

XI INTERNATIONAL CONFERENCE ON SOCIAL AND TECHNOLOGICAL DEVELOPMENT – STED 2022

THE BOOK OF ABSTRACTS

XI MEÐUNARODNA KONFERENCIJA O DRUŠTVENOM I TEHNOLOŠKOM RAZVOJU – STED 2022

ZBORNIK IZVODA RADOVA

Trebinje, June, 02-05, 2022 Trebinje, 02.- 05. juni 2022. godine

X INTERNATIONAL CONFERENCE ON SOCIAL AND TECHNOLOGICAL DEVELOPMENT

BOOK OF ABSTRACTS

Publisher:

University PIM, Banja Luka, Republic of Srpska, B&H

For publisher

Ilija Džombić, PhD, General Manager

Editorial board:

Dejan Kojić, PhD, Vice-Rector for Science

Design and Computer processing: Ljubica Janjetović, PhD, Assistant Professor

Print:

"Sitoteka" Banja Luka

Circulation:

150 copies

CARBON CRYOGEL MAGNETITE COMPOSITES-EFFECTIVE ADSORBENTS FOR THE PHOSPHATE AND PHENOL REMOVAL FROM WATER

Ljiljana Živković¹, Andrija Savić¹, Ivona Castvan-Janković², Slavica Lazarević², Jelena Rogan², Biljana Babić³, Rada Petrović²

¹University of Belgrade, Vinča Institute of Nuclear Sciences, PO Box 522, 11000 Belgrade, Serbia, <u>ljzivkovic@vinca.rs</u>

²University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia

³University of Belgrade, Institute of Physics, Pregrevica 118, 11000 Belgrade, Serbia,

ABSTRACT

Carbon cryogel (CC) was impregnated with magnetite to produce a multifunctional magnetic adsorbent capable of removing phenoles and phosphates from water. Adsorbents were prepared via co-precipitation of Fe^{2+} and Fe^{3+} ions in aqueous solution in the presence of CC. Non-treated or acid-activated CC was used. The CC: Fe_3O_4 ratios of 1:1 and 3:1 were applied. The addition of HCl in the synthesis process was also investigated. XRD confirmed the formation of nanocrystalline magnetite. BET analysis showed that the pre-treatment diminished the CC porous structure, reducing also specific surface area (Sp). Formation of magnetite decreases S_p and total volume of micro and meso pores, but their distribution remained unchanged. FTIR spectra revealed that magnetite was attached to the surface of the acid activated CC via C=O bond. DTA-TGA and SEM indicated that acid treatment and presence of HCl were beneficial for homogeneous nucleation and distribution of magnetite, increasing adsorption properties of composite.

Batch adsorption proved that the maximum adsorption capacity for phenoles was accomplished with 3:1 ratio with non-treated CC. Samples synthesized with pretreated CC, under 1:1 ratio, gave the best results for phosphate removal. The CC/magnetite composite was found as promising adsorbent for the simultaneous removal of both polutants.

Keywords: carbon cryogel, magnetite, synthesis, adsorption, pollutants.

Trebinje, June, 02-05, 2022, Republic of Srpska, B&H