Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2019 (5)
2017 (5)
2016 (12)
2015 (5)
2014 (14)
2013 (21)
2012 (26)
2011 (18)
2010 (14)
2009 (7)
2008 (15)
2007 (9)
2006 (7)
2005 (3)
2004 (4)
2003 (4)
2002 (2)
1999 (1)
1998 (3)
1997 (2)
1996 (1)
M-Rank
M21 (21)
M21a (11)
M22 (14)
M23 (12)
M52 (2)

Uskoković, Dragan

Link to this page

Authority KeyName Variants
orcid::0000-0002-0421-4968
  • Uskoković, Dragan (180)
Projects
Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them Magnetic and radionuclide labeled nanostructured materials for medical applications
Lithium-ion batteries and fuel cells - research and development Investigation of intermetallics and semiconductors and possible application in renewable energy sources
Ministry of Science and Technological Development of the Republic of Serbia [142006] Bilateral Cooperation Project between the Republic of Slovenia and the Republic of Serbia
National Institute of Health grant R00-DE021416 United States National Institutes of Health grant R00-DE021416
Desai Lab at UCSF, NIH [K99-DE021416] Electronic, transport and optical properties of nanostructured materials
Synthesis, characterization and biological investigation of steroid derivatives and their molecular aggregates Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology
Virtual human osteoarticular system and its application in preclinical and clinical practice Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden
Functional, Functionalized and Advanced Nanomaterials Nanostructured multifunctional materials and nanocomposites
Sinteza funkcionalnih materijala sa kontrolisanom strukturom na molekularnom i nano nivou Ministry of Science and Environmental Protection of the Republic of Serbia [142006], Serbian-Slovenian Bilateral Scientific Collaboration
Ministry of Science and Technological Development of the Republic of Serbia [142006], Serbian-Slovenian Bilateral Scientific Collaboration Republic of Slovenia [651-03-1251/2012-09/05], Republic of Serbia [651-03-1251/2012-09/05]
Republic of Slovenia, Republic of Serbia [651-03-1251/2012-09/05] United States National Institutes of Health (R00-DE021416)
US National Health Institute grant K99-DE021416

Author's Bibliography

On the presence of antisite defect in monoclinic Li2FeSiO4 – A combined X-Ray diffraction and DFT study

Milović, Miloš; Vasić Anićijević, Dragana D.; Jugović, Dragana; Anićijević, Vladan J.; Veselinović, Ljiljana M.; Mitrić, Miodrag; Uskoković, Dragan

(2019)

TY  - JOUR
AU  - Milović, Miloš
AU  - Vasić Anićijević, Dragana D.
AU  - Jugović, Dragana
AU  - Anićijević, Vladan J.
AU  - Veselinović, Ljiljana M.
AU  - Mitrić, Miodrag
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8021
AB  - Li2FeSiO4 material, which was prepared by a solid state method, crystallized as monoclinic P21/n polymorph. X-ray diffraction analysis with Rietveld structural refinement indicates specific occupation of Li2 crystallographic site by Fe2+ cation in the amount of 6 atom percents as a result of an antisite defect formation. The exclusive occupation of Li2 position, out of two crystallographic positions Li1 and Li2, by Fe2+ was discussed in relation to the differences that exist in the crystal environment of these positions and further investigated by DFT calculations. It was confirmed that Fe-Li2 substitution is energetically favorable compared to both Fe-Li1 substitution and the pristine crystal. In addition, changes of lattice geometry upon antisite defect formation were analyzed, and the obtained result is discussed in light of various factors (electronic, geometrical and enthropic) that contribute to the overall stability of the system. © 2018 Elsevier Masson SAS
T2  - Solid State Sciences
T1  - On the presence of antisite defect in monoclinic Li2FeSiO4 – A combined X-Ray diffraction and DFT study
VL  - 87
SP  - 81
EP  - 86
DO  - 10.1016/j.solidstatesciences.2018.11.008
ER  - 
@article{
author = "Milović, Miloš and Vasić Anićijević, Dragana D. and Jugović, Dragana and Anićijević, Vladan J. and Veselinović, Ljiljana M. and Mitrić, Miodrag and Uskoković, Dragan",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8021",
abstract = "Li2FeSiO4 material, which was prepared by a solid state method, crystallized as monoclinic P21/n polymorph. X-ray diffraction analysis with Rietveld structural refinement indicates specific occupation of Li2 crystallographic site by Fe2+ cation in the amount of 6 atom percents as a result of an antisite defect formation. The exclusive occupation of Li2 position, out of two crystallographic positions Li1 and Li2, by Fe2+ was discussed in relation to the differences that exist in the crystal environment of these positions and further investigated by DFT calculations. It was confirmed that Fe-Li2 substitution is energetically favorable compared to both Fe-Li1 substitution and the pristine crystal. In addition, changes of lattice geometry upon antisite defect formation were analyzed, and the obtained result is discussed in light of various factors (electronic, geometrical and enthropic) that contribute to the overall stability of the system. © 2018 Elsevier Masson SAS",
journal = "Solid State Sciences",
title = "On the presence of antisite defect in monoclinic Li2FeSiO4 – A combined X-Ray diffraction and DFT study",
volume = "87",
pages = "81-86",
doi = "10.1016/j.solidstatesciences.2018.11.008"
}

On the presence of antisite defect in monoclinic Li2FeSiO4 – A combined X-Ray diffraction and DFT study

Milović, Miloš; Vasić Anićijević, Dragana D.; Jugović, Dragana; Anićijević, Vladan J.; Veselinović, Ljiljana M.; Mitrić, Miodrag; Uskoković, Dragan

(2019)

TY  - JOUR
AU  - Milović, Miloš
AU  - Vasić Anićijević, Dragana D.
AU  - Jugović, Dragana
AU  - Anićijević, Vladan J.
AU  - Veselinović, Ljiljana M.
AU  - Mitrić, Miodrag
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8017
AB  - Li2FeSiO4 material, which was prepared by a solid state method, crystallized as monoclinic P21/n polymorph. X-ray diffraction analysis with Rietveld structural refinement indicates specific occupation of Li2 crystallographic site by Fe2+ cation in the amount of 6 atom percents as a result of an antisite defect formation. The exclusive occupation of Li2 position, out of two crystallographic positions Li1 and Li2, by Fe2+ was discussed in relation to the differences that exist in the crystal environment of these positions and further investigated by DFT calculations. It was confirmed that Fe-Li2 substitution is energetically favorable compared to both Fe-Li1 substitution and the pristine crystal. In addition, changes of lattice geometry upon antisite defect formation were analyzed, and the obtained result is discussed in light of various factors (electronic, geometrical and enthropic) that contribute to the overall stability of the system. © 2018 Elsevier Masson SAS
T2  - Solid State Sciences
T1  - On the presence of antisite defect in monoclinic Li2FeSiO4 – A combined X-Ray diffraction and DFT study
VL  - 87
SP  - 81
EP  - 86
DO  - 10.1016/j.solidstatesciences.2018.11.008
ER  - 
@article{
author = "Milović, Miloš and Vasić Anićijević, Dragana D. and Jugović, Dragana and Anićijević, Vladan J. and Veselinović, Ljiljana M. and Mitrić, Miodrag and Uskoković, Dragan",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8017",
abstract = "Li2FeSiO4 material, which was prepared by a solid state method, crystallized as monoclinic P21/n polymorph. X-ray diffraction analysis with Rietveld structural refinement indicates specific occupation of Li2 crystallographic site by Fe2+ cation in the amount of 6 atom percents as a result of an antisite defect formation. The exclusive occupation of Li2 position, out of two crystallographic positions Li1 and Li2, by Fe2+ was discussed in relation to the differences that exist in the crystal environment of these positions and further investigated by DFT calculations. It was confirmed that Fe-Li2 substitution is energetically favorable compared to both Fe-Li1 substitution and the pristine crystal. In addition, changes of lattice geometry upon antisite defect formation were analyzed, and the obtained result is discussed in light of various factors (electronic, geometrical and enthropic) that contribute to the overall stability of the system. © 2018 Elsevier Masson SAS",
journal = "Solid State Sciences",
title = "On the presence of antisite defect in monoclinic Li2FeSiO4 – A combined X-Ray diffraction and DFT study",
volume = "87",
pages = "81-86",
doi = "10.1016/j.solidstatesciences.2018.11.008"
}

Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose

Jugović, Dragana; Mitrić, Miodrag; Milović, Miloš; Ivanovski, Valentin N.; Škapin, Srečo Davor; Dojčinović, Biljana P.; Uskoković, Dragan

(2019)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Škapin, Srečo Davor
AU  - Dojčinović, Biljana P.
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8047
AB  - A new method involving the homogeneous dispersion of precursor compounds inside a methylcellulose matrix is used for the synthesis of a composite powder of Li 2 FeP 2 O 7 and carbon. The properties of carbon-containing and carbon-free powders are studied by X-ray powder diffraction (XRD) including Rietveld refinement, Mössbauer spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The structure of both powders is refined in a monoclinic framework (space group P2 1 /c). The structural refinement and Mössbauer spectroscopy reveal different degrees of partial occupancy of mixed-occupied sites by lithium. Electrochemical measurements show that the in situ formation of carbon improves capacity (90% of 1-electron theoretical capacity) through decreased charge-transfer resistance. © 2019 Elsevier B.V.
T2  - Journal of Alloys and Compounds
T1  - Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose
VL  - 786
SP  - 912
EP  - 919
DO  - 10.1016/j.jallcom.2019.01.392
ER  - 
@article{
author = "Jugović, Dragana and Mitrić, Miodrag and Milović, Miloš and Ivanovski, Valentin N. and Škapin, Srečo Davor and Dojčinović, Biljana P. and Uskoković, Dragan",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8047",
abstract = "A new method involving the homogeneous dispersion of precursor compounds inside a methylcellulose matrix is used for the synthesis of a composite powder of Li 2 FeP 2 O 7 and carbon. The properties of carbon-containing and carbon-free powders are studied by X-ray powder diffraction (XRD) including Rietveld refinement, Mössbauer spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The structure of both powders is refined in a monoclinic framework (space group P2 1 /c). The structural refinement and Mössbauer spectroscopy reveal different degrees of partial occupancy of mixed-occupied sites by lithium. Electrochemical measurements show that the in situ formation of carbon improves capacity (90% of 1-electron theoretical capacity) through decreased charge-transfer resistance. © 2019 Elsevier B.V.",
journal = "Journal of Alloys and Compounds",
title = "Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose",
volume = "786",
pages = "912-919",
doi = "10.1016/j.jallcom.2019.01.392"
}

Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose

Jugović, Dragana; Mitrić, Miodrag; Milović, Miloš; Ivanovski, Valentin N.; Škapin, Srečo Davor; Dojčinović, Biljana P.; Uskoković, Dragan

(2019)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Škapin, Srečo Davor
AU  - Dojčinović, Biljana P.
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8052
AB  - A new method involving the homogeneous dispersion of precursor compounds inside a methylcellulose matrix is used for the synthesis of a composite powder of Li 2 FeP 2 O 7 and carbon. The properties of carbon-containing and carbon-free powders are studied by X-ray powder diffraction (XRD) including Rietveld refinement, Mössbauer spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The structure of both powders is refined in a monoclinic framework (space group P2 1 /c). The structural refinement and Mössbauer spectroscopy reveal different degrees of partial occupancy of mixed-occupied sites by lithium. Electrochemical measurements show that the in situ formation of carbon improves capacity (90% of 1-electron theoretical capacity) through decreased charge-transfer resistance. © 2019 Elsevier B.V.
T2  - Journal of Alloys and Compounds
T1  - Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose
VL  - 786
SP  - 912
EP  - 919
DO  - 10.1016/j.jallcom.2019.01.392
ER  - 
@article{
author = "Jugović, Dragana and Mitrić, Miodrag and Milović, Miloš and Ivanovski, Valentin N. and Škapin, Srečo Davor and Dojčinović, Biljana P. and Uskoković, Dragan",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8052",
abstract = "A new method involving the homogeneous dispersion of precursor compounds inside a methylcellulose matrix is used for the synthesis of a composite powder of Li 2 FeP 2 O 7 and carbon. The properties of carbon-containing and carbon-free powders are studied by X-ray powder diffraction (XRD) including Rietveld refinement, Mössbauer spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The structure of both powders is refined in a monoclinic framework (space group P2 1 /c). The structural refinement and Mössbauer spectroscopy reveal different degrees of partial occupancy of mixed-occupied sites by lithium. Electrochemical measurements show that the in situ formation of carbon improves capacity (90% of 1-electron theoretical capacity) through decreased charge-transfer resistance. © 2019 Elsevier B.V.",
journal = "Journal of Alloys and Compounds",
title = "Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose",
volume = "786",
pages = "912-919",
doi = "10.1016/j.jallcom.2019.01.392"
}

Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging

Ignjatović, Nenad L.; Mančić, Lidija; Vuković, Marina; Stojanović, Zoran S.; Nikolić, Marko G.; Škapin, Srečo Davor; Jovanović, Sonja; Veselinović, Ljiljana M.; Uskoković, Vuk; Lazić, Snežana; Marković, Smilja; Lazarević, Miloš M.; Uskoković, Dragan

(2019)

TY  - JOUR
AU  - Ignjatović, Nenad L.
AU  - Mančić, Lidija
AU  - Vuković, Marina
AU  - Stojanović, Zoran S.
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Jovanović, Sonja
AU  - Veselinović, Ljiljana M.
AU  - Uskoković, Vuk
AU  - Lazić, Snežana
AU  - Marković, Smilja
AU  - Lazarević, Miloš M.
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8625
AB  - Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility. © 2019, The Author(s).
T2  - Scientific Reports
T1  - Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging
VL  - 9
IS  - 1
SP  - 16305
DO  - 10.1038/s41598-019-52885-0
ER  - 
@article{
author = "Ignjatović, Nenad L. and Mančić, Lidija and Vuković, Marina and Stojanović, Zoran S. and Nikolić, Marko G. and Škapin, Srečo Davor and Jovanović, Sonja and Veselinović, Ljiljana M. and Uskoković, Vuk and Lazić, Snežana and Marković, Smilja and Lazarević, Miloš M. and Uskoković, Dragan",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8625",
abstract = "Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility. © 2019, The Author(s).",
journal = "Scientific Reports",
title = "Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging",
volume = "9",
number = "1",
pages = "16305",
doi = "10.1038/s41598-019-52885-0"
}
1
11
7
10

Highly selective anticancer activity of core shell particles based on hydroxyapatite, chitosan lactate and different androstane derivatives

Uskoković, Dragan; Radmilović, Velimir R.; Ignjatović, Nenad L.; Penov Gaši, Katarina; Ajduković, Jovana; Sakač, Marija; Kuzminac, Ivana; Kojić, Vesna V.; Marković, Smilja; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2017)

TY  - CONF
AU  - Ignjatović, Nenad L.
AU  - Penov Gaši, Katarina
AU  - Ajduković, Jovana
AU  - Sakač, Marija
AU  - Kuzminac, Ivana
AU  - Kojić, Vesna V.
AU  - Marković, Smilja
AU  - Uskoković, Dragan
PY  - 2017
UR  - http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1211
UR  - http://itn.sanu.ac.rs/opus4/files/1211/Ignjatovic_YUCOMAT2017.pdf
UR  - http://dais.sanu.ac.rs/123456789/15442
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7563
AB  - Hybrid systems based on nano hydroxyapatites (HAp) are the subject of numerous studies in preventive and regenerative medicine. Special interests are directed towards the creation of a system based on HAp for use in a nano-oncology. The main objective of this research is directed towards the creation of a system with cytotoxic properties towards the cancer cells with the same time, minimum side effects. Carriers base on core shell of HAp/chitosan-poly(D,L)-lactide-coglycolide (PLGA) loaded with androstane-based cancer inhibitor could be seen as promising drug delivery platforms for selective cancer therapies.In this study we utilize an emulsification process and freeze drying to load the composite particles based on HAp nanocarrier, chitosane (Ch), PLGA and chitosan oligosaccharide lactate (ChOL) with 17β-hydroxy-17α-picolyl-androst-5-en-3β-acetate (A) and 3β,17β-dihydroxy-16-hydroxymino-androst-5-en (B), a chemotherapeutic derivatives of androstane. The picolyl androstane derivatives showed high potency in the cell inhibitors of hormone-dependent cancers (lung, prostate and colon cancer; adeno and cervix carcinoma; etc.).1H NMR, 13C NMR and high-resolution time-of-flight mass spectrometry (MS) techniques confirmed the intact structure of the derivatives A and B. The thermogravimetric and differential thermal analysis (TGA, DTA) coupled with mass spectrometry was used to qualitatively confirm the drug loading process. FT-IR, XRD, AFM and DSC techniques have confirmed the success of androstane (A and B) loading process in core shell particles base on nano hydroxyapatite. All the synthesized particles were found to be spherical in shape with a uniform size distribution from d50=167 to d50=231 nm. Highly selective anticancer activity was noted towards the human lung carcinoma (A549) by A loaded HAp/Ch-PLGA and towards the human breast adenocarcinoma (MDA-MB-231) by B loaded HAp/ChOL. The obtained results of the DET and MTT tests were in agreement.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, September 4-8, 2017
T1  - Highly selective anticancer activity of core shell particles based on hydroxyapatite, chitosan lactate and different androstane derivatives
SP  - 50
EP  - 50
ER  - 
@conference{
editor = "Uskoković, Dragan, Radmilović, Velimir R.",
author = "Ignjatović, Nenad L. and Penov Gaši, Katarina and Ajduković, Jovana and Sakač, Marija and Kuzminac, Ivana and Kojić, Vesna V. and Marković, Smilja and Uskoković, Dragan",
year = "2017",
url = "http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1211, http://itn.sanu.ac.rs/opus4/files/1211/Ignjatovic_YUCOMAT2017.pdf, http://dais.sanu.ac.rs/123456789/15442, http://vinar.vin.bg.ac.rs/handle/123456789/7563",
abstract = "Hybrid systems based on nano hydroxyapatites (HAp) are the subject of numerous studies in preventive and regenerative medicine. Special interests are directed towards the creation of a system based on HAp for use in a nano-oncology. The main objective of this research is directed towards the creation of a system with cytotoxic properties towards the cancer cells with the same time, minimum side effects. Carriers base on core shell of HAp/chitosan-poly(D,L)-lactide-coglycolide (PLGA) loaded with androstane-based cancer inhibitor could be seen as promising drug delivery platforms for selective cancer therapies.In this study we utilize an emulsification process and freeze drying to load the composite particles based on HAp nanocarrier, chitosane (Ch), PLGA and chitosan oligosaccharide lactate (ChOL) with 17β-hydroxy-17α-picolyl-androst-5-en-3β-acetate (A) and 3β,17β-dihydroxy-16-hydroxymino-androst-5-en (B), a chemotherapeutic derivatives of androstane. The picolyl androstane derivatives showed high potency in the cell inhibitors of hormone-dependent cancers (lung, prostate and colon cancer; adeno and cervix carcinoma; etc.).1H NMR, 13C NMR and high-resolution time-of-flight mass spectrometry (MS) techniques confirmed the intact structure of the derivatives A and B. The thermogravimetric and differential thermal analysis (TGA, DTA) coupled with mass spectrometry was used to qualitatively confirm the drug loading process. FT-IR, XRD, AFM and DSC techniques have confirmed the success of androstane (A and B) loading process in core shell particles base on nano hydroxyapatite. All the synthesized particles were found to be spherical in shape with a uniform size distribution from d50=167 to d50=231 nm. Highly selective anticancer activity was noted towards the human lung carcinoma (A549) by A loaded HAp/Ch-PLGA and towards the human breast adenocarcinoma (MDA-MB-231) by B loaded HAp/ChOL. The obtained results of the DET and MTT tests were in agreement.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, September 4-8, 2017",
title = "Highly selective anticancer activity of core shell particles based on hydroxyapatite, chitosan lactate and different androstane derivatives",
pages = "50-50"
}

Composition of red mud and/or metakaolin-based modified geopolymers

Uskoković, Dragan; Radmilović, Velimir R.; Vukčević, Mira; Bošković, Ivana V.; Nenadović, Snežana S.; Mirković, Miljana M.; Čalija, Bojan; Pavlović, Vladimir B.; Kljajević, Ljiljana M.

(Belgrade : Materials Research Society of Serbia, 2017)

TY  - CONF
AU  - Vukčević, Mira
AU  - Bošković, Ivana V.
AU  - Nenadović, Snežana S.
AU  - Mirković, Miljana M.
AU  - Čalija, Bojan
AU  - Pavlović, Vladimir B.
AU  - Kljajević, Ljiljana M.
PY  - 2017
UR  - http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1207
UR  - http://itn.sanu.ac.rs/opus4/files/1207/Vukcevic_YUCOMAT2017.pdf
UR  - http://dais.sanu.ac.rs/123456789/15438
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7558
AB  - There is potential use of red mud for synthesis of inorganic polymeric materials through a geopolymerization process as an alternative in the sectors of construction and building materials. By introducing of inorganic and organic modificators of microstructure (calcium hydroxide, bifunctional epoxy resins, or various types of alkoxylanes) during the geopolymer synthesis the enhanced values of ductility and strength can be obtained. Research was performed on alumosilicate material (red mud and metakaolin) and alkali activator raw mixture with defined quantity of modificator. The best sinthesys conditions were identified. Post-synthesis curing also play important role in obtaining of good-performing geopolymers. Characteristics of geopolymers were defined by measuring of compressive strength, N2-physisorption, as well as by SEM analysis, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). In addition the lower value of zeta potential was identified as the assisting factor for the specific structure domains formation (within the certain range of pH) accompanied by the high compressive strength.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, September 4-8, 2017
T1  - Composition of red mud and/or metakaolin-based modified geopolymers
SP  - 72
EP  - 72
ER  - 
@conference{
editor = "Uskoković, Dragan, Radmilović, Velimir R.",
author = "Vukčević, Mira and Bošković, Ivana V. and Nenadović, Snežana S. and Mirković, Miljana M. and Čalija, Bojan and Pavlović, Vladimir B. and Kljajević, Ljiljana M.",
year = "2017",
url = "http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1207, http://itn.sanu.ac.rs/opus4/files/1207/Vukcevic_YUCOMAT2017.pdf, http://dais.sanu.ac.rs/123456789/15438, http://vinar.vin.bg.ac.rs/handle/123456789/7558",
abstract = "There is potential use of red mud for synthesis of inorganic polymeric materials through a geopolymerization process as an alternative in the sectors of construction and building materials. By introducing of inorganic and organic modificators of microstructure (calcium hydroxide, bifunctional epoxy resins, or various types of alkoxylanes) during the geopolymer synthesis the enhanced values of ductility and strength can be obtained. Research was performed on alumosilicate material (red mud and metakaolin) and alkali activator raw mixture with defined quantity of modificator. The best sinthesys conditions were identified. Post-synthesis curing also play important role in obtaining of good-performing geopolymers. Characteristics of geopolymers were defined by measuring of compressive strength, N2-physisorption, as well as by SEM analysis, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). In addition the lower value of zeta potential was identified as the assisting factor for the specific structure domains formation (within the certain range of pH) accompanied by the high compressive strength.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, September 4-8, 2017",
title = "Composition of red mud and/or metakaolin-based modified geopolymers",
pages = "72-72"
}

Synthesis and characterization of Li2FeP2O7 cathode material

Uskoković, Dragan; Radmilović, Velimir R.; Jugović, Dragana; Milović, Miloš; Mitrić, Miodrag; Cvjetićanin, Nikola; Škapin, Srečo Davor; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2017)

TY  - CONF
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Mitrić, Miodrag
AU  - Cvjetićanin, Nikola
AU  - Škapin, Srečo Davor
AU  - Uskoković, Dragan
PY  - 2017
UR  - http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1208
UR  - http://itn.sanu.ac.rs/opus4/files/1208/Jugovic_YUCOMAT2017.pdf
UR  - http://dais.sanu.ac.rs/123456789/15439
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7560
AB  - The search for alternative cathode materials for Li-ion batteries has recently emerged Li2FeP2O7 pyrophosphate as a new potential competitor for LiFePO4 material. It has a possibility to offer good rate capability, lithium ion diffusivity and volumetric energy density, and is a material of high safety and low raw materials cost. In addition, there is the probability of releasing the second Li-atom at a higher redox potential of 5.2 V, where the theoretical capacity would reach 220 mAhg−1. Optimized solid state reaction is used for the synthesis of pure Li2FeP2O7 powder and a composite Li2FeP2O7/C. The synthesized powders are characterized by X-ray powder diffraction, field emission scanning electron microscopy, FTIR spectroscopy, and galvanostatic charge/discharge cycling.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, September 4-8, 2017
T1  - Synthesis and characterization of Li2FeP2O7 cathode material
SP  - 46
EP  - 46
ER  - 
@conference{
editor = "Uskoković, Dragan, Radmilović, Velimir R.",
author = "Jugović, Dragana and Milović, Miloš and Mitrić, Miodrag and Cvjetićanin, Nikola and Škapin, Srečo Davor and Uskoković, Dragan",
year = "2017",
url = "http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1208, http://itn.sanu.ac.rs/opus4/files/1208/Jugovic_YUCOMAT2017.pdf, http://dais.sanu.ac.rs/123456789/15439, http://vinar.vin.bg.ac.rs/handle/123456789/7560",
abstract = "The search for alternative cathode materials for Li-ion batteries has recently emerged Li2FeP2O7 pyrophosphate as a new potential competitor for LiFePO4 material. It has a possibility to offer good rate capability, lithium ion diffusivity and volumetric energy density, and is a material of high safety and low raw materials cost. In addition, there is the probability of releasing the second Li-atom at a higher redox potential of 5.2 V, where the theoretical capacity would reach 220 mAhg−1. Optimized solid state reaction is used for the synthesis of pure Li2FeP2O7 powder and a composite Li2FeP2O7/C. The synthesized powders are characterized by X-ray powder diffraction, field emission scanning electron microscopy, FTIR spectroscopy, and galvanostatic charge/discharge cycling.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, September 4-8, 2017",
title = "Synthesis and characterization of Li2FeP2O7 cathode material",
pages = "46-46"
}

Synthesis and structural properties of sodium cobalt oxide

Marković, Smilja; Aleksić, Jelena; Jugović, Dragana; Milović, Miloš; Mitrić, Miodrag; Uskoković, Dragan

(Belgrade : Institute of Technical Sciences of SASA, 2017)

TY  - CONF
AU  - Aleksić, Jelena
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Mitrić, Miodrag
AU  - Uskoković, Dragan
PY  - 2017
UR  - http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1218
UR  - http://itn.sanu.ac.rs/opus4/files/1218/Aleksic_16YRC2017.pdf
UR  - http://dais.sanu.ac.rs/123456789/15449
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7564
AB  - Sodium transition-metal oxides with general formula NaxTMO2 (TM = Co, Mn, Ni, etc.) have attracted a lot of interest in the battery community due to low cost of sodium in contrast to lithium. Sodium cobalt oxide is the most attractive of them for cathode application because of its conductive, thermic and magnetic characteristics. In this study, sodium cobalt oxide, NaxCoO2 , was synthesized by simple method which involves solid state reaction in air, at temperature of 900 ºC; starting materials were Na2CO3 and Co3O4 in stoichiometric amounts. Additionally, fluorination of the synthesized sodium cobalt oxide was carried out in vacuum at 200ºC; NH4HF2 was used as a fluorine source. Then, structural and microstructural properties of the obtained powders were examined.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia
T1  - Synthesis and structural properties of sodium cobalt oxide
SP  - 37
EP  - 37
ER  - 
@conference{
editor = "Marković, Smilja",
author = "Aleksić, Jelena and Jugović, Dragana and Milović, Miloš and Mitrić, Miodrag and Uskoković, Dragan",
year = "2017",
url = "http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1218, http://itn.sanu.ac.rs/opus4/files/1218/Aleksic_16YRC2017.pdf, http://dais.sanu.ac.rs/123456789/15449, http://vinar.vin.bg.ac.rs/handle/123456789/7564",
abstract = "Sodium transition-metal oxides with general formula NaxTMO2 (TM = Co, Mn, Ni, etc.) have attracted a lot of interest in the battery community due to low cost of sodium in contrast to lithium. Sodium cobalt oxide is the most attractive of them for cathode application because of its conductive, thermic and magnetic characteristics. In this study, sodium cobalt oxide, NaxCoO2 , was synthesized by simple method which involves solid state reaction in air, at temperature of 900 ºC; starting materials were Na2CO3 and Co3O4 in stoichiometric amounts. Additionally, fluorination of the synthesized sodium cobalt oxide was carried out in vacuum at 200ºC; NH4HF2 was used as a fluorine source. Then, structural and microstructural properties of the obtained powders were examined.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia",
title = "Synthesis and structural properties of sodium cobalt oxide",
pages = "37-37"
}

The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder

Jugović, Dragana; Mitrić, Miodrag; Milović, Miloš; Cvjeticanin, Nikola; Jokić, Bojan M.; Umićević, Ana; Uskoković, Dragan

(2017)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Milović, Miloš
AU  - Cvjeticanin, Nikola
AU  - Jokić, Bojan M.
AU  - Umićević, Ana
AU  - Uskoković, Dragan
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1401
AB  - Low intrinsic electronic conductivity is the main disadvantage of LiFePO4 when used as a cathode material in lithium ion batteries. The paper offers experimental proofs of the theoretical prediction that fluorine doping of LiFePO4 can enhance its electrical conductivity. The LiFePO4 and fluorine-doped LiFePO4 olivine type, carbon free powders are synthesized and examined. The crystal structure refinements in the Pnma space group reveal that doping with fluorine ions preserves the olivine structure, while reducing both the lattice parameters and the antisite defect, and increasing the crystallite size. A small amount of incorporated fluorine enhances the electrical conductivity from 4.6x10(-7) S cm(-1) to 2.3x10(-6) S cm(-1) and has a positive impact on the electrochemical performance. Several spectroscopy techniques (Mossbauer, FTIR, and Raman) reveal differences between the two powders and additionally support the findings of both the Rietveld refinement and the conductivity measurements.
T2  - Ceramics International
T1  - The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder
VL  - 43
IS  - 3
SP  - 3224
EP  - 3230
DO  - 10.1016/j.ceramint.2016.11.149
ER  - 
@article{
author = "Jugović, Dragana and Mitrić, Miodrag and Milović, Miloš and Cvjeticanin, Nikola and Jokić, Bojan M. and Umićević, Ana and Uskoković, Dragan",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1401",
abstract = "Low intrinsic electronic conductivity is the main disadvantage of LiFePO4 when used as a cathode material in lithium ion batteries. The paper offers experimental proofs of the theoretical prediction that fluorine doping of LiFePO4 can enhance its electrical conductivity. The LiFePO4 and fluorine-doped LiFePO4 olivine type, carbon free powders are synthesized and examined. The crystal structure refinements in the Pnma space group reveal that doping with fluorine ions preserves the olivine structure, while reducing both the lattice parameters and the antisite defect, and increasing the crystallite size. A small amount of incorporated fluorine enhances the electrical conductivity from 4.6x10(-7) S cm(-1) to 2.3x10(-6) S cm(-1) and has a positive impact on the electrochemical performance. Several spectroscopy techniques (Mossbauer, FTIR, and Raman) reveal differences between the two powders and additionally support the findings of both the Rietveld refinement and the conductivity measurements.",
journal = "Ceramics International",
title = "The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder",
volume = "43",
number = "3",
pages = "3224-3230",
doi = "10.1016/j.ceramint.2016.11.149"
}
4
5
6

Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies

Stojanović, Zoran S.; Ignjatović, Nenad L.; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana M.; Škapin, Srečo Davor; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan

(2016)

TY  - JOUR
AU  - Stojanović, Zoran S.
AU  - Ignjatović, Nenad L.
AU  - Wu, Victoria
AU  - Žunič, Vojka
AU  - Veselinović, Ljiljana M.
AU  - Škapin, Srečo Davor
AU  - Miljković, Miroslav
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7575
AB  - Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.
T2  - Materials Science and Engineering: C
T1  - Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies
VL  - 68
SP  - 746
EP  - 757
DO  - 10.1016/j.msec.2016.06.047
ER  - 
@article{
author = "Stojanović, Zoran S. and Ignjatović, Nenad L. and Wu, Victoria and Žunič, Vojka and Veselinović, Ljiljana M. and Škapin, Srečo Davor and Miljković, Miroslav and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/7575",
abstract = "Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.",
journal = "Materials Science and Engineering: C",
title = "Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies",
volume = "68",
pages = "746-757",
doi = "10.1016/j.msec.2016.06.047"
}
18
20
22

Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies

Stojanović, Zoran S.; Ignjatović, Nenad L.; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana M.; Škapin, Srečo Davor; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan

(Elsevier, 2016)

TY  - JOUR
AU  - Stojanović, Zoran S.
AU  - Ignjatović, Nenad L.
AU  - Wu, Victoria
AU  - Žunič, Vojka
AU  - Veselinović, Ljiljana M.
AU  - Škapin, Srečo Davor
AU  - Miljković, Miroslav
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7576
AB  - Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.
PB  - Elsevier
T2  - Materials Science and Engineering: C
T1  - Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies
VL  - 68
SP  - 746
EP  - 757
DO  - 10.1016/j.msec.2016.06.047
ER  - 
@article{
author = "Stojanović, Zoran S. and Ignjatović, Nenad L. and Wu, Victoria and Žunič, Vojka and Veselinović, Ljiljana M. and Škapin, Srečo Davor and Miljković, Miroslav and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/7576",
abstract = "Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.",
publisher = "Elsevier",
journal = "Materials Science and Engineering: C",
title = "Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies",
volume = "68",
pages = "746-757",
doi = "10.1016/j.msec.2016.06.047"
}
18
20
22

Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues

Ignjatović, Nenad L.; Wu, Victoria; Ajduković, Zorica; Mihajilov Krstev, Tatjana; Uskoković, Vuk; Uskoković, Dragan

(2016)

TY  - JOUR
AU  - Ignjatović, Nenad L.
AU  - Wu, Victoria
AU  - Ajduković, Zorica
AU  - Mihajilov Krstev, Tatjana
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7573
AB  - Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.
T2  - Materials science & engineering. C, Materials for biological applications
T1  - Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues
VL  - 60
SP  - 357
EP  - 364
DO  - 10.1016/j.msec.2015.11.061
ER  - 
@article{
author = "Ignjatović, Nenad L. and Wu, Victoria and Ajduković, Zorica and Mihajilov Krstev, Tatjana and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/7573",
abstract = "Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.",
journal = "Materials science & engineering. C, Materials for biological applications",
title = "Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues",
volume = "60",
pages = "357-364",
doi = "10.1016/j.msec.2015.11.061"
}
48
47
47

Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues

Ignjatović, Nenad L.; Wu, Victoria; Ajduković, Zorica; Mihajilov-Krstev, Tatjana; Uskoković, Vuk; Uskoković, Dragan

(Elsevier, 2016)

TY  - JOUR
AU  - Ignjatović, Nenad L.
AU  - Wu, Victoria
AU  - Ajduković, Zorica
AU  - Mihajilov-Krstev, Tatjana
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7570
AB  - Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.
PB  - Elsevier
T2  - Materials Science and Engineering C
T1  - Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues
VL  - 60
SP  - 357
EP  - 364
DO  - 10.1016/j.msec.2015.11.061
ER  - 
@article{
author = "Ignjatović, Nenad L. and Wu, Victoria and Ajduković, Zorica and Mihajilov-Krstev, Tatjana and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/7570",
abstract = "Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.",
publisher = "Elsevier",
journal = "Materials Science and Engineering C",
title = "Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues",
volume = "60",
pages = "357-364",
doi = "10.1016/j.msec.2015.11.061"
}
48
47
47

Application of hydroxyapatite granules in mastoid obliteration

Đerić, Dragoslava R.; Ignjatović, Nenad L.; Uskoković, Dragan

(Belgrade : Serbian Ceramic Society, 2016)

TY  - CONF
AU  - Đerić, Dragoslava R.
AU  - Ignjatović, Nenad L.
AU  - Uskoković, Dragan
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/865
UR  - http://www.itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1147
UR  - http://www.itn.sanu.ac.rs/opus4/files/1147/Djeric_ACAV.pdf
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7546
AB  - The primary goal of surgical intervention for chronic middle ear disease is to development of a safe, dry, and low-maintenance ear. Persistent moisture, infection, and drainage is problematic in about one-third of patients, but also requiring revision surgery as canal-wall-down mastoidectomy. Despite best practice and continuous care, an open mastoid cavity is a handicap for the patients. The patients usually requires regular cleaning and life-long protection of the ear against water. During life, it could be a source of ear discharge due to irritation mucosal lining. The principle of mastoid obliteration was introduce as early as 1911. Over the years different biological tissues have been used to obliterate mastoid cavities including fat tissue, cartilage, musculo-periostal flap and autogenous bone. However, these tissue all suffer from atrophy or resorption with time. While all the intial reports were on the use of biological tissues, there has been an increasing interest in synthetic materials.Hydrxyaopatite is a well-known biocompatible ceramic with a long history of success in middle ear surgery. Experimental studies have demonstrated that hydroxyapate granulae do not undergo morphological changes after long term inplanatation in the temporal bulae. The purpose of our work is to present an importance of hydroxyapatite granule for mastoid obliteration of open radical mastoid cavities and to point out a new concept as application of nanocrystalline calcium phosphate in otosurgery. In our retrospective review, we found that the majority of individuals undergoing mastoid surgery with obliteration achieved a dry ear and there was a reduction of clinic visits during fellow-up period between 1 to 5 years.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : V Serbian Ceramic Society Conference, Sep 21-23 September 2016, Belgrade
T1  - Application of hydroxyapatite granules in mastoid obliteration
SP  - 58
EP  - 58
ER  - 
@conference{
author = "Đerić, Dragoslava R. and Ignjatović, Nenad L. and Uskoković, Dragan",
year = "2016",
url = "http://dais.sanu.ac.rs/123456789/865, http://www.itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1147, http://www.itn.sanu.ac.rs/opus4/files/1147/Djeric_ACAV.pdf, http://vinar.vin.bg.ac.rs/handle/123456789/7546",
abstract = "The primary goal of surgical intervention for chronic middle ear disease is to development of a safe, dry, and low-maintenance ear. Persistent moisture, infection, and drainage is problematic in about one-third of patients, but also requiring revision surgery as canal-wall-down mastoidectomy. Despite best practice and continuous care, an open mastoid cavity is a handicap for the patients. The patients usually requires regular cleaning and life-long protection of the ear against water. During life, it could be a source of ear discharge due to irritation mucosal lining. The principle of mastoid obliteration was introduce as early as 1911. Over the years different biological tissues have been used to obliterate mastoid cavities including fat tissue, cartilage, musculo-periostal flap and autogenous bone. However, these tissue all suffer from atrophy or resorption with time. While all the intial reports were on the use of biological tissues, there has been an increasing interest in synthetic materials.Hydrxyaopatite is a well-known biocompatible ceramic with a long history of success in middle ear surgery. Experimental studies have demonstrated that hydroxyapate granulae do not undergo morphological changes after long term inplanatation in the temporal bulae. The purpose of our work is to present an importance of hydroxyapatite granule for mastoid obliteration of open radical mastoid cavities and to point out a new concept as application of nanocrystalline calcium phosphate in otosurgery. In our retrospective review, we found that the majority of individuals undergoing mastoid surgery with obliteration achieved a dry ear and there was a reduction of clinic visits during fellow-up period between 1 to 5 years.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : V Serbian Ceramic Society Conference, Sep 21-23 September 2016, Belgrade",
title = "Application of hydroxyapatite granules in mastoid obliteration",
pages = "58-58"
}

Tumor-selective hybrid system based on hydroxyapatite nanocarrier, chitosan, poly(lactic-co-glycolic acid) and androstan derivate

Ignjatović, Nenad L.; Penov Gaši, Katarina; Wu, Victoria; Ajduković, Jovana; Kojić, Vesna V.; Vasiljević-Radović, Dana; Uskoković, Vuk; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2016)

TY  - CONF
AU  - Ignjatović, Nenad L.
AU  - Penov Gaši, Katarina
AU  - Wu, Victoria
AU  - Ajduković, Jovana
AU  - Kojić, Vesna V.
AU  - Vasiljević-Radović, Dana
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/896
UR  - http://www.itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1178
UR  - http://www.itn.sanu.ac.rs/opus4/files/1178/Ignjatovic_Yucomat2016.pdf
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7553
AB  - The applicative potential of synthetic calcium phosphates, especially hydroxyapatite (HAp), has become intensely broadened in the past 10 years, from bone tissue engineering to multiple other fields of biomedicine. Previously we have shown that hydroxyapatite nanoparticles coated with chitosan-poly(D,L)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous administration into mice. For this purpose radioactive 125-Iodine (125I), a low energy gamma emitter, was used to develop a novel in situ method for radiolabeling of particles and investigation of their biodistribution. In this study we utilize an emulsification process and freeze drying to load the composite particles based on hydroxyapatite nanocarrier, chitosane and poly(lactic-co-glycolic acid) with 17β- hydroxy-17α-picolyl-androst-5-en-3β-acetate (A), a chemotherapeutic derivative of androstane. The picolyl androstane derivatives showed high potency in the cell inhibitors of hormonedependent cancers (adenocarcinoma, prostate cancer, cervix carcinoma, colon cancer, etc.). 1H NMR, 13C NMR and high-resolution time-of-flight mass spectrometry (MS) techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The synthesized particles of A-loaded HAp/Ch-PLGA were found to be spherical in shape with a uniform size distribution of d50=168 nm. The release of A from HAp/Ch-PLGA was sustained, with no burst release or plateauing after three weeks. The obtained results of the DET and MTT tests show that the particles of A-loaded HAp/Ch-PLGA exhibit almost three times higher cytotoxicity towards lung adenocarcinoma cells (A549) than towards healthy cells (MRC5), while at the same time allowing twice as fast recovery of healthy cells. We have also analyzed the period of recovery of healthy, as well as cancer cells, following the treatment with A-loaded HAp/Ch-PLGA. After treatment with A-loaded HAp/Ch-PLGA, healthy cells recover twice as fast as the malignant ones. Immunofluorescent staining of primary fibroblasts interacting with HAp/Ch-PLGA and A-HAp/Ch-PLGA particles demonstrates no negative morphological or proliferative effects on cells.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016
T1  - Tumor-selective hybrid system based on hydroxyapatite nanocarrier, chitosan, poly(lactic-co-glycolic acid) and androstan derivate
SP  - 27
EP  - 27
ER  - 
@conference{
author = "Ignjatović, Nenad L. and Penov Gaši, Katarina and Wu, Victoria and Ajduković, Jovana and Kojić, Vesna V. and Vasiljević-Radović, Dana and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
url = "http://dais.sanu.ac.rs/123456789/896, http://www.itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1178, http://www.itn.sanu.ac.rs/opus4/files/1178/Ignjatovic_Yucomat2016.pdf, http://vinar.vin.bg.ac.rs/handle/123456789/7553",
abstract = "The applicative potential of synthetic calcium phosphates, especially hydroxyapatite (HAp), has become intensely broadened in the past 10 years, from bone tissue engineering to multiple other fields of biomedicine. Previously we have shown that hydroxyapatite nanoparticles coated with chitosan-poly(D,L)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous administration into mice. For this purpose radioactive 125-Iodine (125I), a low energy gamma emitter, was used to develop a novel in situ method for radiolabeling of particles and investigation of their biodistribution. In this study we utilize an emulsification process and freeze drying to load the composite particles based on hydroxyapatite nanocarrier, chitosane and poly(lactic-co-glycolic acid) with 17β- hydroxy-17α-picolyl-androst-5-en-3β-acetate (A), a chemotherapeutic derivative of androstane. The picolyl androstane derivatives showed high potency in the cell inhibitors of hormonedependent cancers (adenocarcinoma, prostate cancer, cervix carcinoma, colon cancer, etc.). 1H NMR, 13C NMR and high-resolution time-of-flight mass spectrometry (MS) techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The synthesized particles of A-loaded HAp/Ch-PLGA were found to be spherical in shape with a uniform size distribution of d50=168 nm. The release of A from HAp/Ch-PLGA was sustained, with no burst release or plateauing after three weeks. The obtained results of the DET and MTT tests show that the particles of A-loaded HAp/Ch-PLGA exhibit almost three times higher cytotoxicity towards lung adenocarcinoma cells (A549) than towards healthy cells (MRC5), while at the same time allowing twice as fast recovery of healthy cells. We have also analyzed the period of recovery of healthy, as well as cancer cells, following the treatment with A-loaded HAp/Ch-PLGA. After treatment with A-loaded HAp/Ch-PLGA, healthy cells recover twice as fast as the malignant ones. Immunofluorescent staining of primary fibroblasts interacting with HAp/Ch-PLGA and A-HAp/Ch-PLGA particles demonstrates no negative morphological or proliferative effects on cells.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016",
title = "Tumor-selective hybrid system based on hydroxyapatite nanocarrier, chitosan, poly(lactic-co-glycolic acid) and androstan derivate",
pages = "27-27"
}

Scanning electron microscopy analysis of changes of hydroxiapatite/poly-l-lactide with different molecular weight of PLLA after intraperitoneal implantation

Đorđević, Ljubiša; Najman, Stevo; Vasiljević, Perica; Miljković, Miroslav; Ignjatović, Nenad L.; Uskoković, Dragan; Plavšić, Milenko

(2016)

TY  - JOUR
AU  - Đorđević, Ljubiša
AU  - Najman, Stevo
AU  - Vasiljević, Perica
AU  - Miljković, Miroslav
AU  - Ignjatović, Nenad L.
AU  - Uskoković, Dragan
AU  - Plavšić, Milenko
PY  - 2016
UR  - http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1234
UR  - http://itn.sanu.ac.rs/opus4/files/1234/Dordevi%C4%87_2016_Acta-Veterinaria_66_234.pdf
UR  - http://dais.sanu.ac.rs/123456789/15457
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7561
AB  - Implantation of a biomaterial is one of the important trends in solving the problem of bone tissue loss. Calcium hydroxiapatite (HAp), as the most representative bone component is a serious candidate for such implantations. The synthetic polymer poly-L-lactide (PLLA) in HAp/PLLA is often used as a polymeric material, with a role in the substitution of bone tissue collagen fibers. Fibers of PLLA may strengthen HAp and its good bioresorption provides space for tissue remodeling. Differences in porosity, microstructure, compressive consistency as well as bioresorbility of HAp/PLLA may be achieved by using PLLA with different molecular weights. In this study HAp/PLLA composites with PLLA of different molecular weights (50,000; 160,000 and 430,000) were implanted in mouse peritoneum in order to examine the influence of the molecular weight of PLLA on morphology changes. Microstructural changes of biomaterial (HAp/PLLA) surface were analyzed one week, three weeks and four months after their implantation using Scanning Electron Microscopy. The results showed a significant difference in tissue reactions on the applied biocomposites, depending on their molecular weight. The most intense proliferation of cells was induced by HAp/PLLA 50,000 compared to HAp/PLLA 430,000 and HAp/PLLA 160,000. In the vicinity of HAp/PLLA 430,000 abundant erythrocytes were observed. The differences in biological reactions on the examined biocomposites are significant for their practical applications. HAp/PLLA composite biomaterials of different types and resorption rates require specific designing and programming to become suitable for particular purposes in an organism.
T2  - Acta Veterinaria
T1  - Scanning electron microscopy analysis of changes of hydroxiapatite/poly-l-lactide with different molecular weight of PLLA after intraperitoneal implantation
VL  - 66
IS  - 2
SP  - 234
EP  - 244
DO  - 10.1515/acve-2016-0020
ER  - 
@article{
author = "Đorđević, Ljubiša and Najman, Stevo and Vasiljević, Perica and Miljković, Miroslav and Ignjatović, Nenad L. and Uskoković, Dragan and Plavšić, Milenko",
year = "2016",
url = "http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1234, http://itn.sanu.ac.rs/opus4/files/1234/Dordevi%C4%87_2016_Acta-Veterinaria_66_234.pdf, http://dais.sanu.ac.rs/123456789/15457, http://vinar.vin.bg.ac.rs/handle/123456789/7561",
abstract = "Implantation of a biomaterial is one of the important trends in solving the problem of bone tissue loss. Calcium hydroxiapatite (HAp), as the most representative bone component is a serious candidate for such implantations. The synthetic polymer poly-L-lactide (PLLA) in HAp/PLLA is often used as a polymeric material, with a role in the substitution of bone tissue collagen fibers. Fibers of PLLA may strengthen HAp and its good bioresorption provides space for tissue remodeling. Differences in porosity, microstructure, compressive consistency as well as bioresorbility of HAp/PLLA may be achieved by using PLLA with different molecular weights. In this study HAp/PLLA composites with PLLA of different molecular weights (50,000; 160,000 and 430,000) were implanted in mouse peritoneum in order to examine the influence of the molecular weight of PLLA on morphology changes. Microstructural changes of biomaterial (HAp/PLLA) surface were analyzed one week, three weeks and four months after their implantation using Scanning Electron Microscopy. The results showed a significant difference in tissue reactions on the applied biocomposites, depending on their molecular weight. The most intense proliferation of cells was induced by HAp/PLLA 50,000 compared to HAp/PLLA 430,000 and HAp/PLLA 160,000. In the vicinity of HAp/PLLA 430,000 abundant erythrocytes were observed. The differences in biological reactions on the examined biocomposites are significant for their practical applications. HAp/PLLA composite biomaterials of different types and resorption rates require specific designing and programming to become suitable for particular purposes in an organism.",
journal = "Acta Veterinaria",
title = "Scanning electron microscopy analysis of changes of hydroxiapatite/poly-l-lactide with different molecular weight of PLLA after intraperitoneal implantation",
volume = "66",
number = "2",
pages = "234-244",
doi = "10.1515/acve-2016-0020"
}

Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor

Ignjatović, Nenad L.; Penov-Gaši, Katarina M.; Wu, Victoria; Ajduković, Jovana; Kojić, Vesna V.; Vasiljević-Radović, Dana; Kuzmanović, Maja D.; Uskoković, Vuk; Uskoković, Dragan

(Elsevier, 2016)

TY  - JOUR
AU  - Ignjatović, Nenad L.
AU  - Penov-Gaši, Katarina M.
AU  - Wu, Victoria
AU  - Ajduković, Jovana
AU  - Kojić, Vesna V.
AU  - Vasiljević-Radović, Dana
AU  - Kuzmanović, Maja D.
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1242
UR  - http://dais.sanu.ac.rs/123456789/15974
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7569
AB  - In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50=168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.
PB  - Elsevier
T2  - Colloids and Surfaces B: Biointerfaces
T1  - Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor
VL  - 148
SP  - 629
EP  - 639
DO  - 10.1016/j.colsurfb.2016.09.041
ER  - 
@article{
author = "Ignjatović, Nenad L. and Penov-Gaši, Katarina M. and Wu, Victoria and Ajduković, Jovana and Kojić, Vesna V. and Vasiljević-Radović, Dana and Kuzmanović, Maja D. and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
url = "http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1242, http://dais.sanu.ac.rs/123456789/15974, http://vinar.vin.bg.ac.rs/handle/123456789/7569",
abstract = "In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50=168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.",
publisher = "Elsevier",
journal = "Colloids and Surfaces B: Biointerfaces",
title = "Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor",
volume = "148",
pages = "629-639",
doi = "10.1016/j.colsurfb.2016.09.041"
}
15
14
16

The influence of fluorine doping on the structural and the electrical properties of LiFePO4 powder

Jugović, Dragana; Mitrić, Miodrag; Milović, Miloš; Cvjetićanin, Nikola; Jokić, Bojan M.; Umićević, Ana; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2016)

TY  - CONF
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Milović, Miloš
AU  - Cvjetićanin, Nikola
AU  - Jokić, Bojan M.
AU  - Umićević, Ana
AU  - Uskoković, Dragan
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/898
UR  - http://www.itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1180
UR  - http://www.itn.sanu.ac.rs/opus4/files/1180/Jugovic_Yucomat2016-02.pdf
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7555
AB  - Low intrinsic electronic conductivity is the main weakness of LiFePO4 for the use as cathode material in lithium ion batteries. Here is presented an experimental proof of the theoretical prediction that fluorine doping of LiFePO4 can enhance its electrical conductivity. LiFePO4 and fluorine-doped LiFePO4 olivine type, carbon-free powders are synthesized and examined. Crystal structure refinements in the space group Pnma reveal that doping with fluorine ions preserves olivine structure with the reduction of both the lattice parameters and the antisite defect, and an increase of a crystallite size. A small amount of incorporated fluorine enhances electrical conductivity from 4.6 × 10-7 Scm-1 to 2.3 × 10-6 Scm-1 and has positive impact on the electrochemical performances. Several spectroscopy techniques (Mössbauer, FTIR, and Raman) disclose differences between two powders and additionally support the findings of both the Rietveld refinement and the conductivity measurements.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016
T1  - The influence of fluorine doping on the structural and the electrical properties of LiFePO4 powder
SP  - 35
EP  - 35
ER  - 
@conference{
author = "Jugović, Dragana and Mitrić, Miodrag and Milović, Miloš and Cvjetićanin, Nikola and Jokić, Bojan M. and Umićević, Ana and Uskoković, Dragan",
year = "2016",
url = "http://dais.sanu.ac.rs/123456789/898, http://www.itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1180, http://www.itn.sanu.ac.rs/opus4/files/1180/Jugovic_Yucomat2016-02.pdf, http://vinar.vin.bg.ac.rs/handle/123456789/7555",
abstract = "Low intrinsic electronic conductivity is the main weakness of LiFePO4 for the use as cathode material in lithium ion batteries. Here is presented an experimental proof of the theoretical prediction that fluorine doping of LiFePO4 can enhance its electrical conductivity. LiFePO4 and fluorine-doped LiFePO4 olivine type, carbon-free powders are synthesized and examined. Crystal structure refinements in the space group Pnma reveal that doping with fluorine ions preserves olivine structure with the reduction of both the lattice parameters and the antisite defect, and an increase of a crystallite size. A small amount of incorporated fluorine enhances electrical conductivity from 4.6 × 10-7 Scm-1 to 2.3 × 10-6 Scm-1 and has positive impact on the electrochemical performances. Several spectroscopy techniques (Mössbauer, FTIR, and Raman) disclose differences between two powders and additionally support the findings of both the Rietveld refinement and the conductivity measurements.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016",
title = "The influence of fluorine doping on the structural and the electrical properties of LiFePO4 powder",
pages = "35-35"
}

Effect of PEO molecular weight on sunlight induced photocatalytic activity of ZnO/PEO composites

Markovic, Smilja; Rajić, Vladimir; Stanković, Ana; Veselinovic, Ljiljana; Belošević-Čavor, Jelena; Batalović, Katarina; Abazović, Nadica; Škapin, Srečo Davor; Uskoković, Dragan

(2016)

TY  - JOUR
AU  - Markovic, Smilja
AU  - Rajić, Vladimir
AU  - Stanković, Ana
AU  - Veselinovic, Ljiljana
AU  - Belošević-Čavor, Jelena
AU  - Batalović, Katarina
AU  - Abazović, Nadica
AU  - Škapin, Srečo Davor
AU  - Uskoković, Dragan
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/963
AB  - ZnO spheroidal nanoparticles, synthesized by microwave processing, were used for preparation of composites with polyethylene oxide (PEO). The phase purity and crystal structure of the composites were investigated by X-ray diffraction (XRD) and Raman spectroscopy. The composites particles morphology and size distributions were studied by FE-SEM and laser diffraction particle size analyzer, respectively. The optical properties were studied using UV Vis diffuse reflectance and photoluminescence spectroscopy. It is found that in the wavelength range 550-800 nm, ZnO and ZnO/PEO composites absorb about 50% of the incident light intensity. Also red-shift of band gap energy (0.12-0.15 eV) compared to bulk ZnO was determined. The effect of PEO molecular weights, 200,000, 600,000 and 900,000 g/mol, on photocatalytic activity of ZnO/PEO composites were examined via de-colorization of methylene blue (MB) under direct sunlight irradiation. A large efficiency of MB de-colorization was found after 6 h of irradiation. The enhanced photocatalytic activity of ZnO/PEO composites is attributed to the: (1) lattice defects introduced in ZnO crystal structure by rapid microwave processing, and (2) presence of PEO as a source of oxygen interstitials. In order to confirm and further clarify the experimental results ab initio calculations based on density functional theory (DFT) were performed. (C) 2016 Elsevier Ltd. All rights reserved.
T2  - Solar Energy
T1  - Effect of PEO molecular weight on sunlight induced photocatalytic activity of ZnO/PEO composites
VL  - 127
SP  - 124
EP  - 135
DO  - 10.1016/j.solener.2016.01.026
ER  - 
@article{
author = "Markovic, Smilja and Rajić, Vladimir and Stanković, Ana and Veselinovic, Ljiljana and Belošević-Čavor, Jelena and Batalović, Katarina and Abazović, Nadica and Škapin, Srečo Davor and Uskoković, Dragan",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/963",
abstract = "ZnO spheroidal nanoparticles, synthesized by microwave processing, were used for preparation of composites with polyethylene oxide (PEO). The phase purity and crystal structure of the composites were investigated by X-ray diffraction (XRD) and Raman spectroscopy. The composites particles morphology and size distributions were studied by FE-SEM and laser diffraction particle size analyzer, respectively. The optical properties were studied using UV Vis diffuse reflectance and photoluminescence spectroscopy. It is found that in the wavelength range 550-800 nm, ZnO and ZnO/PEO composites absorb about 50% of the incident light intensity. Also red-shift of band gap energy (0.12-0.15 eV) compared to bulk ZnO was determined. The effect of PEO molecular weights, 200,000, 600,000 and 900,000 g/mol, on photocatalytic activity of ZnO/PEO composites were examined via de-colorization of methylene blue (MB) under direct sunlight irradiation. A large efficiency of MB de-colorization was found after 6 h of irradiation. The enhanced photocatalytic activity of ZnO/PEO composites is attributed to the: (1) lattice defects introduced in ZnO crystal structure by rapid microwave processing, and (2) presence of PEO as a source of oxygen interstitials. In order to confirm and further clarify the experimental results ab initio calculations based on density functional theory (DFT) were performed. (C) 2016 Elsevier Ltd. All rights reserved.",
journal = "Solar Energy",
title = "Effect of PEO molecular weight on sunlight induced photocatalytic activity of ZnO/PEO composites",
volume = "127",
pages = "124-135",
doi = "10.1016/j.solener.2016.01.026"
}
7
8
8

The use of methylcellulose for the synthesis of Li2FeSiO4/C composites

Milović, Miloš; Jugović, Dragana; Mitrić, Miodrag; Dominko, Robert; Stojković-Simatović, Ivana; Jokić, Bojan M.; Uskoković, Dragan

(2016)

TY  - JOUR
AU  - Milović, Miloš
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Dominko, Robert
AU  - Stojković-Simatović, Ivana
AU  - Jokić, Bojan M.
AU  - Uskoković, Dragan
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/909
AB  - The key parameters related to cathode materials for commercial use are a high specific capacity, good cycling stability, capacity retention at high current rates, as well as the simplicity of the synthesis process. This study presents a facile synthesis of a composite cathode material, Li2FeSiO4 with carbon, under extreme conditions: rapid heating, short dwell at 750 A degrees C and subsequent quenching. The water-soluble polymer methylcellulose was used both as an excellent dispersing agent and a carbon source that pyrolytically degrades to carbon, thereby enabling the homogeneous deployment of the precursor compounds and the control of the Li2FeSiO4 particle growth from the earliest stage of processing. X-ray powder diffraction reveals the formation of Li2FeSiO4 nanocrystallites with a monoclinic structure in the P2(1)/n space group (#14). The composites electrochemical performance as a cathode material in Li-ion batteries was examined. The influence of the amount of methylcellulose on the microstructural, morphological, conductive, and electrochemical properties of the obtained powders has been discussed. It has been shown that the overall electrochemical performance is improved with an increase of carbon content, through both the decrease of the mean particle diameter and the increase of electrical conductivity.
T2  - Cellulose
T1  - The use of methylcellulose for the synthesis of Li2FeSiO4/C composites
VL  - 23
IS  - 1
SP  - 239
EP  - 246
DO  - 10.1007/s10570-015-0806-9
ER  - 
@article{
author = "Milović, Miloš and Jugović, Dragana and Mitrić, Miodrag and Dominko, Robert and Stojković-Simatović, Ivana and Jokić, Bojan M. and Uskoković, Dragan",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/909",
abstract = "The key parameters related to cathode materials for commercial use are a high specific capacity, good cycling stability, capacity retention at high current rates, as well as the simplicity of the synthesis process. This study presents a facile synthesis of a composite cathode material, Li2FeSiO4 with carbon, under extreme conditions: rapid heating, short dwell at 750 A degrees C and subsequent quenching. The water-soluble polymer methylcellulose was used both as an excellent dispersing agent and a carbon source that pyrolytically degrades to carbon, thereby enabling the homogeneous deployment of the precursor compounds and the control of the Li2FeSiO4 particle growth from the earliest stage of processing. X-ray powder diffraction reveals the formation of Li2FeSiO4 nanocrystallites with a monoclinic structure in the P2(1)/n space group (#14). The composites electrochemical performance as a cathode material in Li-ion batteries was examined. The influence of the amount of methylcellulose on the microstructural, morphological, conductive, and electrochemical properties of the obtained powders has been discussed. It has been shown that the overall electrochemical performance is improved with an increase of carbon content, through both the decrease of the mean particle diameter and the increase of electrical conductivity.",
journal = "Cellulose",
title = "The use of methylcellulose for the synthesis of Li2FeSiO4/C composites",
volume = "23",
number = "1",
pages = "239-246",
doi = "10.1007/s10570-015-0806-9"
}
2
3
3

New insights into BaTi1-xSnxO3 (0 LT = x LT = 0.20) phase diagram from neutron diffraction data

Veselinovic, Ljiljana; Mitrić, Miodrag; Avdeev, Maxim; Markovic, Smilja; Uskoković, Dragan

(2016)

TY  - JOUR
AU  - Veselinovic, Ljiljana
AU  - Mitrić, Miodrag
AU  - Avdeev, Maxim
AU  - Markovic, Smilja
AU  - Uskoković, Dragan
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1312
AB  - Neutron powder diffraction (NPD) was employed to further investigate the BaTi1-xSnxO3 (BTS) system previously studied by X-ray diffraction. The room-temperature phase compositions and crystal structures of BTS samples with x = 0, 0.025, 0.05, 0.07, 0.10, 0.12, 0.15 and 0.20 were refined by the Rietveld method using NPD data. It is well known that barium titanate powder (x = 0) crystallizes in the tetragonal P4mm space group. The crystal structures of the samples with 0.025 LT = x LT = 0.07 were refined as mixtures of P4mm and Amm2 phases; those with x = 0.1 and 0.12 show the coexistence of rhombohedral R3m and cubic phases, while the samples with x = 0.15 and 0.20 crystallize in a single cubic Pm (3) over barm phase. Temperature-dependent NPD was used to characterize the BaTi0.95Sn0.05O3 sample at 273, 333 and 373 K, and it was found to form single-phase Amm2, P4mm and Pm (3) over barm structures at these respective temperatures. The NPD results are in agreement with data obtained by differential scanning calorimetry and dielectric permittivity measurements, which show a para-electric-ferroelectric transition (associated with structural transition) from Pm (3) over barm to P4mm at about 353 K followed by a P4mm to Amm2 phase transition at about 303 K.
T2  - Journal of Applied Crystallography
T1  - New insights into BaTi1-xSnxO3 (0 LT = x LT = 0.20) phase diagram from neutron diffraction data
VL  - 49
SP  - 1726
EP  - 1733
DO  - 10.1107/S1600576716013157
ER  - 
@article{
author = "Veselinovic, Ljiljana and Mitrić, Miodrag and Avdeev, Maxim and Markovic, Smilja and Uskoković, Dragan",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1312",
abstract = "Neutron powder diffraction (NPD) was employed to further investigate the BaTi1-xSnxO3 (BTS) system previously studied by X-ray diffraction. The room-temperature phase compositions and crystal structures of BTS samples with x = 0, 0.025, 0.05, 0.07, 0.10, 0.12, 0.15 and 0.20 were refined by the Rietveld method using NPD data. It is well known that barium titanate powder (x = 0) crystallizes in the tetragonal P4mm space group. The crystal structures of the samples with 0.025 LT = x LT = 0.07 were refined as mixtures of P4mm and Amm2 phases; those with x = 0.1 and 0.12 show the coexistence of rhombohedral R3m and cubic phases, while the samples with x = 0.15 and 0.20 crystallize in a single cubic Pm (3) over barm phase. Temperature-dependent NPD was used to characterize the BaTi0.95Sn0.05O3 sample at 273, 333 and 373 K, and it was found to form single-phase Amm2, P4mm and Pm (3) over barm structures at these respective temperatures. The NPD results are in agreement with data obtained by differential scanning calorimetry and dielectric permittivity measurements, which show a para-electric-ferroelectric transition (associated with structural transition) from Pm (3) over barm to P4mm at about 353 K followed by a P4mm to Amm2 phase transition at about 303 K.",
journal = "Journal of Applied Crystallography",
title = "New insights into BaTi1-xSnxO3 (0 LT = x LT = 0.20) phase diagram from neutron diffraction data",
volume = "49",
pages = "1726-1733",
doi = "10.1107/S1600576716013157"
}
1
5
7
7

Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties

Ignjatović, Nenad L.; Uskoković, Vuk; Ajduković, Zorica; Mihajlov Krstev, Tatjana; Uskoković, Dragan

(2015)

TY  - CONF
AU  - Ignjatović, Nenad L.
AU  - Uskoković, Vuk
AU  - Ajduković, Zorica
AU  - Mihajlov Krstev, Tatjana
AU  - Uskoković, Dragan
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/824
UR  - http://www.itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1104
UR  - http://www.itn.sanu.ac.rs/opus4/files/1104/Ignjatovic_ITNANO2015.pdf
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7541
AB  - Composite biomaterials based on nano-hydroxyapatite have an enormous potential for natural bone tissue reparation, filling and augmentation. Multifunctional nanoparticulate systems based on HAp coated with biocompatible and bioresorbable polymers make a separate group of filler systems in bone tissue engineering [1,2]. Chitosan has many physicochemical (reactive OH and NH2 groups) and biological (biocompatible, biodegradable) properties that make it an attractive material for use in bone tissue engineering. However, chitosan may induce thrombosis and it is therefore unsuitable as blood – contacting biomaterial. One of the strategies to improve the biocompatibility of chitosan is combination of this biopolymer with compounds that exhibit complementary properties. In our studies, we present the synthesis, characterization, in vitro and in vivo research of a particulate form of nano HAp-coated polymer systems. We synthesized nanoparticulate HAp coated with chitosan (Ch) and a chitosan-poly-D,L-lactide-co-glycolide (Ch-PLGA) polymer blend obtained via the solvent/non-solvent method and freeze-drying processing. We also examined the possibility of using Thermo-Gravimetric Analysis/Differential-Thermal Analysis (DTA/TGA) coupled on-line with mass spectrometry (MS) as a finger print for identification purposes in coating processes. The quantitative antimicrobial test has shown that HAp/Ch-PLGA have some antibacterial properties (MIC (mg/mL): Pseudomonas aeruginosa – 6.40, Staphylococcus aureus – 6.40, Staphylococcus epidermidis – 3.20). MTT assay was used to test cytotoxicity and cell viability. By using HAp/Ch-PLGA in the form of a filler a high level of reparatory ability, with the presence Haversian canals and cement lines in reconstructed of bone defect, was achieved in vivo. [1] N. Ignjatovic, C. Liu, J. Czernuszka, D. Uskokovic, Micro and nano/injectable composite biomaterials containing calcium phosphate coated with poly(dl-lactide-co-glycolide), Acta Biomaterialia, 3 (2007) 927-935 [2] N. Ignjatović, V. Uskoković, Z. Ajduković, D. Uskoković, Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol, Materials Science and Engineering: C 33 (2013) 943–950
C3  - ITNANO2015: 3RD International Translational Nanomedicine Conference  21-26. June. 2015, Milocer, Hotel Maestral, Montenegro: Book of abstracts
T1  - Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties
SP  - 15
EP  - 16
ER  - 
@conference{
author = "Ignjatović, Nenad L. and Uskoković, Vuk and Ajduković, Zorica and Mihajlov Krstev, Tatjana and Uskoković, Dragan",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/824, http://www.itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1104, http://www.itn.sanu.ac.rs/opus4/files/1104/Ignjatovic_ITNANO2015.pdf, http://vinar.vin.bg.ac.rs/handle/123456789/7541",
abstract = "Composite biomaterials based on nano-hydroxyapatite have an enormous potential for natural bone tissue reparation, filling and augmentation. Multifunctional nanoparticulate systems based on HAp coated with biocompatible and bioresorbable polymers make a separate group of filler systems in bone tissue engineering [1,2]. Chitosan has many physicochemical (reactive OH and NH2 groups) and biological (biocompatible, biodegradable) properties that make it an attractive material for use in bone tissue engineering. However, chitosan may induce thrombosis and it is therefore unsuitable as blood – contacting biomaterial. One of the strategies to improve the biocompatibility of chitosan is combination of this biopolymer with compounds that exhibit complementary properties. In our studies, we present the synthesis, characterization, in vitro and in vivo research of a particulate form of nano HAp-coated polymer systems. We synthesized nanoparticulate HAp coated with chitosan (Ch) and a chitosan-poly-D,L-lactide-co-glycolide (Ch-PLGA) polymer blend obtained via the solvent/non-solvent method and freeze-drying processing. We also examined the possibility of using Thermo-Gravimetric Analysis/Differential-Thermal Analysis (DTA/TGA) coupled on-line with mass spectrometry (MS) as a finger print for identification purposes in coating processes. The quantitative antimicrobial test has shown that HAp/Ch-PLGA have some antibacterial properties (MIC (mg/mL): Pseudomonas aeruginosa – 6.40, Staphylococcus aureus – 6.40, Staphylococcus epidermidis – 3.20). MTT assay was used to test cytotoxicity and cell viability. By using HAp/Ch-PLGA in the form of a filler a high level of reparatory ability, with the presence Haversian canals and cement lines in reconstructed of bone defect, was achieved in vivo. [1] N. Ignjatovic, C. Liu, J. Czernuszka, D. Uskokovic, Micro and nano/injectable composite biomaterials containing calcium phosphate coated with poly(dl-lactide-co-glycolide), Acta Biomaterialia, 3 (2007) 927-935 [2] N. Ignjatović, V. Uskoković, Z. Ajduković, D. Uskoković, Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol, Materials Science and Engineering: C 33 (2013) 943–950",
journal = "ITNANO2015: 3RD International Translational Nanomedicine Conference  21-26. June. 2015, Milocer, Hotel Maestral, Montenegro: Book of abstracts",
title = "Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties",
pages = "15-16"
}

A Facile Determination Method for an Androstane-based Lung Cancer Inhibitor Loaded in Nano/Micro Particles Based on Hydroxyapatite by Means of DTA/TGA Coupled with On-line Mass Spectrometry

Ignjatović, Nenad L.; Kuzmanović, Maja D.; Penov Gaši, Katarina; Ajduković, Jovana; Kojić, Vesna V.; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2015)

TY  - CONF
AU  - Ignjatović, Nenad L.
AU  - Kuzmanović, Maja D.
AU  - Penov Gaši, Katarina
AU  - Ajduković, Jovana
AU  - Kojić, Vesna V.
AU  - Uskoković, Dragan
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/826
UR  - http://www.itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1106
UR  - http://www.itn.sanu.ac.rs/opus4/files/1106/Ignjatovic_YUCOMAT-2015.pdf
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7542
AB  - In our study, we examined the possibilities for the application of Thermo-Gravimetric Analysis/Differential-Thermal Analysis (DTA/TGA) coupled on-line with mass spectrometry (MS) as a fingerprint for identification purposes in drug loading processes. Androstane derivative 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl acetate (2-OAc) with antitumor activity was loaded in nano hydroxyapatite (HAp) coated with chitosan-poly(D,L)-lactide-co-glycolide (Ch-PLGA) by emulsification and finally freeze-dried. By means of DTA/TGA-MS, it was quickly determined that the form of 2-OAc was the same before and after loading. The observed exothermic and endothermic processes due to the transformation of material with simultaneous analysis of gas products have proven to be successful in the analysis of drug loading processes in multi-component ceramic-polymer carriers. The loading efficiency of 74.7% was determined using the Differential Scanning Calorimetry (DSC) technique. A FT-IR analysis confirmed the qualitative composition of the synthesized 2-OAc-loaded HAp/Ch-PLGA. The in vitro antiproliferative activity was evaluated against human cell lines: lung adenocarcinoma (A549), as well as healthy fetal lung fibroblasts (MRC-5). The results of DET and MTT tests have revealed a high viability of healthy cells MRC-5 (82%) and the death of cancer cells A549 (46%) after a treatment with 2-OAc-loaded HAp/Ch-PLGA.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015
T1  - A Facile Determination Method for an Androstane-based Lung Cancer Inhibitor Loaded in Nano/Micro Particles Based on Hydroxyapatite by Means of DTA/TGA Coupled with On-line Mass Spectrometry
SP  - 35
EP  - 35
ER  - 
@conference{
author = "Ignjatović, Nenad L. and Kuzmanović, Maja D. and Penov Gaši, Katarina and Ajduković, Jovana and Kojić, Vesna V. and Uskoković, Dragan",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/826, http://www.itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1106, http://www.itn.sanu.ac.rs/opus4/files/1106/Ignjatovic_YUCOMAT-2015.pdf, http://vinar.vin.bg.ac.rs/handle/123456789/7542",
abstract = "In our study, we examined the possibilities for the application of Thermo-Gravimetric Analysis/Differential-Thermal Analysis (DTA/TGA) coupled on-line with mass spectrometry (MS) as a fingerprint for identification purposes in drug loading processes. Androstane derivative 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl acetate (2-OAc) with antitumor activity was loaded in nano hydroxyapatite (HAp) coated with chitosan-poly(D,L)-lactide-co-glycolide (Ch-PLGA) by emulsification and finally freeze-dried. By means of DTA/TGA-MS, it was quickly determined that the form of 2-OAc was the same before and after loading. The observed exothermic and endothermic processes due to the transformation of material with simultaneous analysis of gas products have proven to be successful in the analysis of drug loading processes in multi-component ceramic-polymer carriers. The loading efficiency of 74.7% was determined using the Differential Scanning Calorimetry (DSC) technique. A FT-IR analysis confirmed the qualitative composition of the synthesized 2-OAc-loaded HAp/Ch-PLGA. The in vitro antiproliferative activity was evaluated against human cell lines: lung adenocarcinoma (A549), as well as healthy fetal lung fibroblasts (MRC-5). The results of DET and MTT tests have revealed a high viability of healthy cells MRC-5 (82%) and the death of cancer cells A549 (46%) after a treatment with 2-OAc-loaded HAp/Ch-PLGA.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015",
title = "A Facile Determination Method for an Androstane-based Lung Cancer Inhibitor Loaded in Nano/Micro Particles Based on Hydroxyapatite by Means of DTA/TGA Coupled with On-line Mass Spectrometry",
pages = "35-35"
}

Fluorine Doping of Layered NaxCoO2 Structure

Jugović, Dragana; Milović, Miloš; Mitrić, Miodrag; Cvjetićanin, Nikola; Avdeev, Max; Jokić, Bojan M.; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2015)

TY  - CONF
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Mitrić, Miodrag
AU  - Cvjetićanin, Nikola
AU  - Avdeev, Max
AU  - Jokić, Bojan M.
AU  - Uskoković, Dragan
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/827
UR  - http://www.itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1107
UR  - http://www.itn.sanu.ac.rs/opus4/files/1107/Jugovic_YUCOMAT-2015.pdf
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7543
AB  - The room temperature Na-ion secondary battery has been under focus lately due to its feasibility to compete against the already well-established Li-ion secondary battery. Transition metal oxides of general formula NaxMO2 have been investigated as potential cathode materials for sodium batteries. Layered NaxCoO2 is synthesized via solid-state method at 900 ºC in air atmosphere. Fluorine doping of the as-prepared powder is established by the use of ammonium hydrogen difluoride (NH4HF2) as a fluorinating agent. The fluorination takes place only at low temperature (200 ºC), while the treatment at higher temperatures (≥ 400 ºC) facilitates the formation of NaF. It is shown that various and controllable amounts of fluorine can be successfully incorporated into the structure. Finally, the effects of fluorine doping on both structural and electrochemical properties are examined.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015
T1  - Fluorine Doping of Layered NaxCoO2 Structure
SP  - 12
EP  - 12
ER  - 
@conference{
author = "Jugović, Dragana and Milović, Miloš and Mitrić, Miodrag and Cvjetićanin, Nikola and Avdeev, Max and Jokić, Bojan M. and Uskoković, Dragan",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/827, http://www.itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1107, http://www.itn.sanu.ac.rs/opus4/files/1107/Jugovic_YUCOMAT-2015.pdf, http://vinar.vin.bg.ac.rs/handle/123456789/7543",
abstract = "The room temperature Na-ion secondary battery has been under focus lately due to its feasibility to compete against the already well-established Li-ion secondary battery. Transition metal oxides of general formula NaxMO2 have been investigated as potential cathode materials for sodium batteries. Layered NaxCoO2 is synthesized via solid-state method at 900 ºC in air atmosphere. Fluorine doping of the as-prepared powder is established by the use of ammonium hydrogen difluoride (NH4HF2) as a fluorinating agent. The fluorination takes place only at low temperature (200 ºC), while the treatment at higher temperatures (≥ 400 ºC) facilitates the formation of NaF. It is shown that various and controllable amounts of fluorine can be successfully incorporated into the structure. Finally, the effects of fluorine doping on both structural and electrochemical properties are examined.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015",
title = "Fluorine Doping of Layered NaxCoO2 Structure",
pages = "12-12"
}