18,20]. As can be seen from Table 7, the assumed hypothesis that the images have a
normal distribution is not valid. For this reason, the matching of the sample distribution of
the compared images was tested using the Kruskal–Wallis test [21]. The null hypothesis
being tested is that images are similar if they have a similar distribution of grayscale
samples [18]. Based on the results of this test with the same threshold p value of 0.05, it
can be concluded that the model with and without the SA layer generate images similar
to those from the original dataset. At the same time, the images generated by the models
with and without the SA layer are not similar to each other according to the same criterion.
Generated images more similar to the original ones were achieved by the model without
the SA layer with p value = 0.0992.

Statistical testing of pixels in the time domain was performed by comparing the
series of all achieved values in the test subset for individual grayscale pixels. Neither
the original data nor the data obtained by model prediction with SA passed the test of
normal distribution with a threshold p value of 0.05. Only the model without SA passed
the normality test, so we performed another Kruskal–Wallis test. The null hypothesis
being tested is that time series are similar if they have a similar distribution of grayscale
samples [18]. The results from Table 7 show that the sequences generated by both models
are similar and that the null hypothesis is valid. Additionally, time series predicted by
model with and without SA can be considered similar according to the null hypothesis and
the threshold value for p values. The data generated by the model without SA showed a
good agreement with the original data, reaching p value = 0.2373.

Another study [22] reports a comparative evaluation of bidirectional long short-term
memory network with attention layers and their findings suggest that the additional
attention layer does not improve upon a less complex approach which is the same as the
findings in this study.

5. Conclusions and Future Research

In order to improve the developed ConvLSTM model from previous study, the SA
mechanism was implemented. Hyperparameter tuning with grid search and PSO for five
particles and 50 iterations enabled better fitting of the model. Model ConvLSTM-SA and
model without SA layer was verified with two evaluation criteria which refers that models
are able to generate image of the global AOT concentration and it could find patterns in
the time domain. ConvLSTM-SA model had better performances than reference model
ConvLSTM sequence-to-one. RMSE and EUCD show improvements of −13.86% and
−7.01%, respectively.

The ablation study on the SA mechanism showed lower RMSE and EUCD compared
to the ConvLSTM-SA model (≈2%). Additionally, statistical comparisons showed that
the SA layer did not meet expectations and developed model without SA layer performs
better global AOT image prediction. The hypothesis that the grayscale images obtained
by the model prediction with and without SA layer belong to a normal distribution is not
valid. The grayscale images generated by ConvLSTM-SA model and model without SA
layer passed Kruskal–Wallis test where the model without the SA layer had better result
with p value = 0.0992. The Kruskal–Wallis test for pixels in the time domain, i.e., time
series, was successful for the model with and without SA layer but without was better with
p value = 0.2373.

Considering the positive influence of the hyperparameter tuning of the model in future
research, the application of this technique to the reference model that was developed and
presented in the previous study can be taken into consideration.

The differences between ConvLSTM-SA model with and without SA layer for RMSE
and EUCD are −2.00%, and −2.02% for the test subset which indicate that model behaves
better without SA layer. Although the obtained results lead to a conclusion that the model
without SA layer has better performance, the authors plan to improve the implementation
of attention mechanism with the ConvLSTM model by encoder-decoder architecture.
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