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Abstract 

Background:  The viral G-protein-coupled receptor (vGPCR) BILF1 encoded by the 
Epstein–Barr virus (EBV) is an oncogene and immunoevasin and can downregu-
late MHC-I molecules at the surface of infected cells. MHC-I downregulation, which 
presumably occurs through co-internalization with EBV-BILF1, is preserved among 
BILF1 receptors, including the three BILF1 orthologs encoded by porcine lymphotropic 
herpesviruses (PLHV BILFs). This study aimed to understand the detailed mechanisms 
of BILF1 receptor constitutive internalization, to explore the translational potential of 
PLHV BILFs compared with EBV-BILF1.

Methods:  A novel real-time fluorescence resonance energy transfer (FRET)-based 
internalization assay combined with dominant-negative variants of dynamin-1 (Dyn 
K44A) and the chemical clathrin inhibitor Pitstop2 in HEK-293A cells was used to study 
the effect of specific endocytic proteins on BILF1 internalization. Bioluminescence 
resonance energy transfer (BRET)-saturation analysis was used to study BILF1 receptor 
interaction with β-arrestin2 and Rab7. In addition, a bioinformatics approach informa-
tional spectrum method (ISM) was used to investigate the interaction affinity of BILF1 
receptors with β-arrestin2, AP-2, and caveolin-1.

Results:  We identified dynamin-dependent, clathrin-mediated constitutive endocy-
tosis for all BILF1 receptors. The observed interaction affinity between BILF1 receptors 
and caveolin-1 and the decreased internalization in the presence of a dominant-neg-
ative variant of caveolin-1 (Cav S80E) indicated the involvement of caveolin-1 in BILF1 
trafficking. Furthermore, after BILF1 internalization from the plasma membrane, both 
the recycling and degradation pathways are proposed for BILF1 receptors.

Conclusions:  The similarity in the internalization mechanisms observed for EBV-BILF1 
and PLHV1-2 BILF1 provide a foundation for further studies exploring a possible transla-
tional potential for PLHVs, as proposed previously, and provides new information about 
receptor trafficking.
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Background
Several herpesviruses encode G-protein-coupled receptors (vGPCRs), which are trans-
membrane proteins related to endogenous GPCRs, and have presumably been acquired 
from hosts over years of coevolution [1–3]. They functionally support viral replication 
and survival in the infected host by mediating immune evasion, promoting viral dissemi-
nation and cell transformation, or triggering pro-inflammatory responses [1–4].

The vGPCR BILF1 was first identified in human Epstein–Barr virus (EBV) (gen-
era Lymphocryptovirus) [5–7] and later in nonhuman primate herpesviruses (genera 
Lymphocryptovirus) [8] and ungulate herpesviruses (genera Macavirus) (e.g., porcine 
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lymphotropic herpesvirus 1, 2, and 3) [9, 10]. EBV-BILF1 has been extensively studied [5, 
6], showing its transforming potential both in vitro and in vivo through Gαi-dependent 
signaling [11] and immunoevasive potential through the downregulation of major histo-
compatibility complex I (MHC-I) molecules from the cell surface of BILF1 transfected 
cells [12–14]. Its immunomodulatory function has been linked to the receptor’s ability 
to constitutively internalize [8, 12]. The mechanism underlying this process has not yet 
been studied in detail, but the importance of receptor trafficking has been suggested in 
this regard [14]. We have recently shown that BILF1 orthologs encoded by porcine lym-
photropic herpesviruses (PLHVs) exhibit conserved signaling, constitutive internaliza-
tion, and immunomodulatory properties, indicating the applicability of a porcine model 
to study EBV-related diseases and BILF1 as a potential therapeutic target [15]. Here, we 
further studied the endocytic mechanisms used by BILF1 receptors to describe their 
trafficking from the plasma membrane to the cell interior.

Most GPCRs are expressed at the cell surface and are mainly activated by extracel-
lular stimuli (ligands) and subsequently transported intracellularly through endocytosis 
resulting in the waning of receptor-mediated signaling [16]. However, some are trans-
ported into the cytoplasm without initial ligand activation and are therefore constitu-
tively internalized. The internalization of GPCRs from the cell surface requires specific 
proteins that selectively direct the receptors into the cell interior. Clathrin-mediated 
endocytosis is the best-studied endocytic pathway characterized by a specific clathrin 
triskelion coat around a newly formed vesicle [17, 18]. Several adaptor proteins, includ-
ing adaptor protein 2 (AP-2) [19], β-arrestins [20, 21], epsin, and Eps15 [22], select the 
specific cargo and initiate the clathrin recruitment, membrane invagination, and com-
plete vesicle formation at the plasma membrane. Besides, protein caveolin, together 
with the cavin and syndapin proteins, form specific, flask-shaped membrane invagina-
tions in membrane areas rich in cholesterol and sphingomyelin [23]. However, unlike 
clathrin-mediated endocytosis, interactions with caveolin do not necessarily lead to 
receptor endocytosis as caveolins also affect the exocytosis and intracellular trafficking 
of GPCRs [24]. Both clathrin- and caveolin-rich vesicles are released from the plasma 
membrane by the large GTPase dynamin [25, 26]. Clathrin-coated vesicles fuse with 
early endosomes in the cytoplasm, where the cargo is then either recycled back to the 
plasma membrane through recycling endosomes [27] or degraded in the lysosomes [28]. 
In this way, cells can regulate the protein and lipid composition at the plasma membrane 
and thus regulate its response to the extracellular environment [29]. Although the lack 
of caveolae-specific cargo makes the studies challenging [30], internalized caveolae have 
been shown to fuse with early endosomes, further maturating into late endosomes and 
multivesicular bodies and eventually fusing with lysosomes [31, 32]. Furthermore, the 
major component of the caveolae, caveolin-1 was reported to co-localize with Rab11, a 
marker for recycling endosomes, indicating that caveolae may undergo a recycling path-
way [33].

The present study describes the endocytic pathways and intracellular trafficking prop-
erties of BILF1 receptors encoded by EBV, PLHV1, and PLHV2 in HEK-293A cells 
using a novel real-time FRET-based internalization assay. By disrupting the process of 
clathrin vesicle formation using chemical inhibitor Pitstop2 and by inhibiting the func-
tion of wild-type dynamin using the dominant-negative mutant (DNM) Dyn K44A, 
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we identified dynamin-dependent, clathrin-mediated endocytosis for BILF1 receptors. 
Furthermore, internalization of BILF1 receptors in HEK-293A β-arrestin 1/2 knockout 
cells (β-arr 1/2 KO) and additional BRET2 experiments and a bioinformatics approach 
(informational spectrum method—ISM) showed that β-arrestin recruitment is not 
essential for BILF1-mediated internalization. Additionally, inhibition of wild-type cave-
olin-1 by DNM Cav S80E also affected BILF1-mediated internalization, indicating the 
involvement of caveolin/raft-dependent endocytosis. Finally, in addition to the proposed 
recycling pathway, the BRET1 saturation assay indicated interactions between BILF1 
receptors and Rab7, proposing that at least some BILF1 receptors are processed through 
the degradation pathway.

Methods
Constructs and cloning

For FRET-based real-time internalization, EBV-BILF1, PLHV1-BILF1, PLHV2-BILF1, 
and glucose-dependent insulinotropic polypeptide receptor (GIP-R) open reading 
frames were cloned into pcDNA5/FRT/TO-FLAG-SNAP vectors containing SNAP and 
FLAG tags at the N-terminus. For the BRET assay, BILF1 receptor constructs N-termi-
nally tagged with a FLAG tag and C-terminally tagged with Renilla luciferase 8 (RLuc8) 
were purchased from GenScript (GenScript, Piscataway, NJ). Constructs of DNM cave-
olin-1 (Cav S80E) and dynamin-1 (Dyn K44A) were kindly provided by Prof. J.E. Pessin 
(Department of Physiology and Biophysics, University of Iowa, IA, USA) and Prof. M.G. 
Caron (Duke University Medical Center, NC, USA), respectively, and were described 
previously [34]. The human β-arrestin 2 N-terminally tagged with GFP2 (GFP2-βarr2) 
was purchased at PerkinElmer BioSignal, Inc. (Montreal, Ontario, Canada). The mem-
brane-inserted GFP2-tagged construct (GFP2-17aa) was kindly provided by Dr. Rasmus 
Jørgensen (7TM Pharma A/S, Hørsholm, Denmark) and was described previously [35, 
36]. EGFP-Rab7 was purchased from Addgene (Watertown, MA, USA).

Cell culture and transfection

HEK-293 cells were purchased from European Collection of Cell Cultures (cat. no. 
85120602). HEK-293A cells and CRISPR/Cas9-modified β-arrestin 1/2 knockout (β-arr 
KO) HEK-293A cells were kindly provided by Asuka Inoue (Tohoku University, Japan). 
All the cells were cultured at 37 °C and 10% CO2 in Dulbecco’s modified Eagle medium 
(DMEM; Invitrogen) containing 10% fetal bovine serum (FBS) and 1% penicillin–strep-
tomycin. Cells were transfected using Lipofectamine 2000 (Invitrogen).

FRET‑based real‑time internalization assay

HEK-293A cells (parental) or HEK-293A β-arrestin 1/2 knockout cells (β-arr KO) were 
transiently transfected with Lipofectamine 2000 to express SNAP-tagged EBV-BILF1, 
PLHV1-BILF1, PLHV2-BILF1, or SNAP-FRT (empty vector). Additionally, parental and 
β-arr KO HEK-293A cells transiently transfected with SNAP-tagged GIP-R were used 
as a positive control for agonist-induced (100  nm GIP) β-arrestin-dependent inter-
nalization. To determine specific internalization pathways, the DNM of dynamin-1 
(Dyn K44A) or caveolin-1 (Cav S80E) was co-transfected in parental cells at various 
concentrations.
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Cells, mixed with the transfection mixture, were seeded in poly-d-lysine (Sigma-
Aldrich) precoated 384-well plates at a density of 16,000 cells per well. After 24  h, 
transfection medium was replaced with fresh growth medium. The next day, cells 
were incubated for 1 h with 100 nmol/L of cell-impermeable Tag-Lite SNAP-Lumi4Tb 
[donor; Cisbio, Codolet, France (SSNPTBX)] in Opti-MEM at 4  °C to prevent inter-
nalization during labeling. Afterwards, cells were washed four times using HBSS sup-
plemented with 1  mmol/L CaCl2, 1  mmol/L MgCl2, and 20  mmol/L HEPES, pH 7.4. 
Then, 50  µmol/L of prewarmed (37  °C) fluorescein‐O′‐acetic acid [acceptor; Sigma‐
Aldrich, Broendby, Denmark (88,596‐5MG‐F)] was added to the cells, and the meas-
urements were recorded immediately after. Internalization was measured every 4 min 
for a total of 88 min at 37  °C in PerkinElmer EnVision 2104 Multilabel Reader using a 
340 nm excitation filter. Emissions were detected using 520 nm (acceptor) and 615 nm 
(donor) emission filters. Results are presented as a ratio of donor over acceptor emis-
sions (615/520 nm). The first value (timepoint 0) for each curve was used as a baseline. 
Control, empty-vector-transfected cells are presented on graphs and were used for 
normalization. Experiments were performed at least three times in triplicate. To com-
pare the amount of internalization in the different conditions, the area under the curve 
(AUC) parameter was calculated as described previously [37] and was normalized to 
each BILF1 receptor AUC in the absence of inhibitors or DNMs. Receptor expression 
is represented by the donor values of the first measurement (timepoint 0  min) and is 
shown on graphs relative to each BILF1 receptor.

Bioluminescence resonance energy transfer (BRET) method

BRET2 and BRET1 experiments were performed as previously described [35, 38, 39]. 
Briefly, HEK-293 cells were transiently co-transfected with constant amounts of the 
RLuc8-tagged BILF1 receptor constructs and increasing amounts of the GFP2-tagged 
β-arrestin 2, 17aa, or EGFP-tagged Rab7 using Lipofectamine LTX reagent. Forty-eight 
hours after transfection, 180 µL of resuspended cells at a density of ∼ 1.1 million cells/
mL were distributed in 96-well microplates (white Optiplate; Packard BioScience, Meri-
den, CT, USA). Then, 10  µL of 100  µM coelenterazine 400A (BRET2) (Biotium, Fre-
mont, CA, USA) or coelenterazine h (Thermo Fisher Scientific, Waltham, MA, USA) 
was added to each well using an injector. Sequential measurements of the emissions to 
measure the RLuc8 luminescence signal at 410  nm (BRET2) or 480  nm (BRET1) and 
the emissions of the light from excited GFP2 at 515  nm (BRET2) or EGFP at 540  nm 
(BRET1) were performed using a TriStar LB 942 microplate reader (Berthold Technolo-
gies, Bad Wildbad, Germany). Results are presented as ratios (515/410; BRET2 signal or 
540/480; BRET1 signal) and expressed in milliBRET units (mBU); BRET ratio × 1000. 
The expression levels of RLuc8- and GFP2- or EGFP-tagged constructs for each experi-
ment were assessed on the basis of total luminescence and fluorescence (measured on 
black plates, using excitation filter at 380 nm and emission filter at 515 nm). Measure-
ments were performed in triplicate.

Informational spectrum method (ISM)

According to the ISM approach, sequences (protein or nucleotide) are converted into 
signals by assigning numerical values to each constituent (amino acid or nucleotide). 
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These values correlate to the electron–ion interaction potential (EIIP), a parameter that 
determines the electronic properties of amino acids and nucleotides. Fourier transform 
is then used to decompose the resulting signal into periodic functions, resulting in an 
output consisting of a series of frequencies and their amplitudes. The obtained frequen-
cies correspond to the distribution of structural motifs with defined physicochemical 
characteristics that are responsible for the biological function of the sequence. By com-
paring the biological or biochemical function of proteins, we can detect code–frequency 
pairs that are specific to their common biological properties [40, 41]. The approach is 
not sensitive to the placement of the motifs and hence does not require prior sequence 
alignment. The ISM approach comprises two steps. First, the amino acids in the primary 
protein structure are represented by numbers corresponding to the EIIP (Additional 
file 1a, b). Second, the obtained numerical sequence is transformed by Fourier transfor-
mation into an informational spectrum (IS) (Additional file 1c). Each peak in the IS rep-
resents particular information encoded in the protein’s primary structure. Proteins that 
interact with a common target have been shown to share common frequencies in their 
IS. The principle of the ISM has been comprehensively described and applied for struc-
ture–function analysis of different proteins and for prediction of new protein interactors 
and identification of protein domains responsible for long-range interactions [42–44]. 
Viral and cellular GPCRs share similar pathological signaling networks, and protein–
protein interaction data are commonly used for inferring specific signaling pathways [45, 
46]. Proteins involved in similar signaling networks have been reported to share com-
mon information, represented by the IS frequencies [47].

Immunoprecipitation

The immunoprecipitation assay was performed in HEK-293 cells, which were transiently 
transfected with RLuc8-tagged BILF1 receptors. Then, 48 h after transfection, cells were 
washed with cold PBS and were scraped and lysed for 20  min at 4  °C in NP-40 lysis 
buffer. Lysates were transferred to a cold tube, and the debris was removed by centrifuga-
tion. To control the transfection efficiency, 25 µL of the lysate was stored. The remaining 
lysate was incubated with monoclonal anti-AP-2 antibody (4  µg/mL) (Sigma-Aldrich) 
at 4 °C for 1 h. Thereafter, 50 µL of protein G agarose beads (Roche, Mannheim) were 
added, and the tubes were incubated at 4 °C overnight. The next day, the samples were 
centrifuged, and the immunoprecipitated complexes were washed extensively in NP-40 
lysis buffer. After the final wash, the pellet was suspended in 550 µL of lysis buffer, and 
180  µL was plated in white 96-well microplates. Total luminescence signal was meas-
ured in the presence of 10 µL of 100 µM coelenterazine 400A (Biotium) per well using a 
TriStar LB 942 microplate reader (Berthold Technologies). Results are presented as raw 
data with subtracted background. Experiments were performed three times.

Data analysis and statistics

Data were analyzed using GraphPad Prism (9.3.1) and reported as the mean ± standard 
error of the mean (SEM). Statistical analysis was performed with GraphPad Prism using 
one-way analysis of variance (ANOVA; indicated in the figure legends). The statistical 
test was chosen on the basis of the data distribution determined using the normality test 
with GraphPad Prism. A P-value < 0.05 was considered statistically significant.
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Results
Constitutive internalization of BILF1 receptors

The constitutive internalization of EBV-BILF1 and PLHV1-2-BILF1 receptors was first 
analyzed using a FRET-based RT internalization assay. The constitutive internaliza-
tion properties were described and compared by calculating the area under the curve 
(AUC) parameter and their half-time values (t1/2). The AUC was normalized to EBV-
BILF1 (100%), and the results showed ~ 35% and ~ 43% lower constitutive internaliza-
tion for PLHV1-BILF1 and PLHV2-BILF1, respectively (Fig.  1a, b). These results are 
consistent with our previously reported data for EBV-BILF1 and PLHV1-2-BILF1 [15]. 
Furthermore, EBV-BILF1 also demonstrated the fastest internalization kinetics, with an 
estimated t1/2 of 20 min, whereas PLHV1 and PLHV2-BILF1 showed slower internaliza-
tion with t1/2 values of ~ 37 and ~ 45 min, respectively (Fig. 1b). To estimate the number 
of receptors being recycled back to the plasma membrane, the difference in the amount 
of donor-labeled SNAP-tag receptors under the two labeling conditions was determined 
(Additional file  2). Labeling the receptors with the donor molecule at 4  °C prevented 
internalization and recycling during this step, which resulted in the labeling of surface-
expressed receptors only (Additional file  2b, c). In contrast, labeling at 37  °C enabled 
normal receptor cycling during this step, which resulted in the labeling of all BILF1 
receptors in the cell (designated as 100%) (Additional file  2b, c). Therefore, the differ-
ences in the donor signals correspond to the number of receptors located intracellularly 
and subsequently recycled or trafficked to the plasma membrane (Additional file 2b, c). 
This estimation was performed on the basis of previous reports of GPCR trafficking, 
using radioligand binding to follow ligand–receptor complexes [48, 49]. Comparing the 
donor values from both labeling conditions, we have observed a 65%, 60%, and 58% dif-
ference for EBV-BILF1, PLHV1, and PLHV2-BILF1 receptors, respectively, which repre-
sents the estimated intracellular pool of receptors.

Fig. 1  Constitutive internalization of BILF1 receptors. a SNAP-EBV-BILF1 (black square; green), 
SNAP-PLHV1-BILF1 (black circle; blue), and SNAP-PLHV2-BILF1 (black up-pointing triangle; orange) were 
expressed in HEK-293A cells. Internalization data are presented as nonlinear regression curves. b AUC values 
and half-time (t1/2) were determined using one-phase association analysis. The estimated intracellular 
receptor pool was calculated from receptor expression values (donor values). Data are shown as the 
mean ± SEM from 27 independent experiments carried out in triplicates. Statistical differences were 
determined using the Dunnett’s multiple comparisons one-way ANOVA test. ****P < 0.0001
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Internalization of BILF1 receptors is impaired by the DNM of dynamin‑1 and the inhibitor 

Pitstop2

The importance of clathrin-mediated endocytosis for BILF1-mediated internalization, 
has not been previously investigated. To address this, a FRET-based real-time internali-
zation assay was used with HEK-293A cells expressing SNAP-tagged EBV, PLHV1, and 
PLHV2 BILF1 receptors. The involvement of clathrin-mediated endocytosis was studied 
by disrupting the vesicle scission from the plasma membrane using the dominant-neg-
ative dynamin-1 mutant Dyn K44A (defective in GTP binding and hydrolysis), a pre-
viously described selective inhibitor of clathrin-mediated endocytosis [34, 50] and the 
chemical inhibitor Pitstop2, which stops the interaction between clathrin and amphi-
physin [51].

BILF1 receptors were transfected alone or together with increasing concentrations of 
Dyn K44A (Fig. 2). DNM Dyn K44A inhibited BILF1 internalization in a dose-depend-
ent manner (Fig. 2a). For each internalization curve, the AUC parameter was calculated 
and was expressed relative to the AUC for each receptor in the absence of Dyn K44A 
(Fig. 2b). The effect of Dyn K44A on EBV-BILF1 and PLHV2-BILF1 was significant at all 

Fig. 2  Internalization of BILF1 receptors depends on dynamin-1 and clathrin. SNAP-tagged EBV-BILF1 
(green), SNAP-tagged PLHV1-BILF1 (blue), SNAP-tagged PLHV2-BILF1 (orange), and empty vector (gray) were 
expressed in HEK-293A cells and were either a co-transfected with different concentrations of Dyn K44A DNM 
(black circle 3 ng; black up-pointing triangle 7 ng; black diamond 11 ng) or c incubated with 5 µM Pitstop2 
inhibitor (black circle or white circle for empty vector) or internalization buffer as a control (black square). 
Labeling with donor SnapLumi4-Tb was performed at 4 °C to prevent internalization prior to measurement. 
Internalization was measured every 4 min for 88 min at 37 °C. The graph curves represent the ratio between 
donor and acceptor. b, d The area under the curve (AUC) was calculated for each graph and was normalized 
to the AUC of each BILF1 receptor without addition of the Dyn K44A or Pitstop2 (100%) and empty vector 
(0%). Statistical differences were determined using Dunnett’s multiple comparisons two-way ANOVA test. 
*P < 0.05, **P < 0.01, *** P < 0.001, ****P < 0.0001
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Dyn K44A concentrations showing 33‒42% (3 ng Dyn K44A), 53‒57% (7 ng Dyn K44A), 
and 69‒72% (11 ng Dyn K44A) lower internalization. PLHV1-BILF1 on the other hand, 
was significantly affected at the highest concentrations of Dyn K44A (7 and 11 ng per 
well), as the AUC values dropped to 68% and 40%, respectively. These results were sup-
ported by the surface expression of BILF1 receptors, which increased in correlation with 
the Dyn K44A concentration (Additional file 3a). Furthermore, we included the chemical 
inhibitor Pitstop2, to interfere with the formation of the clathrin coat at the membrane 
of the HEK-293A cells (Fig. 2c, d). Comparing the AUC of the BILF1 receptors in the 
absence and presence of Pitstop2, we observed comparable 49‒55% effects for the inhib-
itor on EBV-BILF1- and PLHV1-2 BILF1-mediated internalization (Fig. 2d), confirming 
the importance of intact clathrin-mediated endocytosis for BILF1 internalization.

BILF1 internalization utilizes clathrin‑coated pits, but is not dependent on β‑arrestin 

recruitment

Previous studies on GPCRs showed that β-arrestins are not necessarily required for 
clathrin-mediated endocytosis [52, 53]. Therefore, we aimed to further investigate 
the involvement of β-arrestins in BILF1 internalization (Fig.  3). First, we compared 
the internalization of BILF1 receptors in HEK-293A (parental) cells and CRISPR/
Cas9-modified β-arrestin 1/2 knockout cells (Δβ-arr1/2 KO) (Fig.  3a). The absence 
of β-arrestins in the Δβ-arr 1/2 KO cells did not affect receptor-mediated internaliza-
tion by the BILF1 receptors, supporting the idea that, for BILF1 receptor internali-
zation, β-arrestins are not required. As a control, we included the GIP-R  activated 
by hormone GIP (Additional file  4a), which has been previously shown to require 
β-arrestin for its internalization [54]. To further understand the interaction of BILF1 
receptors with β-arrestin, we performed BRET2 experiments (Fig.  3b) to determine 

Fig. 3  β-Arrestin recruitment is dispensable for the BILF1 receptor internalization. a SNAP-tagged EBV-BILF1 
(green), SNAP-PLHV1-BILF1 (blue), SNAP-PLHV2-BILF1 (orange), and empty vector (gray) were expressed 
in parental HEK-293A cells (black square) and β-arrestin 1/2 knockout HEK-293A cells (Δβ-arr KO; black 
circle or white circle for empty vector). The curves represent the ratios between the donors and acceptors. 
Internalization was measured every 4 min for 88 min at 37 °C. b BILF1 receptors C-terminally tagged with 
RLuc8 were expressed in HEK-293A cells together with various concentrations of β-arr 2-GFP2. BRET2 values 
are plotted as a function of the ratio between the GFP2 (total fluorescence) and RLuc8 (total luminescence) 
signal. Results are presented as the mean (± SEM) from at least three independent experiments and are fitted 
using a simple linear regression equation (R). c The table presents the results from the informational spectrum 
method (ISM), determining the interaction of BILF1 receptors or the β2 adrenergic receptor (β2-AR) with 
β-arrestin (S/N ratio). A lower S/N ratio indicates lower interaction affinity
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the potential interaction of GFP2-βarr2 with RLuc8-tagged BILF1 receptors. Similarly, 
BRET2 saturation experiments have been previously performed, confirming the inter-
action between β-arrestin 2 and human GLP-1R [55]. Here, increasing concentrations 
of GFP2-βarr2 co-transfected with constant concentrations of RLuc8-BILF1 recep-
tors, induced the so-called bystander BRET, presented as a simple linear regression 
curve (R2 > 0.8). The result was comparable to the finding of the control experiment, 
wherein we measured the interactions between BILF1 receptors and the 17aa mem-
brane insert (R2 > 0.9) (Additional file 4b). These results showed random, nonspecific 
interactions between the investigated molecules.

Experimental evidence was supported by the ISM, a virtual spectroscopy method, 
to investigate protein–protein interactions and analyze protein structure–func-
tion relationships. A common peak corresponding to IS frequency F(0.216) (Addi-
tional file  1) determined here represents physicochemical characteristics based on 
the structural motif distribution of the GPCR and vGPCRs and corresponds to the 
biological function of the protein. To estimate the interaction affinity between BILF1 
receptors and β-arrestin 2, we calculated the signal-to-noise ratio (S/N) (Fig.  3c) at 
the characteristic frequency for the interaction with β-arrestin 2 [39]. A lower S/N 
ratio suggests a lower interaction affinity between tested protein partners, as shown 
previously [35, 39]. The calculated ratios for the interactions with β-arrestin 2 are 
lower for BILF1 receptors (Fig. 3c) than for the interactions with the cellular β2 adr-
energic receptor (β2-AR), a GPCR known for its β-arrestin interaction [56], suggest-
ing a lower interaction affinity of the BILF1 receptors for β-arrestin 2. These results 
all support the observations that showed that BILF1 receptors internalize indepen-
dently of β-arrestin. Importantly, the characteristic frequency F(0.216) showed that 
there was high interaction affinity (high S/N ratio) between all BILF1 receptors and 
AP-2. Furthermore, results of the immunoprecipitation assay confirmed this interac-
tion for BILF1 receptors (Additional file 5), supporting the involvement of the clath-
rin-mediated pathway in BILF1 receptor endocytosis (Table 1).

Caveolin‑1 contributes to BILF1‑mediated internalization

Previous studies reported alternative pathways for vGPCR and GPCR endocytosis. To 
investigate the involvement of caveolin-1 in BILF1 receptor internalization, we used 
a DNM of caveolin-1 (Cav S80E) [34], which was previously found to be retained in 
the endoplasmic reticulum in a complex with caveolin-2 and to disrupt the caveolae 

Table 1  Interaction (S/N ratio) of BILF1 receptors with AP-2 determined using the informational 
spectrum method (ISM)

a  A lower S/N ratio indicates lower interaction affinity

Protein partners S/N ratio at 
F(0.216)a

β2-AR:AP-2 6.48

EBV-BILF1:AP-2 9.42

PLHV1-BILF1:AP-2 12.42

PLHV2-BILF1:AP-2 13.12
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formation at the membrane [57]. Again, we performed the FRET-based RT inter-
nalization assay, with SNAP-tagged BILF1 receptors in the absence or presence of 
increasing concentrations of Cav S80E (Fig. 4a).

The largest effect of the Cav S80E was observed with EBV-BILF1- and PLHV1-BILF1-
mediated endocytosis, where the addition of 7  ng per well of the mutant resulted in 
62‒68% lower AUC values. For PLHV2 BILF1, the co-transfection resulted in a ~ 53% 
lower AUC (Fig. 4b). It is important to note that the addition of 7 ng per well Cav S80E 
resulted in a decrease in BILF1 receptor expression (Additional file  3b). Furthermore, 
using the ISM, we showed that there was a high S/N ratio and thereby high interaction 
affinity between all BILF1 receptors and caveolin-1, confirming the involvement of this 
protein in BILF1 receptor trafficking (Table 2).

BILF1 receptors interact with the Rab7 protein, a marker for lysosomes

After confirming their constitutive internalization from the plasma membrane and sub-
sequently demonstrating that there was an intracellular pool of receptors, which indi-
cates their ability to recycle (Fig.  1), we further investigated whether these receptors 

Fig. 4  Internalization of BILF1 receptors depends on caveolin-1 function. a SNAP-EBV-BILF1 (green), 
SNAP-PLHV1-BILF1 (blue), SNAP-PLHV2-BILF1 (orange), and empty vector (gray) were expressed in HEK-293A 
cells together with different concentrations of Cav S80E DNM (black circle 3 ng; black up-pointing triangle 
5 ng; black diamond 7 ng). Labeling with the donor SnapLumi4-Tb was performed at 4 °C to prevent any 
internalization prior to the measurement. Internalization was measured every 4 min for 88 min at 37 °C. 
The graph curves represent the ratios between donors and acceptors. b The area under the curve (AUC) 
was calculated for each curve and was normalized to each BILF1 receptor’s AUC in the absence of Cav S80E 
(100%) and empty vector (0%). Statistical differences were determined by Dunnett’s multiple comparison 
two-way ANOVA test. **P < 0.01, *** P < 0.001, ****P < 0.0001

Table 2  Interaction (S/N ratio) of BILF1 receptors with caveolin-1 determined using the 
informational spectrum method (ISM)

a A lower S/N ratio indicates lower interaction affinity
b Interaction of caveolin-1 and epidermal growth factor receptor (EGF-R) was used as a positive control [58]

Protein partners S/N ratio at 
F(0.357)a

EGF-R:caveolin-1 15.29b

EBV-BILF1:caveolin-1 17.46

PLHV1-BILF1:caveolin-1 12.86

PLHV2-BILF1:caveolin-1 15.61
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follow the degradation pathway in lysosomes. BRET1 studies were conducted to inves-
tigate the possible interactions between RLuc8-tagged BILF1 receptors and the EGFP-
tagged Rab7 protein, a marker of late endosomes/lysosomes [59, 60]. To follow the 
intracellular trafficking of BILF1 receptors after constitutive internalization, a BRET1 
saturation assay was used, and the interactions observed between a constant BILF1 
receptor concentration and an increasing Rab7 concentration, as previously described 
[61]. Saturation was reached for all BILF1 receptors in the presence of increas-
ing amounts of Rab7, resulting in hyperbolic saturation curves with BRET50 values of 
0.028‒0.172 (Fig. 5). The result indicates the constitutive interaction of BILF1 receptors 
with late endosomes/lysosomes and therefore suggests that at least a fraction of these 
receptors are degraded after their internalization from the cell surface.

Discussion
In this investigation we have confirmed and further described the constitutive endocy-
tosis of three BILF1 receptors encoded by the human EBV and porcine PLHV1 and 2. 
Using a novel real-time FRET-based internalization assay, we have demonstrated that 
the BILF1 receptors require intact clathrin-coat formation and dynamin-1 to func-
tion but do not require β-arrestin recruitment for their internalization, suggesting the 
involvement of a clathrin-mediated, β-arrestin-independent endocytic pathway. Fur-
ther, the interaction of BILF1 with caveolin-1 suggests the involvement of this protein in 
BILF1 trafficking.

Constitutive internalization occurs when a membrane receptor transports to the 
cytoplasm independently of an extracellular ligand. This has been described for sev-
eral vGPCRs [8, 15, 35, 62, 63] and endogenous GPCRs [53, 62]. Although constitu-
tive internalization is a common feature in vGPCRs, its functional role remains poorly 
understood. However, different functions have been proposed, such as ensuring suffi-
cient receptor expression at the membrane [63], representing basal constitutive receptor 
activity [64], involvement in ligand scavenging [65], and allowing intracellular endoso-
mal signaling [66]. Besides, constitutive internalization has also been studied for the 
purposes of drug targeting, as in the case of HCMV-US28, wherein the receptor was 

Fig. 5  BILF1 receptors interact with Rab7 protein. BILF1 receptors C-terminally tagged with RLuc8 and 
various concentrations of Rab7-EGFP protein were expressed in HEK-293A cells. BRET1 values are plotted as 
a function of the ratio between the GFP (total fluorescence) and RLuc8 (total luminescence) signal. Results 
are fitted using a nonlinear regression equation. BRET50 represents the acceptor/donor ratio at 50% of the 
BRETmax, indicating the relative affinity of the acceptor (BILF1-RLuc8) for the donor molecules (Rab7-EGFP). 
Graphs represent the mean (± SEM) from at least three independent experiments
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targeted by a fusion toxin protein (FTP) to deliver the toxin to the infected cells and 
hence induce cell death [67–69].

Here, we have confirmed the constitutive internalization of EBV-BILF1 and PLHV1-2 
BILF1 orthologs using a novel real-time FRET-based internalization assay, which allowed 
us to study the endocytic properties of these receptors in live HEK-293A cells. Low lev-
els of receptor expression and low internalization ratios [15] observed for PLHV3-BILF1 
made further interpretation of the endocytic properties difficult—and consequently, this 
receptor was not included in this study.

Internalization kinetics have been previously reported for other vGPCRs and GPCRs, 
and examples include thyrotropin-releasing hormone receptor (TRH) with rapid inter-
nalization (t1/2 of 2.2 min) [49], gonadotropin-releasing hormone (GnRH) receptor with 
slower agonist-induced internalization (t1/2 of 20 min) [49], and CXCR4 receptor with 
slow constitutive and rapid CXCL12-induced internalization (t1/2 values of ~ 15  min 
and ~ 5  min, respectively) [70]. Moreover, constitutive internalization of HCMV-US28 
was comparable to the fast ligand-induced CXCR4 internalization [71]. Compared with 
the previously reported data, our results show slow constitutive internalization for EBV-
BILF1 with a t1/2 of 20 min and even slower constitutive internalization for PLHV1-2-
BILF1 with a t1/2 of 37‒45 min. A role of constitutive internalization for EBV-BILF1 has 
been proposed previously, suggesting that the receptor forms a complex with MHC-I 
molecules at the plasma membrane and induces its internalization, resulting in hindered 
immunorecognition by CD8+ T cells [12]. The kinetics of the BILF1 constitutive inter-
nalization reported here correspond to the ability of these receptors to downregulate 
MHC-I molecules [15], where EBV-BILF1 showed the highest impact on MHC-I expres-
sion in HEK-293 cells. However, to assign the biological function of constitutive inter-
nalization to the BILFs, further studies will be required.

Previous studies reported the use of Dyn K44A [34, 50, 72] and Pitstop2 [51, 73, 74] 
as means by which to investigate the clathrin-mediated pathway. In addition to the sig-
nificant changes in BILF1 internalization induced by the inhibitors, we also observed 
an increase in receptor expression after the addition of Dyn K44A. The requirement for 
β-arrestin in the internalization process depends on the receptor and receptor’s mode of 
internalization [75]. Constitutive but not ligand-induced internalization of HCMV-US28 
uses a β-arrestin-independent pathway, as was determined by the use of β-arrestin KO 
embryonic fibroblasts [52]. Furthermore, GPCR ADGRA3 (GPR125) internalizes con-
stitutively through a clathrin-mediated β-arrestin-independent pathway [53]. Here, we 
report this finding to be characteristic of BILF1 internalization. Our data on internaliza-
tion in β-arr KO cells were supplemented with the analysis of the protein interaction. 
The β-arrestin recruitment assay has been widely used and showed specific interactions 
of β-arrestin2 with the GLP-1 receptor [55], β2-AR [56], neurokinin-1 receptor (NK-1) 
[34], and D2 dopamine receptor [38]. We have observed only a nonspecific bystander 
BRET2, showing random interaction of BILF1 with β-arrestin 2. Based on the amino 
acid sequences of the receptors, the bioinformatics approach using ISM has suggested 
that there is no interaction with β-arrestin, which further confirms the exclusion of 
β-arrestin in BILF1-mediated internalization (and signaling). A direct interaction of AP2 
with three motif types on GPCRs has been reported previously and was suggested as 
a mechanism that facilitates clathrin-mediated endocytosis in an arrestin-independent 
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manner [19, 76]. The tyrosine (YXXΦ) receptor motif [77], the [DE]XXXL[LI] receptor 
motif [78, 79], and the polyarginine receptor motif [19] are all located in the cytoplas-
mic end of the GPCRs and interact with the µ2 adaptin subunit of AP2. In our previ-
ous publication [80], we have shown the existing tyrosine motifs on EBV-, PLHV1-, and 
PLHV2-BILF1 receptors using the eukaryotic linear motif (ELM) resource. Furthermore, 
the bioinformatics analysis in this study showed high interaction affinity between AP2 
and BILF1 receptors, which supports the pathway proposed above.

The caveolae-mediated pathway has been described as an alternative pathway used by 
several GPCRs, viruses, and bacteria to enter the cell [81]. Despite their endocytic role, 
novel studies have reported new important, tissue-specific roles for caveolae including 
mechanoprotective roles [82–84], transport of fatty acids [85, 86], regeneration, mech-
anosensation [87], and a recently discovered role responding to oxidative stress and 
UV exposure [88, 89]. HEK-293 cells are known to express low levels of caveolin-1 and 
high levels of caveolin-2; however, the formation of flask-shaped caveolae has not yet 
been reported in this cell line. Here, a significant decrease in receptor internalization 
was observed in the presence of DNM Cav S80E, despite low caveolin-1 expression and 
lack of caveolae in HEK-293 cells. A similar observation has been reported previously by 
Lajoie et al. [90], as they reported the dynamin-dependent, raft-mediated endocytosis of 
the cholera toxin B subunit in Mgat5−/− cells that express few or no caveolae, suggest-
ing that caveolin-1 regulation of endocytosis does not depend on the formation of cave-
olae. In the same cell line, they also reported caveolin-1-mediated regulation of EGF-R 
diffusion and signaling [91]. In our study we have similarly shown the requirement for 
dynamin-1 and caveolin-1 in BILF1 internalization, albeit the level of caveolin-1 expres-
sion was found to be below the threshold for caveolae formation. The data from the bio-
informatics approach also confirm a possible interaction between caveolin-1 and BILF1, 
with interaction affinity (S/N ratio) comparable to caveolin-1:EGF-R. This indicates a 
potential pathway for BILF1 internalization; however, the precise function of this inter-
action is not yet understood and will require further investigation.

Furthermore, increasing concentrations of Cav S80E reduced BILF1 surface expres-
sion. This suggested that the receptor is retained intracellularly after impairment of the 
caveolin function. Previously, a chaperone function of caveolin was proposed and was 
shown to be important for several GPCRs. Using the DNM of caveolin-1 and generation 
of receptor mutants with modified caveolin binding sites, the impaired surface expres-
sion was shown for glucagon-like peptide 1 (GLP-1) receptor, insulin (IR) receptor, 
excitatory amino acid carrier 1 (EAAC1), and type 1 receptor for angiotensin II (AT1), 
suggesting that these receptors require functional caveolin-1 to be expressed at the cell 
surface [24, 92–95].

After internalization from the plasma membrane, GPCR trafficking leads to a recy-
cling or degradation pathway. Previous studies on KSHV-ORF74 showed trafficking of 
the vGPCR through both recycling and late endosomes/lysosomes [60]. Here, we have 
also observed both pathways to be involved in BILF1 intracellular trafficking. A previ-
ous study by Zuo et al. has proposed that BILF1 forms a complex with MHC-I molecules 
at the plasma membrane and that this induces complex internalization [12]. They also 
showed that treatment with a lysosomal inhibitor could reveal a marked pool of intracel-
lularly located MHC-I molecules in BILF1-transfected cells [12]. Our results indicated 
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the involvement of the degradation pathway for EBV-BILF1, and therefore support these 
previous findings. Moreover, the presumed ability of BILF1 receptors to recycle back to 
the plasma membrane may serve to ensure that there is adequate BILF1 expression for 
MHC-I downregulation. However, a more detailed investigation into the functional con-
sequence of BILF1 internalization and trafficking is required.

Conclusions
In summary, we have shown that BILF1 receptors exhibit slow constitutive internaliza-
tion through a β-arrestin-independent, clathrin-mediated pathway. Furthermore, we 
have also identified that caveolin-1 may potentially be involved in BILF1 trafficking. 
After internalization, the BILF1 receptors are presumably processed through both recy-
cling and degradation pathways. The results can serve as a foundation for future studies 
to explore a PLHV-infected porcine model as a mechanism to study BILF1 as a potential 
therapeutic target in EBV-related disease.
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