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jury of skeletal muscle is followed by muscle regeneration in which
new muscle tissue is formed from the proliferating mononuclear
myoblasts, and by systemic response to stress that exposes prolifer-
ating myoblasts to increased glucocorticoid (GC) concentration. Be-
cause of its various causes, hypoxia is a frequent condition affecting
skeletal muscle, and therefore both processes, which importantly
determine the outcome of the injury, often proceed under hypoxic
conditions. It is therefore important to identify and characterize in
proliferating human myoblasts: /) response to hypoxia which is
generally organized by hypoxia-inducible factor-laa (HIF-1o);
2) response to GCs which is mediated through the isoforms of
glucocorticoid receptors (GRs) and 11B-hydroxysteroid dehydroge-
nases (113-HSDs), and 3) the response to GCs under the hypoxic
conditions and the influence of this combination on the factors
controlling myoblast proliferation. Using real-time PCR, Western
blotting, and HIF-la small-interfering RNA silencing, we demon-
strated that cultured human myoblasts possess both, the HIF-1a-based
response to hypoxia, and the GC response system composed of GRa
and types 1 and 2 113-HSDs. However, using combined dexameth-
asone and hypoxia treatments, we demonstrated that these two sys-
tems operate practically without mutual interactions. A seemingly
surprising separation of the two systems that both organize response
to hypoxic stress can be explained on the evolutionary basis: the
phylogenetically older HIF-1a response is a protection at the cellular
level, whereas the GC stress response protects the organism as a
whole. This necessitates actions, like downregulation of IL-6 secre-
tion and vascular endothelial growth factor, that might not be of direct
benefit for the affected myoblasts.

hypoxia-inducible factor-a; antisense version of hypoxia-inducible
factor; vascular endothelial growth factor; glucocorticoid receptors;
11B-hydroxysteroid dehydrogenases

TWO PROCESSES ARE TAKING PLACE in mammalian organisms as a
response to muscle injury. One is muscle regeneration in which
new muscle tissue is formed from the proliferating mononu-
clear myoblasts originating from the mitotically and metabol-
ically dormant satellite cells located under the basal lamina of
the injured muscle fibers (9, 12). The second one is a systemic
response to stress that leads to exposure of proliferating myo-
blasts to the increased glucocorticoid (GC) concentration (42).
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Because of a great variety of its causes, hypoxia is among
frequent conditions affecting skeletal muscle. If muscle regen-
eration occurs under hypoxic conditions either due to the injury
caused by hypoxia itself or due to other causes, proliferating
myoblasts respond by hypoxia-specialized adaptive mecha-
nisms. At the same time, these myoblasts are under the influ-
ence of GCs, which under such circumstances organize the
systemic response to stress. Because each of these responses
might influence the regeneration process in its own way, it is
important to know whether they interfere with each other or if
they are in some way coordinated.

The response to hypoxia is organized mainly by the hypoxia-
inducible factor-lae (HIF-1a) (49). HIF-1a is a transcriptional
factor directly controlling several hundred genes encoding
proteins that are involved in metabolic adaptation, vascular
homeostasis, and some other adaptive processes to hypoxia
(26, 37). The HIF-la response has been demonstrated in
practically all tissues, including adult skeletal muscle (3, 26,
34, 56). Additional, more tissue-specific factors, like HIF-2a
(25) and HIF-3a (45), have been shown to participate in the
HIF-1-organized hypoxic response. A natural antisense version
of HIF-1a transcript (aHIF) was also identified and proposed
as a key element of a HIF-1« expression negative loop regu-
lation (40, 46).

The cellular response to GCs is regulated by the system
composed of the tissue-specific combination of glucocorticoid
receptors (GRs) and 11[B-hydroxysteroid dehydrogenases
(11B-HSDs) (1, 42). Two GR isoforms, GRa and GR3, orga-
nize this response; GRa resides in the cytoplasm, acts as a
ligand-dependent transcription factor, and is downregulated by
increased exposure to GCs (42). GRB does not bind GC
ligands. It has been proposed that it resides in the nucleus
where it controls GRa activity either by forming transcription-
ally inactive GRa/GRP heterodimers preventing in this way
GRa from binding to the GC response element and/or titrating
a coactivator needed by GRa for full transcriptional activity
(14, 33). Type 1 (113-HSD1) is upregulated by increased GC
concentration and, although being a bidirectional enzyme,
mostly generates active cortisol from inactive cortisone (42,
53). Type 2 (11B3-HSD2) has only dehydrogenase activity
that inactivates 11B-hydroxyglucocorticoids (corticoste-
rone, cortisol) and in this way confers specificity on less
abundant aldosterone to activate mineralocorticoid receptors
which bind GCs with practically the same affinity as min-
eralocorticoids (42).

To understand how regenerating human muscle adapts to
hypoxia and how this adaptation interferes with stress response
it is necessary to: /) identify and characterize the HIF-la
response in human myoblasts; 2) identify and characterize
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response to GCs in human myoblasts, and 3) investigate the
effects of hypoxia on the GC stress response and the influence
of this combination on the factors controlling myoblast prolif-
eration.

The present understanding of the HIF-1a response to hyp-
oxia in human muscle is fragmentary (26) and has not been
studied yet in human myoblasts. Also, the reports on the
expression of GR isoforms and both types of 113-HSD in the
human muscle are not consistent. For example, Oakely et al.
(33) and Pujols et al. (36) demonstrated GRa but failed to find
GRp in the human skeletal muscle, whereas Whorwood et al.
(53) and Fruchter et al. (15) reported GC-dependent downregu-
lation of GRa accompanied by upregulation of GRP and
113-HSDI in human myoblasts. Early studies using Northern
blotting or conventional RT-PCR did not detect 113-HSD2
mRNA in skeletal muscle (1, 2, 52); however, Jang et al. (22)
demonstrated 113-HSD2 in the in vivo human muscle and
found its mRNA decreased after dexamethasone (Dex) treat-
ment. Induced GRa expression has been demonstrated in
hypoxic human proximal tubular cells (23), but the response to
GCs is tissue specific, and therefore the response in these cells
might not be the same as in human myoblasts.

Here we approached the issues raised above by: /) following
the time course of expression of HIF-la and aHIF and of
HIF-1a downstream targets phosphoglycerate kinase 1 (PGK1)
and vascular endothelial growth factor (VEGF) in human
myoblasts; their expression was determined under normal and
hypoxic conditions and in combination of these with the Dex
treatment; the hypoxic response was additionally characterized
by studying PGK1 expression after small-interfering RNA
(siRNA) silencing of HIF-la; and 2) determination of the
expression levels of GRa, GR3, 113-HSDI1, and 113-HSD2
under normal and hypoxic conditions and in combination of
these with Dex treatment. We also tested the combined effects
of Dex and hypoxia on the IL-6 secretion because IL-6 release
from human myoblasts importantly facilitates muscle regener-
ation by promoting myoblast proliferation (5, 6, 7, 10). In our
previous study, we found robust IL-6 secretion from human
myoblasts that was strongly inhibited by Dex treatment (35).

MATERIALS AND METHODS

Cultured human myoblasts. All studies reported here were ap-
proved by the Ethical Commission at the Ministry of Health of the
Republic of Slovenia (permit No: 63/01/99). Muscle cultures were
prepared as described in detail before (4, 19, 27, 35). Briefly, myoblast
cultures were prepared from muscle tissue routinely discarded at
orthopedic operations. Donors were free of neuromuscular disease.
Muscle tissue was cleaned of connective and adipose tissue, cut to
small pieces, and trypsinized at 37°C to release muscle satellite cells.
Isolated cells were grown in 100-mm petri dishes (BD Falcon,
Franklin Lakes, NJ) in growth medium AdvancedMEM supplemented
with 10% (vol/vol) FBS, 0.3% (vol/vol) fungizone, and 0.15% (vol/
vol) gentamicin (all obtained from Invitrogen, Paisley, UK) at 37°C in
5% COs-enriched air at saturation humidity. Concentrations of fun-
gizone (amphotericin B) and gentamicin used in our experiments
correspond to 0.75 and 15 pg/ml, respectively, which is below the
concentration ranges at which fungizone (24, 47) and gentamicin (11,
17, 41) affect proliferation. Myoblast colonies were selectively
trypsinized just before fusion, transferred to 75-cm? cell culture flasks,
and were grown under the same conditions as the primary cultures for
two to three more passages, when they were used for experiments.
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Experiments were carried out in polystyrene-treated six-well plates
(BD Falcon).

Treatment with Dex and introduction of hypoxia and chemical
hypoxia. Myoblasts were incubated with 1 wM dexamethasone phos-
phate (Dexamethason; Krka, Novo Mesto, Slovenia) and/or exposed
either to hypoxia (1% O) or to 250 uM CoCls. O, (1%) is commonly
used as a hypoxic condition in in vitro muscle research and corre-
sponds to Po, of ~7.6 mmHg. Although this level of oxygen is
already starting to limit aerobic metabolism (38), it is still compatible
with myoblast survival and myogenesis progression (54). Frequently
used treatment with CoCl, is referred to as “chemical hypoxia,”
because, like decreased Pos, it also leads to increased expression of
HIF-1a and its downstream targets (48, 43). Although its precise
mechanism of action is not known, the prolylhydroxylases (PHD 1-3)
that regulate HIF-1a expression posttranslationally are probably an
important site of CoCl, action (13, 28, 55).

Hypoxic conditions were established by flushing the Modular
Incubator Chamber MC-101 (Billups-Rothenberg, Del Mar, CA) with
hypoxic gas mixture (1% O2-5% C0O,-94% N,) at 20-25 1/min for 5
min. To decrease diffusional barrier for gas exchange, 0.1 ml growth
medium/cm? was used when culturing cells in hypoxia. Atmosphere
in the Modular Incubator Chamber was at saturation humidity. Chem-
ical hypoxia was introduced by treating myoblasts with 250 uM
CoCl, (Sigma, St. Louis, MO).

Western blot analysis. Myoblasts were washed two times with
ice-cold PBS and lysed in 200 .l lysis buffer [20 mM Tris, 1 mM
EDTA, 10% (wt/vol) sucrose, 0.1% Triton X-100, and 1% (vol/vol)
Protease Inhibitor Cocktail (all obtained from Sigma), pH = 7.4].
Samples were scraped from the culture plates, and insoluble compo-
nents were removed by centrifugation (12,000 g, 10 min, at 4°C).
Protein content was determined in supernatants by the Bradford
protein assay (Thermo Scientific Pierce, Rockford, IL).

Protein samples, prepared in Laemmli buffer, were separated in
10% NuPage Novex Bis-Tris Gel (Invitrogen) by using the XCell
SureLock electrophoresis system (Invitrogen) and transferred to a
polyvinylidene difluoride membrane (Millipore, Billerica, MA).
Membranes were blocked in blocking buffer [0.2% (wt/vol) I-Block
(Applied Biosystems, Carlsbad, CA) and 0.3% (vol/vol) Tween 20
(Sigma) prepared in PBS]. After an overnight incubation at 4°C with
primary antibodies, membranes were incubated with alkaline phos-
phatase-conjugated secondary antibodies (Sigma). Blots were devel-
oped in 2% (vol/vol) NBT/BCIP (Roche, Mannheim, Germany)
solution prepared in developing buffer (0.1 M Tris, 0.05 M MgCl,,
and 0.1 M NaCl, pH 9.5). Quantifications were performed with the
Chemi Genius Biolmaging System (Syngen, Cambridge, UK).

We used primary antibodies against GRa (rabbit polyclonal anti-
body PA1-516, diluted 1:200; ABR-Affinity BioReagents, Rockford,
IL), GRP (rabbit polyclonal antibody PA3-514, diluted 1:200; ABR-
Affinity BioReagents), HIF-1a (rabbit polyclonal antibody NB100—
449, diluted 1:500; Novus Biologicals, Littleton, CO), and actin
(rabbit polyclonal antibody SC-1616-R, diluted 1:1,000; Santa Cruz
Biotechnology, Santa Cruz, CA).

Quantitative PCR. Total RNA, extracted with the RNeasy Mini
Plus Kit (Qiagen, Hilden, Germany), was reverse transcribed with
a High-Capacity cDNA Reverse Transcription Kit (Applied Bio-
systems). Quantitative PCR (qPCR) was performed on an ABI
PRISM SDS 7500 (Applied Biosystems), using TagMan chemistry
in a 96-well format. We used TagMan Universal PCR Master Mix
(Applied Biosystems) and the following Gene Expression Assays
(Applied Biosystems): Hs01005213_m1 (for GRa, see below),
Hs00354508_m1 (for GRB), Hs00194153_m1 (for 11B-HSD1),
Hs00388669_m1 (for 113-HSD2), Hs00936368_ml1 (for HIF-1a),
4333765F (for PGK1), Hs00153153_m1 (for aHIF), and Hs00173626_m1
(for VEGF). Gene Expression Assay Hs01005213_m1 can detect both
GRa and GRp, but we established in our preliminary experiments that
the GR mRNA level is >1,000-fold lower compared with GRoe mRNA
(data not shown). In these experiments, GRa mRNA was detected by
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using 800 nM forward primer (5'-GAAGGAAACTCCAGCCAGAA-
3"), 800 nM reverse primer (5'-CAGCTAACATCTCGGGGAAT-3"),
and 200 nM sense probe (6FAM-5'-GCTTCCAAACATTTTTG-
GATAAGACCAT-3'-TAMRA) of NM_000176.2 (29). For all other
GRa mRNA analyses reported in this paper, Gene Expression Assay
Hs01005213_m1 was used, whereas GR3 mRNA expression was simul-
taneously evaluated with Hs00354508_m1 (which detects only GR{
mRNA). GRB mRNA level was consistently at least 1,000-fold lower
compared with GRa and GR3 mRNA combined, but in most cases the
difference was 8,000- to 10,000-fold or more. Reaction efficiency of all
the assays was tested by constructing relative standard curves. The slopes
of the relative standard curves between target genes and endogenous
controls differed by <0.3, and relative (AAC,) quantification was per-
formed to assess expression levels of target genes. Relative quantification
was also used for GR mRNA, although it was not possible to construct
a reliable relative standard curve, since its expression level was very low
(usually C, =35).

Selection of endogenous controls for gPCR. Both hypoxia and GCs
affect a great number of genes, which implies careful selection of
standards in qPCR determinations. To avoid artifacts resulting from
endogenous control selection, we carried out two sets of experiments
where either -actin (ACTB) (4333762F) or 18S rRNA (4333760F),
whose level was relatively stable under different experimental condi-
tions in preliminary experiments (data not shown), were used. More-
over, ACTB was shown to undergo only minor changes in skeletal
muscle cells during the first 24 h of hypoxia (50). To confirm that the fall
of HIF-1ao mRNA after 24 h of hypoxia was not an artifact, we verified
the result in separate experiments using cyclophilin (4333763F) as an
additional endogenous control (data not shown).

HIF-1a knockdown by siRNA. HIF1A ON-TARGETplus SMART-
pool set of four siRNAs (J-004018-07, J-004018-08, J-004018-09,
and J-004018-10) (Thermo Scientific Dharmacon RNAi Technolo-
gies, Rockford, IL) were used for HIF-1a knockdown experiment.
Myoblasts were grown until reaching 50% confluence. A day before
transfection, growth medium was replaced by growth medium without
fungizone and gentamicin. Myoblasts were transfected by Lipo-
fectamine 2000 (Invitrogen). Transfection solution [total siRNA con-
centration 100 nM, 2% (vol/vol) lipofectamine; Invitrogen] was
prepared in serum-free Opti-MEM (Invitrogen). After 24 h, incuba-
tion transfection solution was removed and replaced by growth
medium. Experiments were performed 48 h after the start of trans-
fection.

Determination of IL-6 secretion from cultured human myoblasts.
IL-6 secretion from human myoblasts was determined as described
previously (35). In brief, an Endogen Human IL-6 ELISA Kit
(Thermo Scientific Pierce Endogen) was used. IL-6 concentration was
measured in cell culture supernatants and normalized to total cellular
protein content (Bradford assay).

Statistics. One-way ANOVA, followed by Bonferroni post hoc test
or Dunnett’s test (as appropriate), was performed to test for differ-
ences among groups. Results are expressed as means * SE. If the
normal distribution could not be assumed, data were subjected to
nonparametric tests (Kruskal-Wallis test, followed by Dunn’s test, or
Mann-Whitney U-test). For experiments where two sets of data with
two different endogenous controls (ACTB and 18S rRNA) are shown,
one-way ANOVA (followed by Bonferroni post hoc test) was used to
test for differences within each set of experiments. Statistical analyses
were carried out with SPSS 15.0 for Windows and GraphPad Prism 5.

RESULTS

Expression of HIF-1a, aHIF, and HIF-1a downstream tar-
gets in human myoblasts under hypoxic conditions without or
in combination with Dex treatment. To characterize the hy-
poxic response in human myoblasts, we followed the time
course of HIF-1a expression during 24 h exposure to either
hypoxic conditions (1% O,) or 250 wM CoCl,, also referred to
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as chemical hypoxia, since it also results in an increased
HIF-1a level (see MATERIALS AND METHODS). Under both con-
ditions, we found a peak expression level of HIF-1a after 4—6
h of exposure; after 24 h, it practically returned to the control
level (Fig. 1A). To test if expressed HIF-1a exerts its effects on
the downstream targets, we determined the PGK1 mRNA level
in myoblasts 24 h after the onset of hypoxia. This time point
was selected because 24 h is the time when, as a result of
HIF-1a actions, the level of PGK1 mRNA becomes signifi-
cantly increased and is also in the time frame of the effects of
Dex. We found an approximately sevenfold increase of the
PGK1 mRNA level after 24 h of hypoxia accompanied by a
decreased level of HIF-1lao mRNA to ~40% of control (Fig.
1B). The decreased HIF-1ao mRNA level reflects the increase
in the level of aHIF (Fig. 1B), which downregulates HIF-1«
expression (40). To show that PGK1 induction is dependent on
HIF-1a expression, we partially silenced HIF-1a expression in
myoblasts by siRNA and followed the PGK1 mRNA levels after
exposure to hypoxia. The decrease of HIF-1ao mRNA to ~40%
control due to siRNA silencing led to a proportionally stronger
decrease of its mRNA under hypoxic conditions (Fig. 2A).
HIF-1a mRNA silencing did not affect the PGK1 mRNA level
in the normoxic but decreased it in the hypoxic myoblasts (Fig.
2B). The decrease of HIF-1aa mRNA due to siRNA silencing
(Fig. 2A) resulted in a proportionally lower increase of PGK1
mRNA under hypoxic conditions (Fig. 2B).

To find out if the presence of GCs change or modify the
response to hypoxia described above, we determined the ex-
pression of HIF-1a under normoxic and hypoxic conditions in
combination with the Dex treatment. Treatment of myoblasts
with 1 uwM Dex for 24 h, which is the time when its effects are
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Fig. 1. Time course of hypoxia-inducible factor-la (HIF-1a), the antisense
version of hypoxia-inducible factor (aHIF), and phosphoglycerate kinase 1
(PGK1) mRNA changes in human myoblasts exposed to hypoxia for 24 h.
A: HIF-1a protein level (Western blot) in myoblasts exposed either to hypoxia
(1% Oo; top) or 250 uM CoCl, (chemical hypoxia; bottom) for the indicated
periods of time. Actin was used as a loading control. B: transcript levels
[quantitative PCR (qPCR)] of HIF-1a, PGK1, and aHIF in myoblasts treated
with 250 uM CoCl; for 3, 6, 12, or 24 h. Data were normalized to respective
nontreated controls. ACTB was used as the endogenous control. Results are
means * SE (n = 3 experiments). #P = 0.052, *P < 0.01, **P < 0.005, and
#kP < (0.001 vs. respective nontreated control (Dunnett’s post hoc test).
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Fig. 2. The effect of HIF-1a knock down on the downstream hypoxic response
in human myoblasts. Level of HIF-la mRNA (A) and PGK1 mRNA (B) was
determined (qPCR) in normal myoblasts (control) and myoblasts with siRNA-
silenced HIF-1a (Si). Both were then exposed for 24 h to hypoxia (1% O, =
Hyp; silencing + 1% O> = Si + Hyp). ACTB was used as the endogenous
control. Data were normalized to respective normoxic controls. Results are
means = SE (n = 3). #P < 0.05, **P < 0.005, and ***P < 0.001 vs. control
or as indicated (Bonferroni post hoc test).

expected to be already fully expressed, had no significant effect
on the HIF-la protein level in either normoxic or hypoxic
conditions (Fig. 3). The same lack of Dex effect was observed
at the HIF-1ae mRNA level (Fig. 44). The downstream effect of
HIF-1a on the metabolic target PGK1 mRNA expression (Fig.
4B) also remained unchanged in the Dex-treated myoblasts. In
the case of angiogenic target VEGF (Fig. 4C), we observed the
opposite effects of Dex treatment and hypoxia; while Dex
significantly decreased, hypoxia significantly increased the
level of VEGF mRNA.

The effects of Dex treatment on the expression of GRa, GR3,
11B-HSDI, and 11B-HSD2 under normoxic and hypoxic
conditions. GRae mRNA was detected in our cultured human
myoblasts and was downregulated to ~60-70% of control
after 24 h of Dex treatment under normoxic conditions. Hy-
poxic conditions did not significantly change this effect of Dex
(Fig. 5A). At the protein level, we found a significant ~40%
increase of the GRa under the hypoxic conditions (Fig. 5B);
treatment with Dex abolished this upregulation of GRa and
reduced it to the same level as observed under normoxic
conditions, i.e., to ~30—40% of control (Fig. 5B).

RESPONSE OF CULTURED HUMAN MUSCLE TO GLUCOCORTICOIDS AND HYPOXIA

GRp could be detected only at the mRNA level in our
experiments. However, C; values were in the 35th-40th cycle
range, where the reliability of the determination of the specific
target mRNA becomes questionable. GRB mRNA remained
unaffected after all treatments: Dex, hypoxia, or combined
(Dex + hypoxia) (Fig. 5C). Although using GRf specific
antibodies in our Western experiments, we were not able to
detect a band that could reliably be ascribed to GR[3. Western
blot is therefore not shown.

Using real-time PCR, we found expression of both 11[3-
HSDI and 11B3-HSD2 in human myoblasts. Treatment with 1
M Dex for 24 h under normoxic conditions resulted in the
three- to sixfold increase in 113-HSD1 mRNA (Fig. 6A). We
also detected a 50-60% decrease of 113-HSD2 mRNA after
Dex treatment. The difference was significant if ACTB was
used as a standard (Fig. 6B). These effects of Dex remained
practically unchanged under hypoxic conditions, indicating
their resistance to the HIF-1a-induced cellular adaptations to
hypoxia (Fig. 6, A and B).

The effects of Dex on the IL-6 secretion under hypoxic
conditions. 1L-6 is known as a promoter of human myoblast
proliferation and therefore of human muscle regeneration (5, 6,
7, 12). Because Dex downregulates IL-6 secretion from human
myoblasts (35), it is important to know whether and how
hypoxia influences Dex-mediated downregulation of IL-6 se-
cretion. We were unable to find any statistically significant
effect of hypoxia pretreatment on the IL-6 secretion (Fig. 7A).
However, using this data to determine the percent inhibition of
IL-6 secretion by Dex, we found slight but statistically signif-
icant potentiation of inhibition in the hypoxia-pretreated myo-
blasts (Fig. 7B).

DISCUSSION

Our results show functional separation between the pathway
of HIF-la-organized adaptation to hypoxia and the mecha-
nisms responsible for the regulation of the GC response. We
demonstrated an HIF-la-mediated response in human myo-
blasts exposed to hypoxia. Since HIF-1a protein and mRNA
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Fig. 3. HIF-1a protein level in human myoblasts in the presence of Dex.
HIF-1a level was determined by Western blot (normalized to actin). Dex
treatment, either alone (Dex) or under hypoxic conditions (Dex + Hyp), had
no effect on the HIF-1a level; a still slightly increased level after 24 h of
hypoxia is statistically insignificant and remains at the same level in the
Dex-treated myoblasts (n = 6). A representative Western blot is shown at rop.
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Fig. 4. Hypoxic response in human myoblasts in the presence of Dex; mRNA
level (QPCR). Myoblasts were exposed for 24 h to 1 uM Dex alone (Dex),
hypoxia (1% O-) alone (Hyp), or hypoxia in combination with Dex treatment
(Dex + Hyp). Bars represent means = SE. A: HIF-la mRNA. B: PGKI
mRNA level. C: vascular endothelial growth factor (VEGF) mRNA level.
ACTB (filled bars) (n = 10) or 18S rRNA (open bars) (n = 3-7) was used as
the endogenous control. Data were normalized to respective normoxic con-
trols. Levels of HIF-1a and PGK1 mRNA in Dex vs. Hyp and Dex vs. Dex +
Hyp treated groups were also statistically significant (not indicated for reasons
of clarity), but there was no difference among Hyp vs. Dex + Hyp-treated
groups. Although VEGF in the 18S rRNA data set showed the same biological
response as those in the ACTB set, changes were not statistically significant with
Bonferroni’s post hoc test because of higher variability [Student’s z-test, however,
showed a significant difference (P = 0.021) between the control and Hyp group].
VEGEF levels in Dex vs. Hyp groups were significantly different in both the ACTB
and 18S rRNA data set. *P < 0.01, **P < 0.005, and ***P < 0.001 vs. respective
(ACTB or 18S rRNA) control (Bonferroni post hoc test was performed separately
within each data set).

levels do not reflect HIF-1a activity because it is the HIF-1a/
HIF-1B dimer that acts as a transcription factor, we decided to
use the expression of the HIF-1a downstream target PGK1 as
an indicator of HIF-1a effects. The time between the increase
of HIF-1a and its effects determined at the level of expression
of PGK1 is in accordance with the observations in other cells
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and tissues (16, 21), suggesting that the mechanism is conser-
vative among tissues. This response, which has not been
reported in human myoblasts before, remained practically
unchanged if hypoxic myoblasts were simultaneously treated
with Dex. We observed mutual independence also when we
studied the opposite, i.e., the influence of hypoxia on the
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Fig. 5. The effects of Dex on the glucocorticoid receptor (GR) o and GR
expression in human myoblasts under normoxic or hypoxic conditions.
Human myoblasts were treated for 24 h with 1 wM Dex, Hyp (1% O-), or
both (Dex + Hyp). Bars represent means = SE. A: GRa mRNA (qPCR).
B: GRa protein level (Western blot). C: GRB mRNA (qPCR). ACTB (filled
bars; n = 10) or 18S rRNA (open bars: n = 5-9) was used as the endogenous
control. Data were normalized to respective normoxic controls. None of the
treatments had any significant effect on the GRB mRNA level. GRa protein
level was normalized to actin (n = 4-5). There is no difference among groups
(Dex vs. Dex + Hyp). A representative Western blot is shown at fop in B.
#P < 0.05 and ***P < 0.001 vs. (ACTB or 18S rRNA) control or as indicated
(Bonferroni post hoc test was performed separately within each data set with
different endogenous controls).
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Fig. 6. The effects of Dex on the expression of 11B-hydroxysteroid dehydrogenases (113-HSD) 1 mRNA (A) and 113-HSD2 mRNA (B) under normoxic or
hypoxic conditions (QPCR). Human myoblasts were treated for 24 h with 1 M Dex, Hyp (1% O), or both (Dex + Hyp). Bars represent means = SE. ACTB
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was also significantly different from Dex and Dex + Hyp (not indicated for reasons of clarity). There is no difference among groups (Dex vs. Dex + Hyp) in
either A or B. #P < 0.05, **P < 0.005, and ***P < 0.001 vs. respective (ACTB or 18S rRNA) control (Bonferroni post hoc test was performed separately within

each data set with different endogenous controls).

system responsible for the reception of GC signals. We dem-
onstrated expression of GRa, 113-HSD1, and 113-HSD2 in
human myoblasts; as in other tissues, GRa and 113-HSD2
were downregulated and 11B3-HSD1 was upregulated by Dex.
However, this response was not significantly different if Dex
treatment proceeded under the hypoxic conditions.

Because both mechanisms, one mediated by HIF-la and
another by GRs and 11B-HSDs, can be considered as a re-
sponse to stress imposed by the lack of oxygen, one would
expect coordination among them. Their separation is therefore
on the first sight surprising, but could be explained on the
evolutionary basis. HIF-la-mediated adaptation to hypoxia
can be understood as a stress response organized at the level of
an individual cell. It is phylogenetically older than the GR
response; its vertebrate variant diverged from an even older
ancestor about 500 millions years ago (20, 51) and remained
preserved with further development of higher organisms. On
the other hand, the stress response mediated by GC hormones
released from the adrenal cortex is designed as a stress adap-
tation at the level of the whole organism. It was developed later
[adrenal steroid receptors have not been found earlier than in
vertebrates (8)] and does not work in a way to be protective at
the level of the individual cells or individual tissues. For
example, GCs promote protein catabolism in the skeletal mus-
cle to provide substrates for gluconeogenesis in liver, which is
a defensive measure toward hypoglycemia that must be pre-
vented under stressful circumstances. Different levels of stress

defense therefore also necessitate two separated sets of defense
mechanisms.

A clear separation between the GC-mediated stress response
and HIF-la-mediated adaptation to hypoxia was observed at
the regulation of the VEGF mRNA, which was downregulated
by Dex and upregulated by hypoxia. The difference between
the Dex effects on VEGF mRNA and another direct HIF-1a
downstream target (PGK1 mRNA, which was not affected by
Dex) can be explained by different roles of the two proteins.
PGKI is a glycolytic enzyme and therefore has very specific
intracellular function, whereas VEGF is a growth factor re-
leased from the myoblasts. Physiological meaning of HIF-1a-
induced VEGF upregulation is to promote vascularization as a
compensation of hypoxia. However, VEGF also has a wide
spectrum of other effects at the systemic level that must be
regulated when the stress response is organized in the organ-
ism, which explains its downregulation by Dex (18). Separa-
tion of the two responses, however, cannot be generalized,
since it seems to be tissue-specific. For example, Leonard et al.
(23) reported potentiation of GC activity in hypoxia in the
HK-2 human proximal tubular epithelial cells of the kidney.

Additional explanation for the independence of the GC
response to hypoxia might be that GC actions in human
myoblasts are not limited to the stress response. GCs are
known to participate at the development of the mammalian
organisms at their early stages (42), which might also be their
role in the human myoblasts. mRNA expression of all compo-
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nents constituting GC response suggests that myoblasts are
well equipped for the adaptation and fine tuning of the GC
response in various situations. This observation supports an
alternative physiological role of this response. Especially in-
triguing is the role of 113-HSD2, the actions of which are
essential for the proper mineralocorticoid activity (see Intro-
duction). These actions have a clear physiological meaning in
the kidney, although its role in human myoblasts remains to be
established.

One exception from the mutual independence of the two
mechanisms described above was upregulation of GRa for
~40% under hypoxic conditions. One can speculate that,
similar to the well-documented increased stability of HIF-1a
(13, 26, 44), the stability of this GR was also increased under
hypoxic conditions. This effect was, however, annihilated by
Dex, suggesting that hypoxia-protected GRa is overridden by
the well-known acceleration of protein ubiquitination and sub-
sequent catabolism induced by GCs in the muscle tissue.

A consistent finding in our experiments was a decreased
level of HIF-1oo mRNA to ~40-50% of control after 24 h of
hypoxia. This observation can be explained by the concomitant
and complementary increase in aHIF. The role of this natural
antisense version of HIF-1a transcript, reported in the human
myoblasts for the first time in this paper, is to act as a negative
loop regulation of HIF-1a expression serving in this way as a
stabilizer of expression of mRNAs induced by hypoxia (32, 39,
40, 46, 30, 31). Such decrease of HIF-lao. mRNA was also
observed in the mouse liver after prolonged exposure of mice
to hypoxia (52) and in THP-1 cells already after 6 h of hypoxia
(14). Besides, our finding that the level of PGK1 mRNA,
which is a downstream target of HIF-1c, changes in proportion
to the level of HIF-lao mRNA also suggests that HIF-1lo-
regulated adaptation to hypoxia takes place also at the mRNA
level and not only at the level of protein stability (26, 44).
Although short-term regulation is exerted at the protein level,
as also demonstrated in our experiments, there is also a mid- or
long-term feedback regulation at the transcriptional level main-
taining the HIF-1a response within the protective limits.

Our observations on the expression of GRB in human
myoblasts are in accordance with the reports of Oakley et al.
(33) and Pujols et al. (36) who failed to find GR[3 protein in the
human skeletal muscle. We were able to detect mRNA of GRp
by real-time PCR, but only at the very low level close to the
detection limit. Our results therefore do not support the partic-
ipation of GRfP in organizing the GC response in human
myoblasts.

It is well documented that IL-6 stimulates myoblast prolif-
eration (5, 6, 7, 10). Because proliferation of myoblasts is the
only part of the muscle regeneration where new nuclei and
therefore the origins of the formation of new muscle mass are
formed (9, 12), this stage decisively determines the mass of the
regenerated muscle tissue. In our previous study, we demon-
strated that Dex inhibits IL-6 secretion from human myoblasts
(35). Here we show that this effect of Dex remains practically
unchanged under hypoxic conditions except for a mild hyper-
sensitivity of the IL-6 secretion inhibition by Dex. Together
with our observation on VEGF, which is downregulated by
Dex and upregulated in hypoxia, this observation additionally
supports our conclusion that the HIF-a response to hypoxia is
functionally separated from the system controlling GC actions
in the in vitro regenerating human skeletal muscle.
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Perspectives and Significance

Together with our previous studies on cultured human mus-
cle (19, 27, 35), this report clearly demonstrates that, although
morphologically poorly developed, human myoblasts are
equipped with the complex molecular apparatus that enables
them to respond specifically to various environmental stimuli.
Here we demonstrated for the first time absence of synergism
between the pathway of HIF-1a-organized adaptation to hyp-
oxia and the mechanisms responsible for the regulation of the
GC stress response. Although on the first sight surprising, this
mutual independence can be explained on the evolutionary
basis. However, our observations were obtained under in vitro
conditions, and complementary in vivo studies are needed to
confirm this conclusion. Detailed understanding of the mech-
anisms underlying these responses are essential for the design
of the therapy that would improve muscle regeneration and in
this way alleviate various and numerous conditions affecting
skeletal muscle.
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