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Thermo-Analytical and Compatibility

Study with Mechanistic Explanation

of Degradation Kinetics of Ambroxol

Hydrochloride Tablets under

Non-Isothermal Conditions.

Pharmaceutics 2021, 13, 1910.

https://doi.org/10.3390/

pharmaceutics13111910

Academic Editor: Afzal R.

Mohammed

Received: 4 October 2021

Accepted: 8 November 2021

Published: 11 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chemistry Department, Faculty of Sciences and Mathematics, University of Banja Luka,
78 000 Banja Luka, Bosnia and Herzegovina; dragana.milisavic@pmf.unibl.org

2 Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences,
University of Novi Sad, 21 000 Novi Sad, Serbia; snezana.papovic@dh.uns.ac.rs (S.P.);
milan.vranes@dh.uns.ac.rs (M.V.); slobodan.gadzuric@dh.unsac.rs (S.G.)

3 Department of Chemistry, University of Turin, 10125 Turin, Italy; silvia.berto@unito.it (S.B.);
eugenio.alladio@unito.it (E.A.)
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Abstract: Ambroxol hydrochloride (AMB), used as a broncho secretolytic and an expectorant drug, is
a semi-synthetic derivative of vasicine obtained from the Indian shrub Adhatoda vasica. It is a metabolic
product of bromhexine. The paper provides comprehensive and detailed research on ambroxol
hydrochloride, gives information on thermal stability, the mechanism of AMB degradation, and
data of practical interest for optimization of formulation that contains AMB as an active compound.
Investigation on pure AMB and in commercial formulation Flavamed® tablet (FT), which contains
AMB as an active compound, was performed systematically using thermal and spectroscopic methods,
along with a sophisticated and practical statistical approach. AMB proved to be a heat-stable and
humidity-sensitive drug. For its successful formulation, special attention should be addressed to
excipients since it was found that polyvinyl pyrrolidone and Mg stearate affect the thermal stability
of AMB. At the same time, lactose monohydrate contributes to faster degradation of AMB and change
in decomposition mechanism. It was found that the n-th order kinetic model mechanistically best
describes the decomposition process of pure AMB and in Flavamed® tablets.

Keywords: ambroxol hydrochloride; thermal stability; compatibility; chemometrics

1. Introduction

Many drugs are intended for oral administration, and the most used are solid dosage
forms such as tablets, capsules, and powders. To develop a stable, safe and effective final
drug product, it is essential to characterize the physicochemical properties and assess its
compatibility with excipients during the processing and storage [1,2]. Excipients in the
solid dosage forms can contain relatively high water content but in different percentages.
For example, the equilibrium moisture content of polyvinyl pyrrolidone, PVP, is about
28% at 75% relative humidity [3]. One should pay attention that such excipients can affect
and increase the degradation rate of active drug ingredients. The moisture level can affect
the stability depending on how strongly it is bound and whether it can contact the active
drug. Heat and moisture accelerate most reactions, even if moisture is not involved in the
reaction scheme since moisture brings molecules closer together, and heat always increases
the reaction rate [4].

Kinetic information is crucial for evaluating the times and temperatures associated
with the processing service lifetimes and storage of materials. Thermo-analytical (TA) tech-
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niques have been used to rapidly evaluate the purity, degradation kinetics, and physical
property of drugs [5–11]. A typical application is the use of non-isothermal thermogravi-
metric (TG) runs for estimating the thermal stability and shelf-life of a material (drug) at a
specific temperature [12,13]. Moreover, these techniques alerted compatibility problems
and indicated the most favorable directions for a successful formulation [14,15]. In the
present study, we focused our attention on the thermal stability of the commercial pharma-
ceutical tablet formulation (Flavamed®) (FT), in which ambroxol hydrochloride (AMB) is
an active component.

AMB is chemically (1s,4s)-4-((2-amino-3,5-dibromocyclohexyl)methylamino)cyclohex-
anol hydrochloride (Figure 1). Its melting point is 235 to 240 ◦C [16]. Ambroxol hydrochlo-
ride is a semi-synthetic derivative of vasicine obtained from the Indian shrub Adhatoda
vasica. It is a metabolic product of bromhexine. It is used as a broncho secretolytic and an
expectorant drug [16,17]. It stimulates the transportation of the viscous secretions in the
respiratory organs and reduces the stand stillness of the secretions. AMB is a clinically
proven systemically active mucolytic agent. When administered orally, the onset of action
occurs after about 30 min [16]. Ambroxol hydrochloride is completely absorbed after
oral administration [16]. Ambroxol is changed into various inactive metabolites that are
mainly eliminated as water-soluble conjugates. After oral administration, 85% of the active
substance is eliminated in the urine. Less than 10% is eliminated in the form of unchanged
ambroxol [16].
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According to Pharmacovigilance Risk Assessment Committee (PRAC) report from
2015, mucolytic drug AMB, including ambroxol-containing products indicated for se-
cretolythic therapy, infant respiratory distress syndrome, and in the prevention of post-
operative complications, has been used by more than four million people in the last
decade (2004–2013) and AMB is currently used in the 50 countries worldwide [18]. Dif-
ferent formulations of ambroxol are available on the market, including the formulation
of extended-release (ER) capsules, pastilles, and syrups for adult and pediatric use. Re-
ported efficacy was comparable among formulations with minor differences in favor of the
pediatric syrup [19].

Ambroxol hydrochloride molecule character is unstable under an oxygen atmosphere
or alkaline environment, which can contribute to the decomposing process and might
reduce the safety of AMB [20]. There is no detailed and comprehensive research on am-
broxol hydrochloride thermal decomposition and its stability in the current literature.
Podbukowska et al. reported on some physicochemical properties of AMB: solubility,
acidity constant determination, and thermophysical data [21]. Caira et al. investigated the
thermal and structural properties of ambroxol polymorphs [22]. Mo et al. investigated com-
patibility between two drugs, AMB and omeprazole, in a mixture by DSC technique [23]
and proved that omeprazole becomes less thermal stable in the presence of ambroxol
hydrochloride. In addition, combining AMB with some other drugs, such as terbutaline,
improved the clinical efficiency of ambroxol [24]. Due to AMB’s poor water solubility,
α and β cyclodextrins were evaluated as potential guest molecules for AMB. Ambroxol
hydrochloride membrane-coated matrix tablets were successfully prepared using hydrox-
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ypropyl methylcellulose (HPMC). The viscosity and the amount of HPMC were significant
for acquiring zero-order release kinetics [25]. Kardos et al. reported on the characterization
of differential patient profiles and therapeutic responses of pharmacy customers for four
ambroxol formulations [19]. Generally, the kinetics of ambroxol hydrochloride seems to be
rather poorly studied.

Combining thermal methods (simultaneously thermogravimetric analysis and differ-
ential scanning calorimetry, TG-DSC) with mass spectrometry (MS), along with chemical
kinetics and chemometrics tool, we provided a specific kinetic approach in revealing a
detailed mechanistic feature of AMB and FT thermal degradation under dynamic (non-
isothermal) conditions in N2 atmosphere. The choice of isothermal (T = const.) or non-
isothermal (β = dT/dt) experiments depends on the requirements of the study, whether
one wishes to study reaction kinetics over wide temperature ranges (i.e., up to the melting)
or if a narrow range is enough. Various models included in contemporary kinetic soft-
ware were evaluated and compared (fitted) to determine the importance of the different
degradation pathways.

Furthermore, in this paper, special attention was given to the role of presented ex-
cipients for the stability determination of the dosage form and the evaluation of shelf-life
values to prepare the ideal optimization procedure for the storage of pharmaceutical prepa-
rations [26,27]. It should be noted that the small pharmaceutical molecules and their
reactions in the solid state have attracted the attention of scientists. With the increasing use
of small organic molecules as pharmaceuticals, it is crucial to understand the solid-state be-
havior of compounds. Compatibility studies between active compounds and excipients in
Flavamed® formulation were conducted systematically through thermal and spectroscopic
characterization, and chemometric tools analyzed the data.

Therefore, this paper, combining exhaustive experimental and newfangled statistical
methods, presents an overall contribution to degradation mechanism, kinetics, thermal
stability, compatibility assessment of AMB, and its rational drug formulation. Considering
widespread usage of AMB mucolytic agents for chronic bronchitis or chronic obstruc-
tive pulmonary diseases, detailed analysis such as this one might provide paths for the
upgraded formulation of ambroxol hydrochloride-containing drugs [28].

1.1. Theoretical Basis for Data Analysis
A Kinetic Analysis—Theoretical Approach

A typical starting point in the kinetic analysis based on thermal analysis data is
Equation (1):

dα

dt
= k f (α) = Ae−E/RT f (α) (1)

where α is the conversion degree, t is time, f(α) is a mathematical expression in which form
is dependent on the reaction mechanism and k = Ae−E/RT, where A is the pre-exponential
factor, E is the apparent activation energy, R is the gas constant, and T is the thermodynamic
temperature. The mass loss data from the TG curve can be transformed into conversion
degree (α) by means of the equation:

α =
m0 −mt

m0 −m f
(2)

where mt represents the mass of the sample at arbitrary time t (or the temperature T),
whereas m0 and mf are the mass of the sample at the beginning and the end of the process,
respectively [29].

Such transformed TG data are easily operated by the proper kinetics software, which
in return provide information on the kinetic scheme and corresponding kinetic triplet
(E, lnA, and f (α)). The exact determination of kinetic parameters is based on multiple
scan methods, which require the measurements at different heating rates and use the
data sampled at joint conversion degrees (isoconversional, model-free methods). Kinetics
software, Kinetics 2015, uses various simple linear regression methods to determine initial
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guesses for non-linear regression of various kinetic models [29]. All the linear regression
methods in Kinetics 2015 are variations of well-known isoconversional methods. The
basic Friedman equation, isoconversional model, solves the simple nth-order reaction rate
equation for the rate constant, k, as [30]:

dα

dt
= k(1− α)n, (3)

where dα/dt is the process rate, α is the conversion fraction or fraction reacted, and n is
the reaction order. For any set of experiments with different, arbitrary thermal histories,
a plot of ln(dα/dt) versus 1/T has a slope of −E/R and an intercept ln[A(1 − α)n] (where
E represents activation energy (J·mol−1), and A is the pre-exponential (frequency) factor
(s−1)). If one truly has an nth-order reaction with n not equal to unity, it is theoretically
possible to obtain constant apparent activation energy and extract a reaction order, but this
rarely occurs in practical cases.

The expanded Friedman method, given by Equation (4), is used more frequently as [31]:

ln
(

dα

dtα

)
= − Eα

RTα
+ ln{Aα f (α)} (4)

Here tα, Tα, Eα, and Aα are time, temperature, apparent activation energy, and pre-
exponential factor, respectively, at a given conversion degree α. The plot of ln(dα/dtα)
vs. 1/Tα enables to determine the slope −Eα/R and the intercept with the vertical axis
ln{Aα·f (α)}. In addition, it is possible to predict parameters at any temperature. To em-
ploy the values Eα and {Aα·f (α)} extracted from Equation (4), introducing them into the
Equation (3) modified in the following way:

tα =

tα∫
0

dt =
α∫

0

dα{
Aα f (α)}eEα/RT0

(5)

No specification of the exact form of the reaction model f (α) is needed for this analysis,
so Equations (3) and (4) form a complete base for all Friedman’s isoconversional kinetic
measurements and predictions.

Introducing the heating rate, β, as a parameter that correlates time and temperature,
Equation (1) can be alternatively written as:

g(α) =
dα

f (α)
=

T0∫
0

A
β

exp
(
− E

RT

)
dT (6)

The Kinetics2015 non-linear regression analysis methods range from a single first-
order reaction to various activation energy distribution models such as the discrete model.
A first-order reaction model is the simplest and most commonly used kinetic model. It
starts with the simple statement that the rate of disappearance is proportional to the
amount present as dα/dt = k(1 − α), where (1 − α) represents the amount remaining, while
k represents the rate constant ordinarily assumed to follow the Arrhenius law such as
k = Ae−E/RT, where R is the universal gas constant. An nth-order reaction is a simple
extension, and the basic rate equation was given by Equation (3). In many cases, the nth-
order reaction is typically attached to solid decomposition, as a pseudo-nth-order reaction,
because it does not have the classical meaning as the nth-order reaction in the gas phase
or solution, in which the reaction rate is proportional to the probability of two reactants
bumping into each other [32]. However, a more recent theoretical work has shown that
the nth-order reaction model is functionally equivalent to having a gamma distribution of
activation energies [32].
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The nucleation-growth model, as a very useful kinetic model and often employed,
which is practically an extended Prout–Tompkins model introduced by Burnham and
Braun [33,34], can be expressed as:

dα

dt
= k(1− α)n(1− q(1− α))m (7)

where q is an initiation parameter and m is a parameter related to the growth dimensionally
or branching ratio, depending on whether the reaction is a solid-state or fluid-solid reaction.
Burnham and Braun [33,34] set q value on 0.99, but it is user selectable. If n = 0 and m = 1,
Equation (7) has the limit of the linear chain-branching model. If n = 1 and m = 0, it has the
limit of a first-order reaction. If n = m = 1 it is the standard Prout–Tompkins model [34].

1.2. A Chemometrics Analysis—Theoretical Background

Principal component analysis, PCA is traditionally exploited to represent the acquired
data into a new Cartesian graph (consisting of the calculated principal components (PCs))
by evaluating any cluster or similarities within the available samples and inferring the
correlation among the measured variables [35,36]. PCA aims to remove the redundant
and noisy information in the data by selecting a limited series of wavelengths, to obtain
improved interpretability of the data. PCA computes new orthogonal and independent
variables, named principal components, representing a linear combination of the original
wavelengths aimed to reproduce the collected data matrix (X) information, but in an
optimal and more interpretable way. This method decomposes the original matrix X into
the product of two new matrixes, named T and P, plus a matrix of residuals E, as follows:

X(N,p) = T(N,c) × P(c,p) + E(N,p) (8)

where N is the number of samples (here, the different samples involving the compounds
under analysis), p is the number of wavelengths (here collected within the IR range
400–4000 cm−1), and c represents the number of selected principal components. In partic-
ular, the first PC is oriented along the direction of the maximum variance. Subsequently,
the second PC follows the maximum residual variance, chosen among the orthogonal
directions considering the first component, etcetera. T matrix contains the samples’ new
values (called scores) in the new multivariate space delimited by a c-number of PCs (i.e.,
scores plot). P matrix provides the variable vector coordinates (named loadings) in the new
multivariate space (i.e., loadings plot). These linear combinations are computed by provid-
ing specific weighting coefficients to each wavelength to represent the influence between
the original and new components. The loadings are the elements of the eigenvector of the
variance-covariance matrix of the original X matrix. Each eigenvector has a corresponding
eigenvalue that implies the amount of variance explained (EV) by each PC. In the present
study, only the first two PCs were selected to account for a specific percentage (above 90%
of cumulative explained variance, CEV) of the overall variance.

2. Materials and Methods
2.1. Materials

Flavamed® packaging of tablets was provided by the international research-based
pharmaceutical company Berlin-Chemie AG, Berlin, Germany (Menarini Group), Glienicker
Weg 125, 12489 Berlin, Germany. Each tablet contains 30 mg of ambroxol hydrochloride
(AMB). The external appearance of the tablet: white, round tablets with flat surfaces and
faceted edges, with an embedded dividing line on one side. In addition to the active
(drug) ingredient, the other excipients are as follows: (a) lactose monohydrate (filler in
matrix tablet), (b) corn starch (disintegrant and binder in matrix tablet), (c) powdered cellu-
lose (disintegrant in matrix tablet), (d) croscarmellose sodium (CCS) (FDA (U.S.—Food
and Drug Administration) approved superdisintegrant), (e) povidone (polyvinylpyrroli-
done, PVP) K30 (binder in matrix tablet) and (f) magnesium stearate (lubricant in matrix
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tablet). Ambroxol hydrochloride, a reference pharmaceutical standard, was purchased
from Sigma-Aldrich, St. Louis, MO, USA.

2.2. Sample Preparations

Experimental samples for thermo-analytical measurements were the powder-formed
tablets and pure pharmaceutical standard of AMB. Several tablets were crushed by a
mechanical pestle, then minced and turned into white powders. The tablets were milled by
such mechanical force so that we do not recognize any appearance of smooth surfaces that
would possibly remain from the initial form of the same observations tablets. It can be pointed
out that milling of the “particles” may generally change the surface characteristics by rendering
the micro-surfaces more disordered or even amorphous. In the general case, particle shape
and surface roughness affect the mechanical strength of the investigated Flavamed® tablet.

2.3. Thermo-Analytical (TA) Measurements

The thermal stability of the samples was investigated by simultaneous non-isothermal
(dynamic) thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)
using a thermogravimetric analyzer by TA Instruments with SDT 2960 model device,
capable for the simultaneous TGA-DSC analyses. TGA-DSC experiments were performed
in the temperature range of 25–800 ◦C, under a dynamic atmosphere of nitrogen (N2 purity
of 99.999 wt.%) at a flow rate of ϕ = 70 mL·min−1. Powder samples of about 5 mg were
put into platinum crucibles at the heating rates of β = 5, 10, and 20 ◦C/min (AMB) and
β = 5, 10, and 30 ◦C/min (FT). Heating of the samples was carried out under the linear
heating regime, where there is a linear relationship between the increases in working
temperature (within controlled conditions) with the time of operation (T = To + β·t, where
T is the temperature (◦C), To is the starting temperature of the non-isothermal experiment
(ambient (room) temperature, T (◦C)), β = dT/dt (the heating rate), and t is the time).
Duplicate non-isothermal runs were made under similar conditions, and it was found that
the experimental data overlapped with each other, indicating satisfactory reproducibility.
Therefore, each run was duplicated to minimize the errors. The obtained thermo-analytical
data at every considered heating rate (β) were directly transferred into the Kinetics2015 [29]
software tool sheets for the corresponding calculation steps related to the kinetic studies.

2.4. TG-MS Measurements

Hyphenated TG-MS measurements were taken with the same thermal analyzer cou-
pled online with Hiden Analytical HPR-20/QIC mass spectrometer. The sample (~2.5 mg)
was placed in an open alumina pan. The measurements were carried out in argon atmo-
sphere (flow rate: 100 cm3·min−1), from room temperature to 450 ◦C, with a heating rate
of 10 ◦C·min−1. Online coupling between the two parts was provided through a heated
(T = 200 ◦C) 1 m silica capillary tube with an inner diameter of 0.15 mm. Selected ions
between m/z = 1–110 were monitored through 30 channels in Multiple Ion Detection (MID)
mode, with a measuring time of 0.5 s per channel. The mass spectrometer was operated in
electron impact ionization mode with 70 eV electron energy power. The data collection for
the MS measurements was performed as a function of time, which is proportional to the
temperature of the sample. The RC RGA Analyzer and MAS soft manual set were used for
the data collection.

2.5. Chemometrics Analysis

Principal components analysis (PCA) was employed to explore the collected data
to extract the most interesting information from the samples analyzed by IR (infra-red)
methodology [36,37]. The original data set consists of a matrix X containing 16 samples and
2528 wavelengths in 400–4000 cm−1. Samples were pre-processed involving the standard
normal variate (SNV) approach to normalize the collected IR spectra before computing
the PCA model [36]. The developed PCA model was calculated involving a 5-fold cross-
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validation approach with Venetian blinds sampling design. PCA models were computed
using MATLAB software and the PLS Toolbox version 8.9.2 [37].

3. Results

3.1. Thermal Stability Features of Ambroxol Hydrochloride and Flavamed® Tablets

Figure 2a,b presents TA measurements of a pharmaceutical standard of ambroxol
hydrochloride (AMB) and Flavamed® tablet (FT), which contains ambroxol hydrochlo-
ride as an active compound. Thermal decomposition features presented by TG-DTG
(thermogravimetry-derivative thermogravimetry) curves were conducted in an inert at-
mosphere (N2) at heating rate β = 10 ◦C/min where the entire thermal decomposition
process of ambroxol hydrochloride and Flavamed® tablets shows the very complex and
multistep nature.
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Pure AMB thermal decomposition is presented through three decomposition stages
with corresponding Ti (initial temperature) and Tf (final temperature) for each stage:
I stage = 30–175 ◦C, II stage = 175–280 ◦C, and III stage = 280–700 ◦C, respectively. AMB
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starts to melt around 175 ◦C, followed by the decomposition process through two rather
inseparable stages (II and III) [18]. The thermal degradation of organic matter in the second
stage corresponds with the mass loss of around 40%. In contrast, in the third stage, degra-
dation products of the ambroxol drug were subjected to almost total decomposition, which
ends at 700 ◦C. Flavamed® tablets decomposition consists of four stages with following
temperatures intervals: I stage = 30–160 ◦C, II stage = 160–262 ◦C, III stage = 262–318 and
IV stage = 318–800 ◦C, respectively. The first stage presents the evaporation process. In
the II and III stages, the degradation process of lactose monohydrate and AMB occurs.
The latter one comprises multiply DTG peaks due to thermal decomposition of excipients
mostly stable up to 300 ◦C, such as PVP [38], Mg stearate [39], corn starch [40], etc.

In order to obtain a mechanistic explanation of AMB and FT thermal decompositions,
TG was coupled with the MS technique. Since there is no information currently available
in the literature, the use of the hyphenated technique TG-MS will allow the collection
of information about the evolution of the main fragment products throughout the entire
degradation process. Figure 3a,b presents DTG curves and TG-MS fragment ion intensities
for products formed during thermal decomposition of ambroxol hydrochloride. The DTG
curves and TG-MS fragment ion intensities for products formed during thermal decompo-
sition of commercial Flavamed® tablet are presented in Figure 4a,b. Both measurements
were conducted in an argon (Ar) atmosphere.

Figure 3. (a,b) The DTG curves and TG-MS fragment ion intensities for AMB products.
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For the evaluation of AMB thermal stability from the kinetic point of view, thermal de-
composition of ambroxol hydrochloride and Flavamed® tablet was recorded using multiple
heating rates, i.e., non-isothermal conditions as follows: AMB (β = 5, 10, and 20 ◦C/min)
(Figure 5) and FT (β = 5, 10, and 30 ◦C/min) (Figure 6) in an N2 atmosphere. According to
the literature data, the stability of ambroxol hydrochloride was mainly studied through the
stress degradation approach according to ICH (International Council for Harmonisation
of Technical Requirements for Pharmaceuticals for Human Use) guidelines [41–43], or
thermal stability via drug-drug interactions [25]. It was noted that ambroxol hydrochlo-
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ride degrades extensively under acid, alkali, and oxidative conditions, considered during
storage time [41].
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Compatibility Study Results

Excipients in Flavamed® formulation can contain fairly high water content, and they
can affect and increase the degradation rate of AMB. Therefore, TG curves of AMB (black
line) and FT (red line) were jointly presented in Figure 7 to compare their decomposi-
tion paths and TG shape. Evaluating the TG curve of AMB decomposition in the entire
temperature region, it seems that the thermal properties of AMB in Flavamed® tablets
may suffer from changeable stability. Such findings could be potentially attributed to the
previous moisture effect. In addition, it should be noted that lactose monohydrate, one of
the excipients in FT formulation, also interacts with moisture-sensitive drugs and affect
the stability of the drug [27,44]. Koivisto et al. [45] reported that Mg stearate (excipient
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as well) properties strongly depend on the moisture content and its hydration state [21].
Literature data confirm that magnesium stearate might absorb moisture during storage
under relative humidity greater than approximately 85% [46]. Stanisz et al. [39] pointed out
that in some pharmaceutical formulations such as moexipril hydrochloride, Mg stearate
should be avoided as excipients. Alternatively, if used, the level of humidity during storage
should be minimized. Such findings are crucial, and the influence on the drug stability and
thermal properties in a humid atmosphere should be watchful during storage.
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The hypothesis that excipients in the FT formulation contribute to the thermal insult
of AMB should also be evaluated. A compatibility test was performed to gain insight into
increased/decreased thermal stability information of the active compound. FTIR technique
was used to analyze potential interactions between AMB and all excipients (lactose mono-
hydrate, corn starch, powdered cellulose, croscarmellose sodium, PVP, and magnesium
stearate) in Flavamed® formulation. Mixtures of AMB and present excipients containing
molar ratio 1:1 were formulated and subjected to FTIR analysis (not shown). Upon closer
look at FTIR results, Mg stearate, lactose monohydrate, and PVP were observed as potential
incompatible components that might have impacted the ambroxol hydrochloride structure.
Therefore, to dive deeper into AMB-excipients interactions, we have formulated mixtures
containing different molar ratios (1:2 and 1:4) of AMB vs. PVP, Magnesium stearate, and
lactose monohydrate. Mixtures 1:2 and 1:4 were subjected to additional FTIR analysis
(inserted in Figures A1–A3—Appendix A part), but also to TG/DTG measurement in N2
atmosphere with heating rate, β = 10 ◦C/min (Figures A4–A6). It is not uncommonly that
excipients can affect the thermal stability of the active compound. Osman et al. noticed
that PVP could affect the thermal stability of nifedipine, felodipine, and indomethacin [47].
Brownie et al. worked on and proved the influence of the molecular weight of the polymer
and the ratio of vinylpyrrolidone to vinyl acetate in the polymer on ketoprofen solid dis-
persion [48]. Jelić et al. [49] found that the different amount of PVP in the formulation is
significant for the thermal stability of solid dosage forms.

Figures A1–A3 here (FTIR spectra of AMB/PVP mixture—Figure A1, AMB/Mg
stearate mixture—Figure A2 and AMB/lactose monohydrate mixture—Figure A3)—See
Appendix A.
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Compatibility by TG measurements was evaluated based on changes in TG curves of
AMB, pure and in the presence of excipients. TG curves showed undoubtedly that with an
increase in PVP (Figure A4) or Mg stearate (Figure A5) content, thermal decomposition
curve moves toward higher temperature region, while in case of lactose monohydrate de-
composition process is moved toward lower temperature region (Figure A6). Nevertheless,
TG curves of PVP and Mg stearate mixtures varied proportionally to excipient content in
the mixture, i.e., no incompatibility, but we could not exclude the fact that these excipients
affect the thermal stability of active ingredient. This practically means that excipients such
as PVP or Mg stearate thermally stabilize, and lactose monohydrate destabilizes AMB in
Flavamed® formulation. Interestingly, here the lactose-AMB mixture practically lies in
the lower temperature region compared to both ambroxol hydrochloride and pure lactose
monohydrate. Thus, it seems that AMB and lactose interactions contribute to their thermal
instability mutually. It is important to emphasize that TG data have some disadvantages
concerning the compatibility study since TG data provide mass loss % vs. temperature, but
on the other hand, TG data offers available information on thermal stability, and taking
into consideration DTG graphs, it is very clearly visible that these excipients affect the
ambroxol thermal decomposition (Figures A4–A6).

Figures A4–A6 here (TG/DTG curves of AMB/PVP mixture—Figure A4, AMB/Mg
stearate mixture—Figure A5 and AMB/lactose monohydrate mixture—Figure A6)—See
Appendix A.

Further, we exposed compatibility testing to DSC analysis and chemometrics method-
ology (PCA on FTIR spectra, see Discussion paragraph) to perform compatibility analysis
in a systematic exploring way. Figure 8 presents DSC curves of the AMB mixture with
lactose in a different ratio.
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4. Discussion
4.1. The Mechanism of Decomposition and Kinetic Analysis of AMB and FT

TG-MS technique used to simultaneously measure the thermal decomposition and
ion fragment distribution of each examined compound in real-time showed that shapes
of the MS curves followed the shape of the DTG curve, confirming their suitable mutual
agreement. Sharp DTG peak corresponds to the high intensity of the MS peaks for the ions
with m/z = 18 (H2O) and m/z = 17 (OH) (at a temperature of 282 ◦C). Their intensity ratio
m/z = 18 (H2O):m/z = 17 (OH) = 5:1, agrees with the National Institute of Standards and
Technology (NIST) mass spectral data [50–53], unambiguously refers to the presence of
water. As Figure 3a,b and Figure 4a,b imply, a relatively large amount of H2O (m/z = 18)
and OH (m/z = 17) is formed, owing to the oxygen atoms present in the structure of the
sample. The removal of HCl from ambroxol hydrochloride structure is associated with the
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HCl (m/z = 36), which releases during heating (T = 285 ◦C). The advent of that fragment
(m/z = 36) is present in the case of Flavamed® tablet in a lower intensity mode and at
T = 295 ◦C. One of the highest intensities for both samples corresponds to the removal
of H from structure, m/z = 1. As can be seen from Figure 3a,b, the fragments m/z = 28
and m/z = 14 embedded in this peak around 287 ◦C: m/z = 14 (CH2), while his dimer,
m/z = 28 has similar shape (CH2CH2), with the higher intensity. In the Flavamed® sample,
the leaving fragment of the m/z = 14 starts around 275 ◦C, while his dimer is not presented
in Figure 4a,b, because of the noticeable superimposed fragments intensity. The intensity
of m/z = 28 is much higher than that of the other MS peaks of these mentioned products.
The C-C and C-H bonds break to form free radicals, recombined into small fragments as the
temperature increases. Therefore, the most significant portion of m/z = 28 can be attributed
to CH2CH2. As the temperature increase, the C-C and C-H bonds break to form free radicals,
which are recombined into small fragments such as m/z = 14 (CH2), detected with very low
intensities (Figure 3a,b). The reason for the monotonous decrease of m/z = 14 fragment ion
intensity with increasing temperature is the gradual release and departure of the fragment.
Maximum fragment intensity is expressed at temperatures corresponding to the maximum
at the DTG curve and decreases according to the DTG curve. The presence of the small peak
at the DTG curve of the Flavamed® tablet sample indicates that at least two overlapping
steps occur in this temperature range (220–275 ◦C). The first sharp DTG corresponds
to the high intensity of the MS peaks for the ions with m/z = 18 and m/z = 17 (at a
temperature of 220 ◦C). After that mentioned water molecules releasing process, the same
water liberating process occurs at temperature 275 ◦C. In TG-MS experimentally obtained
results, no considerable difference was observed between the ambroxol hydrochloride and
commercial Flavamed® tablet (Figures 3a,b and 4a,b). In agreement with the similar modes
of thermal decomposition, the mass spectra confirm the similar fragmentation behavior
of the two investigated samples. In Table 1, the identification results and normalized ion
currents for two investigated compounds in this work are summarized. The gas-phase
composition monitored by MS during the thermal decomposition of compounds showed
almost the same main decomposition products. The order of magnitude and intensity order
of the other released fragments showed a similar decomposition pattern in all investigated
samples. There is no significant difference in the mechanistic decomposition of ambroxol
hydrochloride pure and Flavamed® tablets.

Table 1. Summarized identification results and normalized ion currents for investigated samples of
ambroxol hydrochloride and commercial Flavamed® tablet.

m/z Fragment
Normalized Ion Current for Compounds

Ambroxol Hydrochloride Commercial Flavamed Tablet

1 1.5 × 10−8 3.5 × 10−9

14 2.5 × 10−9 2 × 10−9

15 5.5 × 10−11 not available
16 7.5 × 10−10 6 × 10−10

17 2.0 × 10−9 1 × 10−9

18 8.0 × 10−9 4 × 10−9

28 2.5 × 10−8 not available
29 2 × 10−10 not available
30 6 × 10−11 not available
36 3 × 10−9 2 × 10−9

38 5 × 10−10 3 × 10−10

4.2. Kinetics of Ambroxol Hydrochloride and Flavamed® Tablets
4.2.1. Kinetics of the Evaporation Phase

The first stage of the decomposition process for both systems, AMB and FT, is des-
ignated as the evaporation phase, in which water loss occurs. It can be observed from
Figure 2a,b that the DTG mass event of AMB and Flavamed® tablet system started at about
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30 ◦C and is characterized with a rather insignificant water loss for AMB and considerable
surface water loss of the Flavamed® tablets, ∆mFT = 4.98%. The higher water mass loss for
FT is somehow expected since some excipients such as lactose monohydrate, PVP, or corn
starch, may contain fairly high water content. In addition, this stage embraces the hydrate
crystal water, which originates from the dehydration process of lactose monohydrate at
approximately 141 ◦C [54]. The TG data of the evaporation stage in Flavamed® tablets
were analyzed by Kinetics2015 software [29]. As previously mentioned, in the theoretical
background, two approaches were used: isoconversional and model-fitting approaches.
Only the kinetic model that provided the best fit was taken into account, based on the RSS1
and RSS2. The RSS1 and RSS2 present the sum of squares of weighted normalized rate
residuals and a sum of squares of weighted normalized cumulative residuals. Friedman’s
method, isoconversional approach, provided a value of E amounted to 83.119 kJ/mol and
A = 4.7329 × 1012 s−1 with 3.2000 and 0.03565 for RSS1 and RSS2, respectively. The reaction
mechanism that best fits and describes the evaporation stage (dehydration), is the n-th
order model with parameters presented as follows: E = 70.83 kJ/mol, A = 1.2722 × 109 s−1,
n = 3.966, RSS1 = 1.58399 and RSS2 = 0.89046, respectively. Based on the value of parameter
n (the reaction order close to 4), we can conclude that this stage is very complex and in-
volves a series of parallel reactions, where dominates the reaction with a rather high value
of the pre-exponential factor (~109 s−1). It can be pointed out that the mentioned value of E
can be attributed to the lateral diffusion of water molecules to the active sites of some of the
structural constituents, which a powdered tablet comprises. Based on the obtained kinetic
parameters and the reaction mechanism characteristics, we can conclude that the moisture
will significantly impact the kinetics of the ambroxol hydrochloride degradation [55].

Furthermore, we have applied the kinetic option that allows us to obtain the distri-
bution of activation energies over a discrete distribution model, taking into account the
unequivocal complexity of this reaction stage. This option gives us the result, which directly
connects the values of a pre-exponential factor with values of activation energy through
the linear correlation, known as the compensation effect, in the form of the relationship
Ai = a·eb·Ei, where a and b are constants dependent on the reaction system [56]. Once we
determine a and b, we can estimate the distribution of activation energies uniquely to fit
experimental data by a procedure similar to that presented by Vand [57]. Easily determi-
nation of parameters a and b allows us to use the above-mentioned software programs.
Figure 9 presents the compensation effect equation (with values of parameters a and b
such as: a = 9.2078 s−1 and b = 7.388 × 10−1 mol·kcal−1, respectively) along with the
distribution of energies. Based on the distribution of E values for the first degradation
stage, we can identify the range of activation energies from 59.98 to 123.35 kJ·mol−1, having
RSS1 and RSS2 values estimated at 4.4040 and 0.0654, successively. We can see that the most
significant percentage of the probability of occurrence (≈31%) takes the reaction, which has
a value of E = 70.5 kJ/mol, which is typical for diffusion-controlled processes. Therefore,
this could indicate a diffusion-controlled process with the catalytic behavior, where the
humidity catalyzes the observed process.

4.2.2. Kinetics of the Ambroxol Hydrochloride Pure and in the Mixture

The second, third, and fourth degradation stages of FT are attributed to the thermal
decomposition process of active compound and excipients used in Flavamed® formulation.
In the second (“II”) stage, we can notice the existence of deviation on the DTG curve in
the temperature interval from 160 to 262 ◦C, which corresponds well to the decomposition
process of lactose monohydrate. Even though it is not sufficiently visible, in this stage
(around 170 ◦C), the re-arrangement process occurs, i.e., lactose monohydrate transforms
to anhydrous lactose [54]. The second (160–262 ◦C) and second (262–318 ◦C) stages cover
the temperature interval when the active compound AMB undergoes melting and ther-
mal decomposition. Most excipients used for Flavamed® formulation are stable up to
300 ◦C. The last stage (IV stage—318–800 ◦C) is attributed to the excipients decomposition
reactions, including the primary and secondary released products and the carbonization
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processes. Excipients such as corn starch [40], PVP [3], croscarmellose sodium excipient [58],
magnesium stearate and powdered cellulose [21,59], are disintegrated here.
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Particular attention should be focused on considering the second and third degra-
dation stages of AMB and FT, in which the melting and decomposition process of AMB
occurs. As previously mentioned, the melting temperature of AMB in the powdered tablet
was somewhat different in comparison to the pure AMB, which might have an origin in
the humidity or present excipients. The second degradation stage, related to the melting
of AMB, starts at the approximately 160 ◦C and ends at approximately 262 ◦C, while the
third stage starts at the approximately 262 ◦C and ends at 318 ◦C. However, it must be
stressed that a strict separation between the second and third degradation stages does not
exist because the third stage has almost continuous outputs from the second stage. Kinetic
parameters for the thermal decomposition of AMB (II and III stages) and Flavamed® tablets
(II and III stages) are presented in Tables 2 and 3. Kinetic models that fit both decomposition
processes best are mainly in the range of n-th order model, nucleation and growth model,
and discrete model. What is significant to mention here is that our observation previously
stated concerning humidity and excipients effect in Flavamed® formulation (especially in
the II stage) are well reflected through E values of thermal decompositions. E values of
Flavamed® decomposition (II stage) are somewhat lowered compared to II stage of AMB,
for approximately 20 kJ/mol for each fitted model. Pre-exponential factors have a very
similar value, except the Friedman model in Flavamed decomposition, which is relatively
high (~1017 s−1) and favors the high activity and “collision” probability of molecules in
a wide range of fraction reacted values. The third stage, even though it showed slightly
higher E values in favor of Flavamed® decomposition, is characterized by relatively high
E value and pre-exponential factor, A. These high values of E and A refers to expressed
thermal stability, which could be attributed to specific interspecies hydrogen and ionic
interactions among excipients and the drug [60].

Since AMB in Flavamed® tablets seems to be humidity-sensitive drug, we accounted
in the stability assessment to calculate the reaction rate “constant” kTj,h, as a function
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of percent of relative humidity (h). The equation Equation (9) is the modification of the
Arrhenius equation introduced by Watermann [61,62] as:

kTj ,h = A · e
B·h− E

RTj

ln kTj ,h = ln A + Bh− E/RTj
(9)

where h is the relative humidity (%), while B is the humidity sensitivity factor (%RH−1).
The values of kTj,h were calculated at each value of Tj following the data obtained from the
manufacturer in the case of active drug substance, which is directly related to the values
h and B, and they were as follows: h = 75% and B = 0.05% RH−1. Values of constant rate
for pure AMB and FT tablets up to 250 ◦C are presented in Figure 10. The decomposition
process of FT tablets is favored, and it occurs fast. At the same time, the dependence of k vs. T
shows the exact mechanism of degradation for AMB and FT formulation, i.e., the n-th order.

Table 2. The isoconversional and model-fitting kinetic analysis of AMB thermal decomposition: II
stage (upper/first table) and III stage (down/second table).

II Stage of Pure AMB Decomposition

Friedman model

A, 1/s E, kJ/mol n RSS1 RSS2

1.794 × 1014 164.71 1 1.8128 0.3146

n-th order

A, 1/s E, kJ/mol n RSS1 RSS2

2.005 × 1013 155.845 0.666 3.0604 0.2029

Nucleation and growth

A, 1/s E, kJ/mol n m RSS1 RSS2

9.311 × 1013 161.74 0.881 0.0349 3.4053 0.2256

Discrete distribution model

A, 1/s E, kJ/mol RSS1 RSS2

2.420 × 1015 175.803 (98.54%) 4.6647 0.55329

III Stage of Pure AMB Decomposition

Friedman model

A, 1/s E, kJ/mol n RSS1 RSS2

5.62 × 1018 202.559 1 4.0662 0.3155

n-th order

A, 1/s E, kJ/mol n RSS1 RSS2

4.553 × 1016 199.66 1.5735 3.9335 0.38758

Nucleation and growth

A, 1/s E, kJ/mol n m RSS1 RSS2

1.6148 × 1019 221.165 2.747 0.46121 9.4676 0.65075

Discrete distribution model

A, 1/s E, kJ/mol RSS1 RSS2

1.2604 × 1017 209.29 (50.40%) 200.9 < ∆E < 213.47 3.4465 0.36096
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Table 3. The isoconversional and model-fitting kinetic analysis of FT formulation thermal decompo-
sition: II stage (upper/first table) and III stage (down/second table).

II stage of Flavamed® Decomposition

Friedman model

A, 1/s E, kJ/mol n RSS1 RSS2

5.446 × 1019 150.05 1 4.104 0.05809

n-th order

A, 1/s E, kJ/mol n RSS1 RSS2

2.8245 × 1013 143.38 1.2567 6.7365 0.16284

Nucleation and growth

A, 1/s E, kJ/mol n m RSS1 RSS2

1.6334 × 1014 148.79 1.735 0.136 9.1320 0.22973

Discrete distribution model

A, 1/s E, kJ/mol RSS1 RSS2

1.1935 × 1014 150.68 (86.15%) 142.31 (13.85) 4.6074 0.11721

III stage of Flavamed® decomposition

Friedman model

A, 1/s E, kJ/mol n RSS1 RSS2

2.855 × 1017 207.51 1 2.1234 0.00135

n-th order

A, 1/s E, kJ/mol n RSS1 RSS2

2.0945 × 1016 207.93 2.0994 8.56969 0.20434

Discrete distribution model

A, 1/s E, kJ/mol RSS1 RSS2

1.2817 × 1017 209.29 (50.84%) 192.54 < ∆E < 209.29 0.81406 0.00747
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The stability parameter denoted as the “shelf-life” was calculated using the data that
best fitted the decomposition mechanism of AMB and FT tablets. Such an approach in
non-isothermal thermogravimetric data for shelf-life prediction of drugs was recently used
by Calvino et al. [12]. Shelf-life data are presented in Table 4. Shelf-life data of AMB
refers that AMB is not a heat-sensitive drug under normal storage conditions and does not
require special care during the storage period. Still, undoubtedly AMB thermal stability
in Flavamed® tablets is altered. The data for the shelf-life has a high magnitude rather.
However, one should consider that thermal decomposition of pure AMB and Flavamed®

formulation was conducted in a neutral atmosphere of N2, which can contribute to process
delay and parameters such as oxygen and light exposure, different percentage of humidity
were omitted and observed.

Table 4. The shelf-life for pure AMB and in Flavamed® formulation.

Temperature/◦C Shelf-Life of AMB Shelf-Life of Flavamed
Tablets

25 233,324 years 1366 years
40 12,089 years 83.3 years
70 66.7 years 8.82 month

250 15.62 s 0.0155 s

This paper introduces one more quantity, which may impact the apparent activation
energy of the considered degradation stage, and this factor is known as the activation
entropy (∆S#). Using entropy as a guiding tool for drug development has been recently
come into focus [63]. The entropy could be calculated based on the following equation
Equation (10) [64]:

∆S# = R(ln A− ln Tmax)− 205.86, (10)

where Tmax represents the maximum (peak) temperature values at a specific heating rate.
Values for Tmax at β = 10 ◦C/min were extracted from the kinetic software. The term
205.86 is a “solid” constant, which is numerically derived. Values of activation entropy are
included in Table 5.

Table 5. The value of ∆S#, J·mol−1·K−1 for the II and III stages of AMB and FT decomposition process.

AMB II Stage AMB III Stage FT II Stage FT III Stage

∆S#/J·mol−1·K−1 14.79 100.5 120.6 75.76

The positive value of entropy reflects increased disorder in the system under surveil-
lance and vice versa. We can see that the thermal decomposition process of Flavamed®

tablet, having a high positive value, is a source of entropy. It is worth mentioning that
the release of structured water molecules promotes positive entropy due to an increase in
the system’s disorder, which follows our findings for the start-up of Flavamed® tablets
decompositions. Low or negative values of ∆S# are favorable for thermal decompositions
that suffer from a decreased number of collisions, i.e., the system disorder is decreased,
and such thermal processes can be considered slow.

Compatibility Results

The compatibility study was performed using FTIR and TG-DSC techniques. The
FTIR spectra were analyzed by PCA. The principal infra-red absorption peaks of pure
AMB show characteristic peaks belonging at 647.42, 1064, 1460, 1627.05, and 3392.78 cm−1

corresponding to C-Br stretching, C=C bending, C-H bending, N-H stretching, and O-H
starching, respectively [65]. The leading absorption bands of AMB and excipients mixture
showed the same positions and degree of sharpness in the PVP mixture. In contrast, in
the Mg stearate and lactose mixture, there is some deviation (less intensity and position
changed) from the ambroxol spectrum, especially in parts 600–800 and 1050–1067 cm−1.
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Principal components analysis (PCA) was employed to explore the collected data to ex-
tract the most interesting information from the samples analyzed by IR methodology [66–70].
PCA can be a valuable supplementary tool for assessing compatibilities features and their
interpretation [71]. PCA was performed to investigate the available IR data involving
the 16 samples containing the pure compounds of AMB, PVP, lactose monohydrate, and
Mg stearate, the 1:1 mixtures of AMB with cellulose, croscarmellose, corn, PVP, lactose
monohydrate, and Mg stearate, and the 1:2 and 1:4 mixture of AMB with PVP, lactose
monohydrate and Mg stearate. The PCA consisted of three principal components describ-
ing an overall 87% of the variance (75% of explained variance for the first PC, 12% for the
second PC). The samples are arranged into three main clusters, as seen from the first scores
plot (Figure 11a). The first cluster shows high values of PC2, containing the samples of pure
lactose monohydrate, lactose mixed with AMB, corn mixed with AMB, and cellulose mixed
with AMB. In particular, the loadings plot (Figure 11c) indicates that the wavelengths
showing the highest positive values of PC2 are those in the ranges of 2900–3100 cm−1 and
1500–1800 cm−1. On the other hand, a second cluster containing the samples of pure Mg
stearate, Mg stearate mixed with AMB, and, partially, the pure PVP compound, shows low
values of PC2, together with a high value of PC1. According to the loadings plot, these
samples are particularly described by the wavelengths within the range of 500–1200 cm−1.
Finally, no significant wavelengths were observed for the third cluster composed of pure
AMB, the AMB mixed with croscarmellose, and the mixtures containing PVP and AMB.

Therefore, it seems that FTIR analysis showed an absence of physical and chemical
interactions between AMB and PVP, while for Mg stearate and lactose monohydrate
incompatibility is noticeable. It can be pointed out that increasing the content of magnesium
stearate increases the effective rate constant for reaction participation with HCl, which
suggests that the products of lubricant decay catalyze the splitting-off of HCl. In the course
of the reaction of magnesium stearate with eliminated HCl, stearic acid can be formed. The
stearic acid can take part in one of the reaction cycles, which have a catalytic nature during
the degradation process of AMB, in the framework of dehydrochlorination [72]. In the case
of lactose monohydrate, the Maillard reaction occurs [73]. According to DSC graphs, all
three components enrolled in the mixtures showed changes. For Mg stearate, the prominent
melting peak of AMB is well pronounced, but peaks at 282 and 296 ◦C corresponding to
m/z = 18 and m/z = 36 are missing. In the case of lactose mixture melting, the peak is
moved to 30 ◦C left and relatively broader. A similar observation we have for peaks of
Mg stearate mixture, also. For the PVP mixture, the melting peak of AMB is practically
invisible; no heat change of AMB during its melting is recorded in the presence of PVP.

It is worth mentioning that sometimes interaction (denoted in this work as incompati-
bilities) between active compounds and excipients can be favorable. For example, in the
case of PVP, such interactions can contribute to better solubility when it comes to poorly
soluble drugs [74].

The compatibility results obtained by FTIR, TG-DTG, DSC, and chemometrics analyses
are summarized in Table 6.

Table 6. The comparative analysis of compatibility study performed on AMB and FT systems.

AMB/Lactose AMB/PVP AMB/Mg Stearate

FTIR-PCA � * �

TG � * *

DSC � � �
Tick sign (�) stands for incompatibility; star sign (*) denotes compatibility.
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5. Conclusions

The ambroxol hydrochloride is not a heat-sensitive drug, but moisture and crystal
water could promote faster degradation of ambroxol hydrochloride. During formulation
studies, special attention for excipients present in the formulation mixture should be
considered. Compatibility study was performed using FTIR and TGA-DSC analysis.
Moreover, the FTIR spectra were analyzed by PCA. The data analysis highlights the
incompatibility of ambroxol with the Mg stearate and lactose monohydrate. In Flavamed®

tablets, it was proven that excipients such as PVP, Mg stearate, and lactose monohydrate
could affect thermal stability and mechanism of decomposition. This is a consequence
of the ambroxol hydrochloride structure, in which HCl is being liberated, providing an
acid environment that can be very beneficial for different reactions such as hydrolysis.
Consequently, the decomposition process proved to be a multistep and very complex one,
which is best described with the n-th order model with the following kinetic parameters:
pure AMB kinetics

II stage—E = 155 kJ·mol−1, A = 2.0 × 1013 s−1, n = 0.6.

III stage—E = 199 kJ·mol−1, A = 4.5 × 1016 s−1, n = 1.57.

Flavamed® tablets kinetics

II stage—E = 143 kJ·mol−1, A = 2.8 × 1013 s−1, n = 1.2.

III stage—E = 207 kJ·mol−1, A = 2.0 × 1016 s−1, n = 2.0.

Based on the decomposition model, calculated shelf-life once again confirmed AMB
thermal stability issues when present in the mixture.
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Results obtained with this elaborate study, especially the kinetics one, provide poten-
tial guidelines and future perspectives for preparing successful and stable formulations of
ambroxol-containing drugs.
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