arXiv:2111.10229v1 [physics.optics] 19 Nov 2021

Nonlinear signatures of Floquet band topology

Aleksandra Maluckov,! Ekaterina Smolina,? Daniel Leykam,®> Sinan

Giindogdu,*® Dimitris G. Angelakis,>% and Daria A. Smirnova

7,2

Y Vinca Institute of Nuclear Sciences, University of Belgrade, National
Institute of the Republic of Serbia, P.O.B. 522, 11001 Belgrade, Serbia
2 Institute of Applied Physics, Russian Academy of Science, Nizhny Novgorod 603950, Russia
3 Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543
4 Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, Korea
5 Department of Physics, Humboldt- Universitit zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany
6School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece 73100
" Nonlinear Physics Centre, Australian National University, Canberra ACT 2601, Australia
(Dated: November 22, 2021)

We study how the nonlinear propagation dynamics of bulk states may be used to distinguish
topological phases of slowly-driven Floquet lattices. First, we show how instabilities of nonlinear
Bloch waves may be used to populate Floquet bands and measure their Chern number via the emer-
gence of nontrivial polarization textures in a similar manner to static (undriven) lattices. Second,
we show how the nonlinear dynamics of non-stationary superposition states may be used to identify
dynamical symmetry inversion points in the intra-cycle dynamics, thereby allowing anomalous Flo-
quet phases to be distinguished from the trivial phase. The approaches may be readily implemented
using light propagation in nonlinear waveguide arrays.

I. INTRODUCTION

The great progress and open challenges in the world
of topological matter have provoked investigation of the
topological phenomena in periodically-driven quantum
systems. The particularities of driven systems allow a
number of interesting topological phenomena to occur,
including quantized pumping and the existence of novel
“anomalous” topological phases with no analogue in un-
driven static systems [IH6].

Topological phases of driven systems are classified ac-
cording to the properties of their Floquet operators,
i.e. the time-evolution operators describing the dynamics
over one period of the drive [7,[8]. Each eigenstate of the
Floquet operator accumulates a phase ¢ over one driving
period, giving the opportunity to define a ’quasi-energy’
0 = ¢/T, the average phase accumulated per unit time.
Being a phase variable, the quasi-energy is periodic with
period 27 /T and thus Floquet systems lack well-defined
ground states. Nevertheless, they can still support topo-
logical bulk-edge correspondences whereby the number
of protected edge modes appearing in finite systems is
given by topological invariants of the bulk Floquet eigen-
states [4H6].

Photonic systems provide a highly flexible platform for
implementing periodically-driven systems and observing
their topological properties [0 [10]. For example, in op-
tical waveguide arrays the longitudinal propagation dis-
tance plays the role of time, allowing Floquet phenomena
to be realizing using purely spatial modulation of the re-
fractive index [ITHI6].

Nonlinear effects are now being considered in the
context of topological photonic systems [I7], opening
new opportunities for measurement and manipulation of
topological bands and giving rise to new classes of self-
localized nonlinear modes [I8-20]. For example, the non-

linear modulational instability of Bloch waves may be
used to populate energy bands of two-dimensional un-
driven lattices and measure their bulk topological in-
variants [2I] 22]. Recently, bulk and edge solitons in
topological band gaps were experimentally observed us-
ing two-dimensional Floquet waveguide lattices [23H26].
These recent achievements directed our interests to how
nonlinearity may be used to probe the bulk topological
invariants of Floquet systems.

Here we would like to see how the predictions of our
earlier study Ref. [22] may be applied to nonlinear Flo-
quet topological systems such as optical waveguide ar-
rays. These systems can be well-described by effective
static Hamiltonians in the case of high-frequency mod-
ulation; in this limit the results of Ref. [22] are directly
applicable. Therefore the focus of this work is the be-
haviour in the low frequency driving regime, which in
particular can lead to the emergence of anomalous Flo-
quet topological phases.

To this end, we analyze modulational instability in
a stroboscopically-driven nonlinear square lattice model.
Each cycle of the periodic drive is divided into four steps.
During each step pairs of neighbouring waveguides are
coupled. By tuning the coupling strength during each
step different topological phases hosting protected edge
or corner modes can be realized, including the trivial in-
sulator (TT), Chern insulator (CI), anomalous Floquet in-
sulator (AFI), and anomalos Floquet higher order topo-
logical insulator (AFHOTI) [27]. Similar to static lat-
tices, transitions between distinct topological phases re-
quire the gap between the two bulk Floquet bands to
close.

We show using numerical simulations of the govern-
ing nonlinear Schrodinger equation how the modula-
tional instability dynamics can identify Chern insulator
phases using the field polarization measures considered



in Refs. [22] 28]. These measures however cannot dis-
tinguish anomalous Floquet phases from the trivial insu-
lator phases, which requires knowledge of the full time
evolution within one driving period. To address this
limitation, we consider the nonlinear dynamics of non-
stationary plane wave-like states formed by equal super-
positions of both bands of the considered Floquet lat-
tice. We show that the nonlinear dynamics can be used
to track the Floquet bands’ symmetry eigenvalues at the
high symmetry Brillouin zone points and thereby dis-
tinguish the anomalous Floquet phases from the trivial
phase [27].

The outline of the article is as follows: The model equa-
tions and band structures of Floquet systems are consid-
ered in Section [l The modulation instability is inves-
tigated in Section [[TI, where we demonstrate the ability
of MI to generate a quasi-steady state with well-defined
polarization field. Next, in Sec. [[V] we show how the dy-
namics of superposition states may be used to identify
anomalous Floquet phases. Sec. [V] concludes.

II. FLOQUET LATTICE MODEL

We consider nonlinear light propagation in the period-
ically driven bipartite square lattice model of Ref. [27].
Previous studies have considered similar models [4], 12}
14 15, 20, 27, 29]. The propagation dynamics are de-
scribed by the nonlinear Schrédinger equation

i0: [Un(2)) = [Hr(2) + Hyi ()| o). ()

where the propagation distance z plays the role of time,
|9r) = (ar,b.)T encodes the optical field amplitude on
the two sublattices, Hy (z) is the periodically-modulated
linear tight binding Hamiltonian, and Hy () =
gdiag[f(lar|?), f(|br|?)] describes the on-site nonlinear-
ity with strength g, which is a function of the local in-
tensity at each lattice site. For linear stability analysis
we consider pure Kerr nonlinearity f(I) = I, while for
the beam propagation simulations we use saturable non-
linearity f(I) = I/(1+ I). The latter reduces to Kerr
nonlinearity in the limit of low intensities.

We start by reviewing the main properties of linear
Floquet systems. As Hp(z) is a periodically-modulated
lattice Hamiltonian, it gives rise to Floquet-Bloch modes
|u, (k)) 7 with wavenumber k, which are invariant (up
to a phase factor) under spatial translations by a lattice
vector and after one period of the modulation, i.e.

z
Oy (k, Z) un(k)) = exp (—z‘ / ﬁL(k,z)dz) fun ()
0
= A (k) [un(k)) , (2)
where UL(k:) is the linear Floquet evolution operator,

whose eigenvalues A, (k) forms a discrete set of bands
indexed by n. The Floquet evolution operator can be

2

used to define a static effective Floquet Hamiltonian Hp
via U (k,Z) = exp(—iZHp(k)) analogous to Hamilto-
nians of non-driven lattices, with bands of quasi-energy
eigenvalues (2, defined modulo 27/Z

(k) = £ In Ao (k). (3)

The quasi-energy bands enable topological invariants
originally derived for static systems to describe the stro-
boscopic dynamics of Floquet systems. For example,
Chern insulator phases can be identified by integrating
the Berry curvature of the Bloch wave eigenstates over
the Brillouin zone to obtain the Chern number [9} [10]

C = QL (O, ulOn, ) — (O, ulOp,u)] d2k.  (4)

T JBz

The Chern number of a band counts the difference be-
tween the number of chiral edge states emerging from the
top and bottom of the band.

The periodicity of the quasi-energy eigenvalues leads
to new topological phenomena inaccessible in static sys-
tems. Since the quasi-energies are only defined modulo
27 /Z, it is possible for chiral edge states to traverse all of
the band gaps, including what would be the semi-infinite
gaps of a static system, corresponding to an anomalous
Floquet insulator phase with vanishing Chern number.
The topological invariants describing anomalous Floquet
phases cannot be obtained using just Hp or Ur(Z), but
instead require analysis of the full evolution throughout
one driving period [7, [§],

U(z) = Texp (—i /0 ) H(z’)dz’) , (5)

where T denotes time ordering. For example, the anoma-
lous Floquet phase is identified by the winding number [4]

1 [Z . - - .

W= —/ dz/ EETe(U0,U[U 0, U, U0y, U)).
872 Jo BZ ’ !

(6)

The intra-period evolution operator U (z) is generally
not periodic in time, despite the Hamiltonian obeying
Hp(z+ Z) = Hp(z). For bulk systems the family of
Bloch evolution operators U (k, z) acting within the space
of periodic Bloch functions can be written in the form

N
Uk,2) =) Pulk,2) exp(—ipn(k, z)), (7)

where B, is the projector onto the n-th eigenstate of
U(k), exp(—ip,(k,z)) the corresponding eigenvalues,
and ¢, (k,z) are called the phase bands of the sys-
tem [30, 3I]. The phase bands depend on time and at
z = Z they are identical to the Floquet bands, i.e. the
quasi-energies. Anomalous Floquet phases may be iden-
tified by band crossings of the phase bands, indicating
that the system cannot be adiabatically deformed into a
static (undriven) system.



@, RON

/'\'\.\ /V
/\\'\. /./'

'\>}\
NN
NN

AFHOTI

I Cl AFI

0 /4 /2 3n/d y =
FIG. 1. (a) Schematic of one driving period, consisting of
each nonlinear site being coupled to its neighbours in turn
with strength J1 = 6, Jo—3 = ~ for a duration I = 1 (b)
Linear Floquet-Bloch band structure as a function of ~ for
fixed 0 = 37 /4. The purple line indicates the quasienergy of
the symmetric Bloch wave with momentum k = 0. Dashed
lines denote boundaries between different topological phases
(normal insulator NI, Chern insulator CI, anomalous Floquet

insulator AFI, and anomalous Floquet higher order topologi-
cal insultor AFHOTTI).

A. Linear Floquet spectrum

We now introduce and briefly review the properties of
the linear lattice model (¢ = 0). During each period Z
of the Floquet modulation each site is coupled once at a
time to each of its four nearest neighbours with strength
J;, shown in Fig.[I[(a) and described by the Bloch Hamil-

tonian
Ji(2)etk9i
—zk: 3, ]( )0 ) ) (8)

where 51 = (2,2) 62 = ( 77%), 53 = 7(51, and 64 =
—05 are displacements between neighbouring sites. We
normalize the lattice period to Z = 4, and set Jy(z) =
0, Jo(z) = J3(2) = J4(2) = v when the two neighbours
are coupled, and zero otherwise [27].

The evolution operator can be written as

On(k) = 8, (=k_)S, (—r1) S (k) Salks),  (9)

where Ky =61 -k, ko =32 -k, and

A cosJ —ie’
$100 = (i,

(K, 2) Z(

sin J cosJ

”sinJ) . (10)

Owing to our normalization of the coupling length to
Z/4 =1, S;(k) only depends on J modulo 27, therefore
we will use “coupling strength” and “coupling angle” in
terchangeably.

The quasi-energy band structure as a function of -y for
fixed § = 37 /4 is plotted in Fig. [[(b). Owing to the bi-
partite Hamiltonian which obeys particle-hole symmetry
[27], two quasi-energy gaps occur: around 2 = 0 and
Q) =x/Z. Each gap may host topological edge or corner
modes. The gap closes at boundaries between distinct
topological phases, corresponding to Dirac points in the
bulk band structure.

The multiple crossing points in Fig. (b) indicate that
several topological phases can be realized by tuning the
single parameter v: A normal insulator (NI) phase in
which none of the gaps support any topological edge
or corner modes; Chern insulator (CI) phases, in which
only one gap hosts chiral edge modes; anomalous Flo-
quet topological insulator (AFT) phases in which both
gaps host chiral edge modes, and an anomalous Floquet
higher-order topological insulator (AFHOTI) phase, in
which both gaps host topological corner modes.

The first Dirac point v = /12 corresponds to A 2 =
—1 and divides the NI (Chern number C' = 0) and CI
phases (C = —1). The second Dirac point v = 57/12
corresponds to Aj2 = 1 and divides the CI and AFI
phases, while the third Dirac point at v = 37/4 and
A12 = —1 separates AFI and AFHOTI phases. In ad-
dition, there are other critical points at v = 0,7/2, and
m, corresponding to purely flat quasi-energy bands with
eigenvalues independent of the momentum k.

Fig. [2] illustrates the phase band spectrum of the sys-
tem for various . It is predicted and clearly seen in
the corresponding phase band representation, that the
phase band spectrum of the anomalous Floquet phases
hosts degeneracies within the driving period. As de-
generacies within a three-dimensional parameter space
(ks, ky, z) they are topologically-protected; small changes
in the lattice parameters can shift the positions of the de-
generacies but not remove them. The presence of phase
band degeneracies also means that the system cannot be
adiabatically (without band crossing) transformed to an
undriven system [30]. When viewing the lattice strobo-
scopically, i.e. only considering the quasi-energy bands,
these degeneracies are hidden.

Recently, Ref. [27] developed an alternative to Eq. (6)
for obtaining bulk topological properties of the anoma-
lous Floquet phases of this model. Because this model
has chiral symmetry, it suffices to study the properties of
the eigenstates at the high symmetry points of the Bril-
louin zone to distinguish the different phases. At the high
symmetry points [H (z), H(z")] = 0 for all z, 2. Therefore
the eigenstates of the phase operator ﬁ(z) are indepen-
dent of z; all that changes are their eigenvalues. The
number and position (quasienergy 0 or 7) of the band
crossings of U(z) at the high symmetry points can be
used to distinguish trivial, Chern insulator, and anoma-
lous Floquet topological phases.



FIG. 2. Phase band profiles along the high symmetry lines
in the Brillouin zone for § = 37/4 and (a) v = 7/12 (the
first Dirac point), (b) v = 7/6 (Chern insulator phase), (c)
~v = 5m/12 (the second Dirac point), (d) v = 77/12 (anoma-
lous Floquet insulator phase), (e) v = 117/12 (anomalous
Floquet higher order topological insualtor phase), and (f)
v = m (flatband limit). Unremovable phase band crossings
occur within the modulation cycle in the anomalous Floquet
phases.

III. MODULATIONAL INSTABILITY AND
DYNAMICS

Now we consider the properties of the full nonlinear
evolution Eq. . The linear Floquet modes may persist
as nonlinear Floquet modes, solutions of the nonlinear
eigenvalue problem

lunp(z+ Z)) = UNL lunr(2))
Z ~ A
= exp —i/ [Hp(2) + Hypldz | lunL)
0

= ¢ ZONL lunr(2)) . (11)

As each step of the modulation cycle forms a nonlin-
ear Schrodinger dimer, which is integrable, the dynamics
are in principle analytically solvable. However, the solu-
tion will take a highly complicated form as the analytical
solution of the dimer for arbitrary initial conditions in-
volves elliptic functions [38]. Alternatively, Eq. can

Point| ko |Eigenvalue|Eigenmode|w; | w2 | w3 | w4
L (00| e (1L, 1)"/vV2| 0| v [~ ]|y
M |(mm)| e 07 1(L,D"/V2[-60] v || ¥
X [(m0)| €07 1G1)"/V2| 0]y ||y
Y (0771—) ei(vie) (ia I)T/\/E ¢ el el el

TABLE 1. Characteristics of the eigenstates at the high-
symmetry points. w; are linear eigenvalues of of Hy for the
selected eigenvector at each quarter of the period. Eigenen-
ergies of Hy are w; = *+J;, and normalised eigenmodes are

luj(ko)) = (£etk0% 1)T /\/2.

be solved numerically using the self-consistency method
(see e.g. Refs. [I8 20]).

In the following, we will restrict our analysis to the sim-
plest nonlinear Bloch wave solutions, those at the high
symmetry Brillouin zone points ko (see Table E[), which
have modal profiles |u; (ko)) = (£e©®0) 1)T/1/2, in-
dependent of 6, ~, and g, with unitary total intensity.
Term O(ko) denotes the corresponding nonlinear mode
phase. The normalised states |ut) = (+1,1)T/v2 at
T" point have perhaps the simplest wave profile since no
complex phase or intensity modulation is required, mak-
ing these states more easily accessible in experiments [23-
25].

There is no energy transfer between the sublattices and
the Kerr nonlinear terms are independent of z, such that
Hpyr, = g1, which commutes with H;, (2). Hence the non-
linear Bloch waves’ quasienergies are Qg = Q/Z + g/2.
Note that even if g is small, the relative strength of the
nonlinearity can be made increased by lengthening the
modulation period Z. Because Hyj commutes with Hy,,
these nonlinear Bloch wave eigenvectors are independent
of Z.

We are interested in understanding how the features
of the linear Floquet spectrum (e.g. dispersion, topo-
logical properties) are imprinted in the nonlinear Bloch
waves’ stability. Since H is invariant under the stagger-
ing transform, (a,,b,)" — (—ap, b)), 2 = —2, g — —g,
it is sufficient to consider only the symmetric Bloch waves

fug) = (1,1)7/v2.

A. Linear stability analysis of the nonlinear Bloch
waves

To enlighten the modulation instability (MI) devel-
opment in the Floquet lattice, we study the stability
properties of the nonlinear Bloch waves. Consider a
small perturbation to a nonlinear Bloch wave, |¢,(2)) =
(g (o)) + [30r)) e~ iCorto/D2eiko wwhere (w; + g/2)
is the nonlinear mode’s instantaneous energy at step j of
the modulation and kg is the wave vector in the vicinity
of which we investigate the instability.

We substitute this state into the evolution Eq. for
each of the modulation steps, retaining only the linear



terms of the perturbation. To perform the linear stability

analysis, we make use of the identities k= —id,: eikdn —
ikd,)" 0r0n)"  : A , ,
Zn ( n;l) _ Zn ( T'n'”) , ezkén [ezkr] _ ezkzsnezk'r'.
g — wj Jj eipdj eiko'(s]'
ﬁ/ ‘ Jjefip-(s]-ef’ikotsj g _ w]
J _%ge—Qi@(ko) 0

where w; = +J; depends on the chosen mode (see Ta-

ble m)

Using these Hamiltonians, we may construct the evo-
lution operator for perturbations in the nonlinear case as
U = e~ifh'¢=iH2' =i =il If any of the cigenvalues
A of U have modulus |A| > 1 the nonlinear Bloch wave is
unstable.

The eigenvalues of PAIL4 are 0,0,+2/J1 4(J14 — g).
Thus, a sufficient condition for instability is for one of
the nonlinear couplers to be unstable, i.e. when g > J;_4
(J1 =0, Jy—4 = ). This condition is independent of the
lattice’s band structure, and so less interesting from our
point of view. Therefore we focus our attention to g < J
(i.e. v and k). This is also the more practical case to
consider, given the weakness of the Kerr nonlinear effect.

The numerically-obtained instability rates for the high
symmetry points are shown in Fig. [ as a function of v
and g. For weak nonlinearity the stability windows are
dictated by the quasi-energy of the linear Bloch wave.
When the quasi-energy lies at a upper (lower) band edge,
instability will occur for weak positive (negative) g. Oth-
erwise, the nonlinearity needs to be sufficiently strong to
shift the quasi-energy into a band gap for instabilities to
oceur.

At the critical points of the band structure, i.e. the
Dirac points and flatband limits, the sign of the wave
effective mass flips, resulting in (for fixed g) transitions
between stability and instability. These transitions can
be seen for the I' and M point Bloch waves, which lie
at band edges. On the other hand, the X and Y points
are typically saddles of the quasi-energy bands, meaning
that sufficiently large nonlinearity is always required for
the instability to develop.

This behaviour of the linear stability eigenvalues
closely resembles that of the Bloch waves of undriven
lattices, see e.g. Ref. [22]. This is despite the modula-
tion frequency being low and the presence of anomalous
Floquet phases.

Considering perturbations of the form |[0¢,) =
lup) €T + [w) €T and applying the standard linear
stability analysis, the Hamiltonian-like operator govern-
ing the evolution of the perturbation vector (v, w, v*, w*)
at each step of the driving period takes the form

1 ge2i® (ko) 0
1,020 (ko)
" 2 s, | (12)
wj—g —J;e'P0e i

_Jje—ip-éjeiko-éj UJ] _ 92
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FIG. 3. The maximum values of the instability growth rate
max(In|A|)Z as a function of the coupling parameter v and
nonlinearity strength g for fixed 6 = 37/4 at each of the high
symmetry points of the Brillouin zone, labeled with I'; M, X.
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B. Propagation dynamics

Next we consider numerical simulations of the propa-
gation dynamics to study the modulational instability be-
yond the linear perturbation approximation. We take as
the initial state the k = 0 Bloch wave, |¢,.) = (1,1)7/v/2
perturbed with noise (random perturbation amplitude
of 10%), and solve the nonlinear Schrodinger equation
with saturable nonlinearity using the split step method
and periodic boundary conditions. We average over 100
realizations of the initial random perturbation. To de-
pict the findings of dynamical simulations in this section
we have chosen the nonlinearity parameter |g|] = 0.35
for which the initial state is linearly unstable in the
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FIG. 4. Examples of MI instability dynamics in the nontriv-
ial Floquet phases. (a) The real space participation number,
indicating self-focusing from the initial uniform beam. (b)
The Fourier space participation number, indicating spreading
in k space. (c) The fraction of energy transferred from the
initially-excited band, indicating that more energy remains in
the initial band. (d) The purity gap, indicating the emergence
of a well-defined polarization state throughout the entire Bril-
louin zone.

three phases considered, with g negative in the CI and
AFHOTI phases and positive in the AFI phase.

To examine the propagation mode dynamics we follow
the evolution of the normalized real space participation
number P,, the normalized Fourier space participation
number Py, the interband mixing strength, and the pu-
rity gap, whose dynamics are shown in Fig. [4

The real space participation number P, (z) determines
the fraction of strongly excited lattice sites during prop-
agation. It is defined by expression [22]

(13)

—1
o= 2 (S faft o
2N ’

r

where P = 3" (¢(r)|¢(r)) is the total mode power and
N = 32 x 32 is the number of unit cells in the lattice,
such that 0 < P. < 1.

The Fourier space participation number Py is the k-

space equivalent of P,

1
P, = E Z‘ak|4+|bk|4
2N k ’

which measures the fraction of excited Fourier modes.
Averages of P,(z) and Py(z) over the ensemble of initial
conditions are plotted in Fig. [{a) and (b) respectively,
for the CI, AFI, and AFHOTTI phases.

To obtain the information on the efficiency of band
mixing triggered by nonlinearity we compute the fraction
of energy transferred from the initially-excited band to
the rest of system. This is carried out by projecting the
field profile at the end of each modulation cycle onto the
basis of linear modes of the Floquet evolution operator
Ur(k,Z). When this fraction remains less than 0.5 the
system retains some memory of the Floquet band that
was excited at z = 0. This is the case for all three phases
considered, as shown in Fig. [{]c).

The extraction of information on the band topolog-
ical properties requires an observable which imprints
the band vector properties. Following Refs. [22] B5H37]
we consider the ensemble-averaged field spin (or polar-
ization) textures sy (k) = (¢¥(k)| & |¥(k)), where 6 =
(64,6y,0,) are Pauli matrices acting on the sublattice
degree of freedom:

sv o (k) = 2Re(agbr)/(|lax|* + |bx ),
sy y(k) = 2Im(agdr)/(Jakl* + [be]*),
sy (k) = (Jarl* — [bel*)/(lax]* + [be]*)-

(14)

(15)

By averaging the field polarization over the ensemble
of random perturbations added to the initially injected
mode in the lattice we obtain the average polarization,
(8 (k)), which is an experimentally measurable quantity.
Mixed polarization states have 312/) = (8y(k))-(84(k)) < 1.

Geometrically, the vector field (sy(k)) can be param-
eterized in terms of a polarization azimuth £(k) and po-
larization ellipticity x(k), which can be related to the
amplitudes of the spinor components via [2§]

L (sea(k) 1 ( 2Re(agbi)
§(k) = Stan ' (swz(k)> = gtn <|ak|2—k|bk|2(> )
16
_ 1. 2m(agbe)
x(k) = Ssin~? (|ak|2 +’“|bk|2) . (17)

Provided si > ( over the entire Brillouin zone, the polar-
ization state is well-defined for all k and is sensitive to the
Chern number Eq. . To be precise, the Chern number
can be obtained as a sum of the phase singularities of
the polarization azimuth ¢ weighted by sgn(sy ) at the
singularity [28]. The Chern number computed using the
polarization state is quantized and cannot change unless
the polarization becomes undefined at some wavevector
k., ie. s?p(k:c) = 0. The purity gap mink(s?p) thus plays
a role analogous to the band gap of the linear lattice.
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FIG. 5. Field polarization profiles in Fourier space, averaged
over 100 random initial perturbations in the three phases.
(a) Chern insulator phase (y = 7/6). (b) Anomalous Floquet
insulator phase (v = 7w/12). (¢) Anomalous Floquet higher
order topological insulator phase (v = 117/12).

Fig. Ekd) illustrates the dynamics of the purity gap, il-
lustrating the emergence of a nonzero purity gap via the
modulational instability in all three phases.

This, even though the system is periodically driven
(non-equilibrium), the modulational instability is able
to generate a quasi-steady-state in which P., the band
populations, and the purity gap converge to (approxi-
mately) time-independent values. On the other hand,
Py maintains a slow growth indicating that some mem-
ory of the initial state remains and an equilibrium state
has not been reached yet. The simulations establish that
the slowly-driven Floquet systems can exhibit similar re-
laxation dynamics to the static topological lattices we
previously considered in Ref. [22].

Fig.[f|shows the beam polarization profile in the quasi-
steady state (i.e. after 50 modulation cycles) in the three
phases considered. Vortices in the polarization profile
can be created or destroyed in pairs at band crossing
points, accompanied by the purity vanishing locally. The
weighted sum of polarization vortex charge yields the
Chern number. In Fig. 5| we verify that the Chern num-
ber is indeed nonzero in the CI phase, while vanishing
in the anomalous Floquet phases (since no polarization
vortices occur in the quasi-steady state).

Finally, Fig. [6]illustrates the beam measures as a func-
tion of ~, indicating the robustness of this quasi-steady-
state provided the Floquet band gap remains open and
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FIG. 6. The field measures after 50 modulation cycles as a
function of « for positive (blue) and negative (red) nonlinear-
ity coeflicients |g| = 0.35. Vertical dashed lines indicate the
phase transitions. (a) Real space participation number. (b)
Fourier space participation number. (c) Purity gap. The pu-
rity gap vanishes in the vicinity of the phase transition points
and over the range of v where the nonlinear Bloch wave is
linearly stable.

the initial nonlinear Bloch wave is linearly unstable.

In summary, we have seen that the modulational insta-
bility of unstable nonlinear Bloch waves enables the com-
plete population of a Floquet quasi-energy band starting
from a single wavevector, at least for sufficiently weak
nonlinearity strengths. By measuring the polarization
of the field after the instability has developed, we can
obtain the Bloch wave’s k-dependent polarization profile
and thereby the band Chern number, similar to the static
lattice case considered previously in Ref. [22]. On the
other hand, the anomalous Floquet phases, which can-
not be distinguished using the Chern number, exhibit
singularity-free polarization fields resembling that of a
trivial insulator phase.

IV. MEASURING ANOMALOUS FLOQUET
TOPOLOGICAL PROPERTIES

Next, we consider the identification of the anomalous
Floquet topological phases using the nonlinear propaga-
tion dynamics. As noted in Sec. [[, the anomalous Flo-



quet topological invariants cannot be obtained by con-
sidering the eigenstates of the Floquet evolution operator
U(Z). Instead, it is necessary to consider the dynamics
during the entire driving period, e.g. by considering the
phase bands of U(z). Unfortunately, the population of a
single band of Floquet eigenstates via the modulational
instability does not imply population of a single phase
band, whose eigenstates can be strongly z-dependent.
Therefore, one cannot straightforwardly distinguish the
anomalous Floquet phases just by measuring the intra-
cycle dynamics of the polarization in the steady state.

One might ask whether it is possible to excite only
a single phase band by increasing the modulation pe-
riod Z, such that the phase bands undergo an adiabatic
modulation. However, the phases we are interested in
distinguishing are anomalous Floquet phases, which im-
plies they do not have an adiabatic modulation limit; one
inevitably encounters phase band crossing points during
the modulation period, meaning that it is not possible
to excite only a single phase band. Therefore we need to
take a different approach.

Our solution to this conundrum is to exploit the sym-
metry of the model. First, as was shown in Ref. [27],
the anomalous Floquet phases can be distinguished by
considering the properties of the phase bands only at the
high symmetry points of the Brillouin zone. At these
points the phase band eigenstates are independent of z;
all that changes is the ordering of their eigenvalues, which
become degenerate at z values corresponding to band
crossing points. At these z values whatever initial po-
larization state there was at z = 0 will be restored. By
tracking how the polarization rotates in the vicinity of
the phase band crossing points, we can extract the Hamil-
tonian parameters and thereby distinguish the different
anomalous phases according to the scheme of Ref. [27].

Figure [7] illustrates the outlined approach for I" point.
First, we recall that from the dynamic equations for a
nonlinear coupler with a coupling strength J,

2
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one can obtain a system of evolution equations for the
spin components defined in real space, s = (.| & |[1)y.):

0.5, = 2J sy, (19a)
0.8y = —5,(2J — gsa), (19b)
0285 = —gSySz, (19¢)

and conservation laws for the total intensity and spin

|ar|? 4 |br|? = const, (20a)

s2 + s, + s2 = const. (20b)
We consider evolution of the initial state (0,1)%, which is
a superposition of the symmetric (S) and antisymmetric
(A) eigenstates. Figure[7j(a) shows behavior of the phase
bands g a () over the period Z in the linear case, g = 0.
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FIG. 7. (a) Phase bands ¢s a(z) at I' point for v = 0.9,
0 = 37 /4 in the linear regime at g = 0. (b) Evolution of the
spin components in the nonlinear regime over the whole pe-
riod (solid line s., dotted line sy, dashed line s;). (c) Phase
difference Ap = @A — g in the linear case (black dotted line,
g =0)and Ap = tan"' s, /s, in the nonlinear case (gray solid
line, g = 0.97). The vertical green dashed line marks the coor-
dinate z,, at which measurements are taken, s;(zm) = 0.112,
$z(zm) = —0.86587, sy(zm) = —0.48756; the vertical cyan
dashed line marks the point zo, where sy(2z0) = 0 in the non-
linear case. (e,f,g) Evolution of the spin components in the
nonlinear case in the vicinity of zp: blue lines are numerically
obtained solutions, dashed black lines are their approxima-
tions (23). Dependencies of the nonlinear shift Az = [z — 2o
(d) and § = s2(z0) (h) on the nonlinearity strength g.

Assume we gradually cut out slices of the Floquet lattice
sample from its end to find empirically, i.e. from polariza-
tion measurements, a position z,,, where the initial spin
is restored s.(zm) = $.(0) = —1 and a phase difference
vanishes Ap = @a(zm) — ¢s(zm) = 0 [see Figs. [f(b,c)].
Next, we increase the intensity and at this fixed output
coordinate z,, measure spin.

In the nonlinear regime g # 0, we generalize a defini-
tion of Ag(z) to the function Ap = tan='(s,/s,), which
is plotted with a gray line in Fig. c) and obeys the
equation

2
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0,Ap = —2J .
4 +gs§+3§ 1—s2

(21)

In Fig. [[b) we mark the coordinate zy, where Ap(z =
zp) = 0 and, therefore, s,(z9) = 0, whereas s, , exhibit
minima. The total spin conservation law at this point
reads s2, + s2, = 1. We assume that nonlinearity is rel-
atively weak and the nonlinear shift of zy with respect
to zp, is small. Therefore, at zy we may approximately



write:
500 = 0, 5,0 = —1462/2, (22)

where § < 1 is a small parameter. In the vicinity of the
point zg, we approximate the coordinate dependencies of
the spin components as follows:

2
s, =—1+ % +2J%(z — 2)?, (23a)
s. =0+ gJ (2 — 20)?, (23b)
sy = (2J — g6)(z — 20), (23¢)

where J is the (unknown) coupling strength. To validate
expressions , we substitute Egs. into Eqs. (19)
and , where |z — 29| ~ §, and ensure they are con-
sistently fulfilled in the zero §° and first 6' orders of per-
turbation theory. In the linear limit, the spin s, should
be precisely equal to zero, thus, we anticipate two asym-
pototics § = Gog, zm — 20 = G1g%, which are confirmed
by Figs. (d,h).

Taking a measurement of s, ,(zm) = Gogs at very
small but non-negligible intensity g,, the coefficient Gy =
tan(s; o /ge) may be determined. Then, perform several
measurements with larger nonlinearity g (or equivalently,
increasing the intensity of the incident light beam), we
can extract J from the system for each of them
and average the results. Thus, the linear dependence
of s, = 2Jz in the vicinity of the phase band crossing
points can be used to obtain the coupling strength and
distinguish the anomalous Floquet phases from the triv-
ial phase. We note however that, according to Ref. [27],
the approach based on the symmetry eigenvalues is still
unable to distinguish the AFI phase from the AFHOTI
phase.

V. CONCLUSION

Periodically-driven lattices can host a wealth of differ-
ent topological insulator phases, including Chern insula-
tors, anomalous Floquet insulators, and their higher or-
der analogues. The bulk-edge correspondence originates
from the intrinsic relation between the bulk topologi-
cal properties and the occurrence of topologically pro-
tected edge modes. Bulk topological invariants describ-
ing anomalous Floquet phases generally depend on the
details of the micro-evolution of the system, and have
attracted a lot of interest over the past decade.

However, the observation and measurement of topo-
logical properties in experiments with driven systems is

not a fully closed story. Following on our earlier study
Ref. [22] showing how nonlinear modulational instability
in undriven topological lattices can be used to measure
their bulk topological invariants, we tested the applica-
bility of this approach to driven systems. The crucial
findings of our study can be summarized in a few state-
ments:

e For weak nonlinearity and gapped Floquet bands,
the modulational instability is able to predomi-
nantly populate a single band starting from a sin-
gle Bloch wave, enabling measurement of its Chern
number via the polarization profile of the state gen-
erated by the modulational instability.

e To unveil topological properties of anomalous Flo-
quet phases it is generally necessary to consider
the microscopic dynamics of the polarization field
within the modulation cycle, which is challenging
because the microscopic dynamics generally do not
involve predominant excitation of a single band of
the evolution operator Uy (z).

e In the special case of Floquet lattices with chiral
symmetry, anomalous Floquet phases can be distin-
guished from the trivial phase by studying the time
or nonlinearity-dependent dynamics of superposi-
tions of Bloch waves at the high symmetry points
of the Brillouin zones.

Our methods can be readily implemented using light
propagation in nonlinear waveguide arrays, similar to the
experiments of Refs. [23H25], demonstrating the feasibil-
ity of using the nonlinear propagation dynamics to mea-
sure bulk topological invariants of energy bands.
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