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Abstract: In non-invasive ventilation, continuous monitoring of 
respiratory volumes is essential. Here, we present a method for the 
measurement of respiratory volumes by a single fiber-grating sensor of 
bending and provide the proof-of-principle by applying a calibration-test 
measurement procedure on a set of 18 healthy volunteers. Results establish 
a linear correlation between a change in lung volume and the 
corresponding change in a local thorax curvature. They also show good 
sensor accuracy in measurements of tidal and minute respiratory volumes 
for different types of breathing. The proposed technique does not rely on 
the air flow through an oronasal mask or the observation of chest 
movement by a clinician, which distinguishes it from the current clinical 
practice. 
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1. Introduction 

In medicine, mechanical ventilation is a method to mechanically assist or replace 
spontaneous breathing. While invasive mechanical ventilation by endotracheal intubation (a 
tube is inserted through the nose or mouth and advanced into the trachea) is effective in 
improving alveolar ventilation, it carries risks of traumas during intubation, facilitates 
infection and may lead to irritation, inflammation and soreness. On the other hand, 
noninvasive ventilation (NIV) provides the ventilatory support through the patient’s upper 
airway using a mask or mouthpiece. In that manner NIV leaves the upper airways intact, 
preserves airway defense mechanisms and reduces patient discomfort [1,2]. 

In NIV, continuous monitoring of respiratory activity is necessary to assess the patient’s 
response to treatment and optimize the ventilator settings. Clinical features that should be 
assessed are the volume of air moved into or out of the lungs within each breath (tidal 
volume, Vt) and the volume of air inhaled over time (usually one minute, hence minute 
volume, Vm). Relying on the air-flow monitoring to follow respiratory volumes may be 
misleading due to the inevitable air leaks from a mask or mouthpiece. On the other hand, a 
clinician’s observation of the chest wall movement, from which he assesses the lung volume, 
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is both time consuming and subjective, the decision strongly depending on his experience 
[1,2]. Tendency to overestimate tidal volume is widespread and is potentially dangerous, 
especially at low tidal volumes [3]. 

Therefore, there is a need for non-invasive respiratory monitoring independent of air 
leaks and this need is well known to the clinical engineering community [4]. As a 
consequence, a range of new devices detecting thorax and abdomen movements, volume and 
circumference have been investigated [4–10]. Konno and Mead first demonstrated that 
respiratory activity during breathing could be measured on the surface of the torso [11]. They 
have shown that the thoracic and abdominal movements caused by breathing can give a good 
measure of the volumes of the inhaled air. This discovery has been used to develop several 
methods and devices: respiratory inductance plethysmography (RIP) [5], transthoracic 
impedance pneumography [6], fiber-optic respiratory plethysmography [7], optoelectronic 
plethysmography [8], and plethysmography based on LPG sensors [9]. RIP technology is 
widely used for the diagnosis of Obstructive Sleep Apnea [12]. However, due to the 
calibration procedures that either include breathing maneuvers difficult for untrained patients 
or have poor accuracy [13], high and unpredictable baseline drift [14], and incoherent reports 
on the accuracy in tidal volume measurements (good [15–17], not consistently precise [14], 
and poor [18, 19]), it is not used for monitoring during NIV. The use of other 
abovementioned technologies in lung volume monitoring is still limited to laboratory studies, 
mainly due to the technical complexity such as the high number of reflective markers (45) in 
Optoelectronic Plethysmography [8] and LPG sensors (13) in [9]. 

In an attempt to overcome these limitations, we have developed a new method and 
apparatus for continuous monitoring of the respiratory tidal volumes based on measurement 
of thoracic movements. This method is grounded on the hypothesis that the volume of the 
inhaled air is proportional to the change in a local torso curvature in an area with stiff 
underlying tissues (bone or cartilage), such as the area of the lower ribs close to the sternum. 
Technical solution is based on the use of a single fiber-grating sensor and a monochromatic 
measurement scheme that requires only a photodiode as a detector. The purpose of this study 
is to test this hypothesis and feasibility of using a single long period grating (LPG) curvature 
sensor in measuring tidal and minute volumes. 

The paper is structured as follows. The working principle of LPG sensors and the 
particulars of the interrogation scheme are explained in Section 2. The measurement protocol 
and data analysis method used to check the hypothesis are also described therein. Section 3 
shows the results of measurements on a set of 18 healthy volunteers. Advantages and 
limitations of the proposed method and sensors are discussed in Section 4. Conclusions and 
directions of future work are given in Section 5. 

2. Methods 

2.1 LPG curvature sensor 

The curvature sensor was based on a long-period fiber grating. The LPG consists of a 
periodic change in the refractive index profile along the fiber and couples the light from the 
fundamental core mode to the resonant co-propagating cladding modes that are attenuated as 
they propagate along the fiber. Coupling to the cladding modes is wavelength selective, 
resulting in a series of attenuation bends in the transmission spectrum. The resonant 
wavelength for the νth cladding mode is obtained from the phase matching condition 

 ( )eff eff
co cln nνλ = − Λ  (1) 

where eff
con  is the effective index of the core mode, eff

clnν  the effective index of the νth 
cladding mode, Λ the period of the grating and λ the resonant wavelength, and is increased 
with increasing the mode order. The magnitude of an attenuation band depends on the grating 
length and the mode-coupling strength (hence on the index modulation of the grating and the 
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overlap between the resonant modes), while its width depends also on the fiber and the 
grating dispersion [20,21]. 

The resonant wavelength and the spectral profile of an attenuation band are sensitive to 
modulations of the fiber guiding properties caused by forces applied to the fiber (strain, 
bending, load) or changes in local environmental conditions (temperature, refractive index of 
surrounding material) [22,23]. Change in thorax curvature is sensed as bending of an LPG 
attached to the thorax. Bending induces strain and stress across the fiber and consequently a 
change in its refractive index via the strain-optic effect, which manifests as a change in 
position, shape and amplitude of resonant bands in the transmission spectrum. An alternative 
solution is to use fiber Bragg gratings (FBGs). However, LPGs have higher sensitivity to 
bending since the cladding modes generated by an LPG are much more affected by bend-
induced refractive index change across the fiber than the back-propagating core modes 
generated by an FBG. The sensor is evaluated by its accuracy, dynamic measurement range 
and ease of application. 

2.2 Measurement scheme 

Bending of the chest wall was measured with an LPG sensor written in a progressive three 
layered fiber using the point-by-point method [24]. In order to make it compatible with the 
human body, reduce its cross-sensitivity to environmental conditions and manipulate it 
easier, the sensor has been encapsulated into a low-temperature curing silicone rubber as 
described in [9]. The full grating characterization can be obtained by using an optical 
spectrum analyzer (Fig. 1 inset). However, the high cost of this instrument makes it 
impractical for clinical use. Here, we employed a simple interrogation module that consists 
of a fiber-coupled narrowband temperature- and current-stabilized laser diode and a 
photodiode that measures the power transmitted through an LPG (Fig. 2(a)). We used a DFB 
laser with a central wavelength 1470.73 nm and a tuning range of 5 nm. The wavelength was 
changed by changing the DFB laser temperature. For the grating characterization we used a 
specially designed gauge with three-point bending [25], where the central point of the grating 
is fixed and the force is applied at the defined distance either side of the center. 

 

Fig. 1. Power sensitivity of the LPG to bending at 1470.4 nm measured by the interrogator. 
The working region is shadowed. Inset: Spectral sensitivity of the LPG to bending measured 
by OSA (Agilent 86142b). During bending the resonance experiences a red shift. 

Since we measure the curvature changes around a preset curvature, we want to position 
the working point (WP) so that the grating characteristic around it is monotonic and, if 
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possible, linear in the whole breathing range (Fig. 1). To achieve this, we tune the laser into 
the grating resonance. 

During all measurements the volunteers were in the supine position equivalent to the 
position of patients during mechanical ventilation. A sensor was placed on a surface in the 
lower third of the thorax in an area with stiff underlying tissues (Fig. 2(b)) and fixed by an 
elastic bandage that goes around the patient’s torso and over the sensor. The right side of the 
rib cage was chosen in order to reduce the impact of the heart beat on the signal. 

 

Fig. 2. a) Sensing scheme b) Sensor position on thorax 

2.3 Measurement protocol and studied population 

The measurement protocol consists of two steps, calibration and test measurements [26]. 
The curvature signal recorded by the LPG sensor was converted to a volume signal by 

calibration to the volume simultaneously recorded by a spirometer (SpiroTube, Thor 
Medical, Budapest). 

Although one breathing cycle (breath in and out) is sufficient for calibration, we 
measured respiratory movements for at least 30 s in order to obtain statistical samples. The 
calibration was performed during natural breathing with typical tidal volumes of 400 – 800 
ml. Volunteers wore nose clips so that air flow was directed only through the spirometer. 
Test measurements were performed immediately after calibration under the same conditions. 

An important part of the volume monitoring in a NIV setting is monitoring of the relative 
change in minute volume over time with respect to the initial ventilator setting, that is rarely 
much different from the natural breathing volumes. Additionally, an alarm should be 
generated when the minute volume is significantly reduced from the initial setting. Hence, 
for test measurements the volunteers were asked to first breathe naturally and then with a 
shallow breathing pattern (approximately half the tidal volume of natural breathing). 

The study was done on 18 healthy volunteers (9 female and 9 male), aged between 25 and 
51 years (33 ± 8 years), and with BMI ranging from 18.4 to 39.2 kg/m2 (24 ± 5 kg/m2). 

2.4 Data analysis 

A LabVIEW program was developed to control the laser diode and perform data acquisition 
and the raw sensor signal storage. Sampling frequencies of spirometer and sensor signals 
were 100 Hz and 50 Hz, respectively. They were synchronized, downsampled to 12 Hz 
(smoothing) and processed off-line by a specially designed MATLAB application. 

Since the volume signals from the spirometer and sensor have drifts of different origin 
(see Fig. 3(a)), we set all end-expiratory volumes and the corresponding minima in both 
signals to zero (Fig. 3(b)). Zeroing the end of each breath makes a simple and robust solution 
to drift elimination. Upon the elimination of drift, the calibration function was found by a 
linear regression of the sensor to the spirometer signal. A calibration function was 
determined for each volunteer and used in calculation of the respiratory volumes from all test 
measurements performed on the same volunteer. 
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Fig. 3. Examples of a) original signals b) signals with subtracted drift 

Each minimum (end-expiratory) value was subtracted from the subsequent maximum 
(end-inspiratory) value to obtain tidal volumes for both the sensor and spirometer signals. 
Sum of the tidal volumes over one minute yields the minute volume. 

We defined three parameters for the performance metric: uncertainty of the calibration, 
minute volume error and mean tidal volume error. The uncertainty Δ was defined as a radius 
of the region around the calibration curve that contains 68% of all measured values. It was 
normalized to the average tidal volume. The minute volume error was calculated as the 
relative error of the minute volumes measured by spirometer min

spiroV and sensor min
senV : 

 
min min

min

minute volume error .
spiro sen

spiro

V V

V

−
=   (2) 

The mean tidal volume error was defined as the mean relative error of tidal volumes over a 
number of respiratory cycles 

 
, ,

,

1
mean tidal volume error , 1: ,

spiro sen
tid k tid k

cyclespiro
kcycle tid k

V V
k N

N V

−
= =        (3) 

where ,
spiro

tid kV  and ,
sen

tid kV  are the tidal volumes in cycle k measured by spirometer and sensor, 

respectively, and Ncycle is the number of respiratory cycles. The purpose of this definition of 
tidal volume error was to evaluate the discrepancy of tidal volumes of individual breaths, 
since such discrepancies may be compensated in the calculation of errors in minute volumes. 

The paired t tests were used to compare the volumes measured by sensor and spirometer. 
The level of statistical significance was taken as p<0.05. Hereafter, all data are expressed as 
(mean ± std) where std is standard deviation, unless stated otherwise. 

3. Results 

A typical set of the calibration and test results is shown in Fig. 4. Scatter plots a) and b) show 
that the correlation function between the sensor signal and the volume measured by the 
spirometer is linear. This trend repeats in all subjects. The coefficient of proportionality, i.e. 
the slope of the regression line in the scatter plot, was patient dependent. The goodness of fit 
was judged by the uncertainty Δ (Table 1). The calibration uncertainty Δcalib of the whole 
group was (7.0 ± 2.2) %, with the test uncertainty Δtest (7.8 ± 2.4) % for natural breathing and 
(11.3 ± 2.8) % for shallow breathing. This proves our hypothesis that a change in respiratory 
volume is proportional to the change in a local torso curvature. 

In the test phase, the volumes measured by a calibrated sensor were compared to the 
simultaneous recordings of the volumes measured by the spirometer, see Table 1 (e.g. Fig. 
4(c) and 4(d)). The minute volume error was (8.7 ± 4.4) % for the natural and (10.1 ± 5.8) % 
for the shallow breathing. The paired t test did not show statistically significant differences 

#201903 - $15.00 USD Received 25 Nov 2013; revised 18 Jan 2014; accepted 19 Feb 2014; published 12 Mar 2014
(C) 2014 OSA1 April 2014 | Vol. 5,  No. 4 | DOI:10.1364/BOE.5.001136 | BIOMEDICAL OPTICS EXPRESS  1141



between the minute volumes measured by the sensor and spirometer for both natural (p = 
0.97, t = −0.04)) and shallow breathing (p = 0.42, t = −0.83). 

 

Fig. 4. a), b) Scatter plot (dots) and the calibration function (inner line) and Δ region (outer 
lines) in calibration and test step, respectively, c) calibrated sensor output, d) tidal volume 
extracted from c) 

Table 1. Test results: sensor vs spirometry* 

 

minute volume [l] tidal volume [ml]
Δcalib 
[%] 

Δtest 
[%] sensor Spiro 

meter 
Error [%] 
Eq. (2) 

sensor Spiro 
meter 

Error
[%] 
Eq. (3) 

na
tu

ra
l 

br
ea

th
in

g 

mean 11.0 11.0 8.7 570 570 10.5 7.0 7.8 

std 5.0 4.6 4.4 210 190 3.8 2.2 2.4 

sh
al

lo
w

 
br

ea
th

in
g 

mean 12.0 11.8 10.1 330 320 15.0 7.0 11.3 

std 6.0 5.8 5.8 90 90 4.8 2.2 2.8 

* The error columns represent the mean and the standard deviation of the moduli of relative errors for the 
group. This is different from the mean relative error of the group that is, for example, zero for natural 
breathing. 

Plots in Fig. 4(c) and 4(d) show that the sensor can accurately measure transitions 
between deep, natural and shallow breathing, which is important for detecting a reduction in 
minute volume during NIV. 

The mean tidal volume error on the whole group was (10.5 ± 3.8) % for the natural and 
(15.0 ± 4.8) % for the shallow breathing. The identity plot in Fig. 5(a) shows good agreement 
between the mean tidal volumes measured by the two methods. The Bland-Altman plot in 
Fig. 5(b) was used as an indicator of potential bias of the tidal volume measurement. Here, 
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the differences between the tidal volumes obtained by two methods were plotted (with their 
signs) as a function of the average tidal volume obtained by these methods [27]. The mean of 
these differences is an indicator of the relative bias towards small/large volumes and their 
standard deviation is the estimate of error [27]. The obtained bias of (−1.0 ± 9.9) % for 
natural and (−2.9 ± 11.5) % for shallow breathing is very low and practically insignificant. 

 

Fig. 5. a) Identity plot of mean Vt recorded by sensors vs. the corresponding values measured 
by spirometer for each of 18 healthy volunteers for natural breathing (o) and shallow 
breathing (*). b) Bland-Altman plot of difference in mean Vt measured by the two methods. 
The middle line represents the mean difference between these two methods (bias) and the 
outer lines represent 95% limits of agreement ( ± 1.96 std of bias) 

The sensor resolution (the smallest signal that the sensor can detect) achieved by the 
current LPG interrogation scheme was 0.3 ml. The accuracy of the method is limited by the 
respiratory signal contamination by the heart beat signal. We have found that by positioning 
the sensor to the right side of the rib cage, the heart beat signal can be significantly reduced 
or eliminated. The accuracy of the tidal volume measurement was better than 60 ml. We note 
that the current interrogation scheme scan rate of 100 Hz allows for simultaneous detection 
of the cardiac and respiratory signals by the same sensor. 

4. Discussion 

Due to the out-coupling of light from the core to the radiation cladding modes, LPGs are 
sensitive to changes in environmental parameters. Therefore, one attenuation band may be 
simultaneously sensitive to several parameters which makes it impossible to distinguish the 
contribution of a wanted measurand [22]. The sensor construction was designed to prevent 
the grating from experiencing changes in the refractive index of the sensor surroundings by 
using a progressive three-layered fiber whose second cladding served as an isolator [28]. The 
effect of rapid temperature fluctuations have been reduced by encapsulating the fiber into a 
low-temperature curing silicone rubber [9], which is also convenient for application on the 
surface of a human body. Currently, the presented procedure with a sensor attachment by an 
elastic bandage is sensitive to the upper-body movements, that the subject makes voluntarily 
or not, that may cause a displacement of the sensor from the initial position and hence, a 
displacement of the working point. This can lead to two types of signal distortion: saturation 
on larger curvatures or crossing the turning point on lower curvatures (see Fig. 1), both easily 
observable in the signal. By changing the laser-diode current, it would be possible to tune the 
laser wavelength to the optimal working point fast enough to allow for automatic correction 
of the sensor working point upon the movement of the subject. Furthermore, the sensor 
movement with respect to the subject can be prevented by application of self-adhesive sensor 
patches. While these improvements would make measurements operator-independent, the 
need for calibrating the sensor to some reference method for every subject will remain. 

Fiber gratings with linear response can be arranged into 2D sensor networks. This level of 
complexity is necessary for the measurement of the absolute volumes [9] or torso shape 
reconstruction [29]. While the grating network is also capable of measuring tidal volumes, 
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the single-sensor scheme is simpler, easier to implement and less susceptible to signal 
distortion due to the movements of the soft abdominal tissues. 

Compared to RIP, the most commonly used competitive method, our method performs 
better in two important aspects, accuracy and drift. Firstly, the studies of RIP performed 
under the same conditions as the study described here, that also use the calibration method 
not requiring subject cooperation, report the maximum tidal volume error round −24% (Fig. 
6 in [30]) (with the mean error of −6.39%) on a set of 7 healthy volunteers [30] and the 
maximal tidal volume error of 24% on a set of 10 healthy volunteers [19]. The maximum 
tidal volume error on a set of 18 volunteers reported here was 17% (with the mean error of 
0.4%). Secondly, unlike RIP, our method does not suffer from high and unpredictable 
baseline drift. Although a weak drift in the light source intensity is present, it is much slower 
than a respiratory cycle and does not introduce errors in tidal and minute volume 
measurements. 

Finally, we note that the heart-beat signal that contaminates the useful signal and thus 
limits the measurement accuracy can be removed by one of the known signal-separation 
techniques, such as those applied in the separation of electrocardiographic from 
electromyographic and electroencephalographic signals [31,32]. On the other hand, the 
simultaneous detection of the respiratory and cardio signals by a single sensor opens the door 
to the development of sophisticated multi-parameter monitoring schemes. 

5. Conclusion 

We have presented and validated a measurement method and optical fiber-grating sensing 
scheme that permits monitoring of lung volume through a real-time measurement of tidal and 
minute volumes. The novelty of the proposed method is that it is based on a correlation 
between the change in local torso curvature and the change in lung volume. In the paper we 
report on the study that proves this correlation by applying a two-step calibration-test 
procedure to a series of healthy volunteers and show that it is linear for clinically relevant 
breathing patterns. The technical novelty of our work lies in facts that we use a single fiber-
grating sensor and a monochromatic measurement scheme that requires only a photodiode as 
a detector. A good agreement of tidal and minute volumes measured simultaneously by 
sensors and spirometer as a reference, proves sensor accuracy and consistency in time. An 
LPG was a sensor of choice since it has a greater sensitivity to bending than an FBG. The 
proposed single-sensor scheme is non-invasive, simple, low-cost and easy to implement. 
Furthermore, the sensing system can be made compact and easy to implement as a part of the 
mechanical ventilators but also can be a standalone device, potentially opening up the 
possibility of long term and ambulatory monitoring and home care applications. Moreover 
the proposed method can be implemented on both male and female patients with comparable 
accuracy and the calibration does not require patient cooperation. Importantly, it does not 
suffer from the flaws of air-flow measurements associated with the leaks from oronasal 
masks and is also more convenient for patients. The presented LPG sensor completely 
eliminates the need for chest movement observation by clinicians. These preliminary results 
are promising and indicate that the method proposed here could be used in NIV. Future work 
will be directed towards compensation of bodily movements, optimization of the working 
point, higher-order corrections to the calibration curve and on-line data analysis. 
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