Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2014 (13)
2013 (88)
2012 (93)
2011 (72)
2010 (32)
2009 (2)
2008 (1)
2007 (2)
2006 (2)
Type
article (301)
other (3)
review (1)
Version
No records found.
M-Rank
M21 (84)
M21a (127)
M22 (11)
M23 (1)

Krpic, D.

Link to this page

Authority KeyName Variants
f7976b7a-3baf-44bc-ae9e-ef0ecf28e6cb
  • Krpic, D. (306)
Projects
BMWF (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MEYS (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER (Estonia) [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Republic of Korea), WCU (Republic of Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), ThEPCenter (Thailand), IPST (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA) FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA)
FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN (China), CAS (China), MoST (China), NSFC (China), COLCIEN-CIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTDS (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA), European Union, Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation FMSR (Austria), FNRS, FWO (Belgium), CNPq, CAPES, FAPERJ, FAPESP (Brazil), MES (Bulgaria), CERN, CAS, MoST, NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences, NICPB (Estonia), Academy of Finland, ME, HIP (Finland), CEA, CNRS/IN2P3 (France), BMBF, Germany, DFG, HGF (Germany), GSRT (Greece), OTKA, NKTH (Hungary), DAE, DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF, WCU (Korea), LAS (Lithuania), CINVESTAV, CONACYT, SEP, UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST, MAE (Russia), MSTD (Serbia), MICINN, CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK, TAEK (Turkey), STFC (United Kingdom), DOE, NSF (USA)
BMWF (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER (Estonia) [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), ThEP (Thailand), IPST (Thailand), NECTEC (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie programme (European Union), European Research Council (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Austrian Science Fund (FWF), Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund BMWF (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER (Estonia) [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA)
FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA) FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS (France) [IN2P3], BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA)
FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER (Estonia) [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA) FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN (China), CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences and NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA)
FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN (China), CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA) FMSR (Austria), FNRS, FWO (Belgium), CNPq, CAPES, FAPERJ, FAPESP (Brazil), MES (Bulgaria), CERN, CAS, MoST, NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC, HIP (Finland), CEA, CNRS/IN2P3 (France), BMBF, Germany, DFG, HGF (Germany), GSRT (Greece), OTKA, NKTH (Hungary), DAE, DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF, WCU (Korea), LAS (Lithuania), CINVESTAV, CONACYT, SEP, UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE, NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON, RosAtom, RAS, RFBR (Russia), MSTD (Serbia), MICINN, CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK, TAEK (Turkey), STFC (United Kingdom), DOE, NSF (USA)
Austrian de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Funda, cao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, and the US National Science Foundation, Marie-Curie programme, European Research Council and EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, EU-ESF, Greek NSRF
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis programme, Aristeia programme, EU-ESF, Greek NSRF Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Office for Research and Technology, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, Republic of Korea, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Spain, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science - EU, Regional Development Fund, Thalis programme - EU-ESF, Aristeia programme - EU-ESF, Greek NSRF
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China, COLCIENCIAS, Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics, Institut National de Physique Nuclaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung,, Deutsche Forschungsgemeinschaft, HelmholtzGemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education and the National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), Foundation for Polish Science, European Union, Regional Development Fund Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian-Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF, JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), CONACYT, SEP, UASLP-FAI Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, EU-ESF, Greek NSRF
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis programme, Aristeia programme, EU-ESF, Greek NSRF Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Cienciae a Tecnologia, Portugal, JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis programme, Aristeia programme, EU-ESF, Greek NSRF
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, nstitute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, the Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, the Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Cyprus, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonia [SF0690030s09], European Regional Development Fund, Estonia, CERN, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Office for Research and Technology, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, Republic of Korea, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Armenia, JINR, Belarus, JINR, Georgia, JINR, Ukraine, JINR, Uzbekistan, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Spain, Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis programme, EU-ESF, Greek NSRF, Aristeia programme
Austrian Federal Ministry of Science and Research, Belgian Fonds de la Recherche Scientifique and Fonds voor Wetenschappelijk Onderzoek, CNP LT INF GT q LT /INF GT, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Recurrent Financing Contract [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Lithuanian Academy of Sciences, Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI), Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, U.S. Department of Energy, U.S. National Science Foundation, Marie-Curie programme, European Research Council (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund Austrian Federal Ministry of Science and Research, Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, COLCIENCIAS, Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, U.S. Department of Energy, U.S. National Science Foundation, Marie-Curie program, European Research Council (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS program of Foundation for Polish Science, European Union, Regional Development Fund
Austrian Federal Ministry of Science and Research, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency CNPq, Brazilian Funding Agency CAPES, Brazilian Funding Agency FAPERJ, Brazilian Funding Agency FAPESP, Bulgarian Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Korea, Lithuanian Academy of Sciences, Mexican Funding Agency CINVESTAV, Mexican Funding Agency CONACYT, Mexican Funding Agency SEP, Mexican Funding Agency UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agency ETH Board, Swiss Funding Agency ETH Zurich, Swiss Funding Agency PSI, Swiss Funding Agency SNF, Swiss Funding Agency UniZH, Swiss Funding Agency Canton Zurich, Swiss Funding Agency SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology and National Electronics and Computer Technology Center, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, U.S. Department of Energy, U.S. National Science Foundation, MarieCurie programme, European Research Council (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund Austrian Federal Ministry of Science and Research, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Estonian Academy of Sciences and NICPB, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary

Author's Bibliography

Measurement of Inclusive W and Z Boson Production Cross Sections in pp Collisions at root s=8 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/6000
AB  - A measurement of total and fiducial inclusive W and Z boson production cross sections in pp collisions at root s = 8 TeV is presented. Electron and muon final states are analyzed in a data sample collected with the CMS detector corresponding to an integrated luminosity of 18.2 +/- 0.5 pb(-1). The measured total inclusive cross sections times branching fractions are sigma(pp - GT WX) x B(W - GT l upsilon) = 12.21 +/- 0.03(stat) +/- 0.24(syst) +/- 0.32(lum) nb and sigma(pp - GT ZX) x B(Z - GT l(+)l(-)) = 1.15 +/- 0.01(stat) +/- 0.02(syst) +/- 0.03(lum) nb for the dilepton mass in the range of 60-120 GeV. The measured values agree with next-to-next-to-leading-order QCD cross section calculations. Ratios of cross sections are reported with a precision of 2%. This is the first measurement of inclusive W and Z boson production in proton-proton collisions at root s = 8 TeV.
T2  - Physical Review Letters
T1  - Measurement of Inclusive W and Z Boson Production Cross Sections in pp Collisions at root s=8 TeV
VL  - 112
IS  - 19
DO  - 10.1103/PhysRevLett.112.191802
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/6000",
abstract = "A measurement of total and fiducial inclusive W and Z boson production cross sections in pp collisions at root s = 8 TeV is presented. Electron and muon final states are analyzed in a data sample collected with the CMS detector corresponding to an integrated luminosity of 18.2 +/- 0.5 pb(-1). The measured total inclusive cross sections times branching fractions are sigma(pp - GT WX) x B(W - GT l upsilon) = 12.21 +/- 0.03(stat) +/- 0.24(syst) +/- 0.32(lum) nb and sigma(pp - GT ZX) x B(Z - GT l(+)l(-)) = 1.15 +/- 0.01(stat) +/- 0.02(syst) +/- 0.03(lum) nb for the dilepton mass in the range of 60-120 GeV. The measured values agree with next-to-next-to-leading-order QCD cross section calculations. Ratios of cross sections are reported with a precision of 2%. This is the first measurement of inclusive W and Z boson production in proton-proton collisions at root s = 8 TeV.",
journal = "Physical Review Letters",
title = "Measurement of Inclusive W and Z Boson Production Cross Sections in pp Collisions at root s=8 TeV",
volume = "112",
number = "19",
doi = "10.1103/PhysRevLett.112.191802"
}
4
58
73
71

Measurement of the top-quark mass in all-jets t(t)over-bar events in pp collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedzic, M.; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedzic, M.
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/433
AB  - The mass of the top quark is measured using a sample of t (t) over bar candidate events with at least six jets in the final state. The sample is selected from data collected with the CMS detector in pp collisions at root s = 7 TeV in 2011 and corresponds to an integrated luminosity of 3.54 fb(-1). The mass is reconstructed for each event employing a kinematic fit of the jets to a t (t) over bar hypothesis. The top-quark mass is measured to be 173.49 +/- 0.69 ( stat.) +/- 1.21 ( syst.) GeV. A combination with previously published measurements in other decay modes byCMSyields a mass of 173.54 +/- 0.33 (stat.) +/- 0.96 (syst.) GeV.
T2  - European Physical Journal C. Particles and Fields
T1  - Measurement of the top-quark mass in all-jets t(t)over-bar events in pp collisions at root s=7 TeV
VL  - 74
IS  - 4
DO  - 10.1140/epjc/s10052-014-2758-x
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedzic, M. and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/433",
abstract = "The mass of the top quark is measured using a sample of t (t) over bar candidate events with at least six jets in the final state. The sample is selected from data collected with the CMS detector in pp collisions at root s = 7 TeV in 2011 and corresponds to an integrated luminosity of 3.54 fb(-1). The mass is reconstructed for each event employing a kinematic fit of the jets to a t (t) over bar hypothesis. The top-quark mass is measured to be 173.49 +/- 0.69 ( stat.) +/- 1.21 ( syst.) GeV. A combination with previously published measurements in other decay modes byCMSyields a mass of 173.54 +/- 0.33 (stat.) +/- 0.96 (syst.) GeV.",
journal = "European Physical Journal C. Particles and Fields",
title = "Measurement of the top-quark mass in all-jets t(t)over-bar events in pp collisions at root s=7 TeV",
volume = "74",
number = "4",
doi = "10.1140/epjc/s10052-014-2758-x"
}
11
24
29
23

Probing color coherence effects in pp collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/6038
AB  - A study of color coherence effects in pp collisions at a center-of-mass energy of 7 is presented. The data used in the analysis were collected in 2010 with the CMS detector at the LHC and correspond to an integrated luminosity of 36 pb. Events are selected that contain at least three jets and where the two jets with the largest transverse momentum exhibit a back-to-back topology. The measured angular correlation between the second- and third-leading jet is shown to be sensitive to color coherence effects, and is compared to the predictions of Monte Carlo models with various implementations of color coherence. None of the models describe the data satisfactorily.
T2  - European Physical Journal C. Particles and Fields
T1  - Probing color coherence effects in pp collisions at root s=7 TeV
VL  - 74
IS  - 6
DO  - 10.1140/epjc/s10052-014-2901-8
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/6038",
abstract = "A study of color coherence effects in pp collisions at a center-of-mass energy of 7 is presented. The data used in the analysis were collected in 2010 with the CMS detector at the LHC and correspond to an integrated luminosity of 36 pb. Events are selected that contain at least three jets and where the two jets with the largest transverse momentum exhibit a back-to-back topology. The measured angular correlation between the second- and third-leading jet is shown to be sensitive to color coherence effects, and is compared to the predictions of Monte Carlo models with various implementations of color coherence. None of the models describe the data satisfactorily.",
journal = "European Physical Journal C. Particles and Fields",
title = "Probing color coherence effects in pp collisions at root s=7 TeV",
volume = "74",
number = "6",
doi = "10.1140/epjc/s10052-014-2901-8"
}
2
10
13
10

Measurement of associated W plus charm production in pp collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/6014
AB  - Measurements are presented of the associated production of a W boson and a charm-quark jet (W + c) in pp collisions at a center-of-mass energy of 7 TeV. The analysis is conducted with a data sample corresponding to a total integrated luminosity of 5 fb(-1), collected by the CMS detector at the LHC. W boson candidates are identified by their decay into a charged lepton (muon or electron) and a neutrino. The W + c measurements are performed for charm-quark jets in the kinematic region p(T)(jet) GT 25 GeV, vertical bar eta(jet)vertical bar LT 2.5, for two different thresholds for the transverse momentum of the lepton from the W-boson decay, and in the pseudorapidity range eta(l) LT 2.1. Hadronic and inclusive semileptonic decays of charm hadrons are used to measure the following total cross sections: sigma(pp - GT W + c + X) x B (W - GT lv) = 107.7 +/- 3.3 (stat.) +/- 6.9 (syst.) pb (p(T)(l) GT 25 GeV) and sigma (pp - GT W + c + X) x B (W - GT lv) = 84.1 +/- 2.0 (stat.) +/- 4.9 (syst.) pb (p(T)(l) GT 35 GeV), and the cross section ratios sigma(pp - GT W+ + (c) over bar + X)/sigma(pp - GT W- + c + X) = 0.954 +/- 0.025 (stat.) +/- 0.004 (syst.) (p(T)(l) GT 25 GeV) and sigma(pp - GT W+ + (c) over bar + X)/sigma(pp - GT W- + c + X) = 0.938 +/- 0.019 (stat.) +/- 0.006 (syst.) (p(T)(l) GT 35 GeV). Cross sections and cross section ratios are also measured differentially with respect to the absolute value of the pseudorapidity of the lepton from the W-boson decay. These are the first measurements from the LHC directly sensitive to the strange quark and antiquark content of the proton. Results are compared with theoretical predictions and are consistent with the predictions based on global fits of parton distribution functions.
T2  - Journal of High Energy Physics
T1  - Measurement of associated W plus charm production in pp collisions at root s=7 TeV
IS  - 2
DO  - 10.1007/JHEP02(2014)013
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/6014",
abstract = "Measurements are presented of the associated production of a W boson and a charm-quark jet (W + c) in pp collisions at a center-of-mass energy of 7 TeV. The analysis is conducted with a data sample corresponding to a total integrated luminosity of 5 fb(-1), collected by the CMS detector at the LHC. W boson candidates are identified by their decay into a charged lepton (muon or electron) and a neutrino. The W + c measurements are performed for charm-quark jets in the kinematic region p(T)(jet) GT 25 GeV, vertical bar eta(jet)vertical bar LT 2.5, for two different thresholds for the transverse momentum of the lepton from the W-boson decay, and in the pseudorapidity range eta(l) LT 2.1. Hadronic and inclusive semileptonic decays of charm hadrons are used to measure the following total cross sections: sigma(pp - GT W + c + X) x B (W - GT lv) = 107.7 +/- 3.3 (stat.) +/- 6.9 (syst.) pb (p(T)(l) GT 25 GeV) and sigma (pp - GT W + c + X) x B (W - GT lv) = 84.1 +/- 2.0 (stat.) +/- 4.9 (syst.) pb (p(T)(l) GT 35 GeV), and the cross section ratios sigma(pp - GT W+ + (c) over bar + X)/sigma(pp - GT W- + c + X) = 0.954 +/- 0.025 (stat.) +/- 0.004 (syst.) (p(T)(l) GT 25 GeV) and sigma(pp - GT W+ + (c) over bar + X)/sigma(pp - GT W- + c + X) = 0.938 +/- 0.019 (stat.) +/- 0.006 (syst.) (p(T)(l) GT 35 GeV). Cross sections and cross section ratios are also measured differentially with respect to the absolute value of the pseudorapidity of the lepton from the W-boson decay. These are the first measurements from the LHC directly sensitive to the strange quark and antiquark content of the proton. Results are compared with theoretical predictions and are consistent with the predictions based on global fits of parton distribution functions.",
journal = "Journal of High Energy Physics",
title = "Measurement of associated W plus charm production in pp collisions at root s=7 TeV",
number = "2",
doi = "10.1007/JHEP02(2014)013"
}
2
40
27
54

Measurement of the production cross sections for a Z boson and one or more b jets in pp collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/6056
AB  - The production of a Z boson, decaying into two leptons and produced in association with one or more b jets, is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV. The data were recorded in 2011 with the CMS detector and correspond to an integrated luminosity of 5 fb(-1). The Z(ll) + b-jets cross sections (where ll = mu mu or ee) are measured separately for a Z boson produced with exactly one b jet and with at least two b jets. In addition, a cross section ratio is extracted for a Z boson produced with at least one b jet, relative to a Z boson produced with at least one jet. The measured cross sections are compared to various theoretical predictions, and the data favour the predictions in the five-flavour scheme, where b quarks are assumed massless. The kinematic properties of the reconstructed particles are compared with the predictions from the MadGraph event generator using the pythia parton shower simulation.
T2  - Journal of High Energy Physics
T1  - Measurement of the production cross sections for a Z boson and one or more b jets in pp collisions at root s=7 TeV
IS  - 6
DO  - 10.1007/JHEP06(2014)120
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/6056",
abstract = "The production of a Z boson, decaying into two leptons and produced in association with one or more b jets, is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV. The data were recorded in 2011 with the CMS detector and correspond to an integrated luminosity of 5 fb(-1). The Z(ll) + b-jets cross sections (where ll = mu mu or ee) are measured separately for a Z boson produced with exactly one b jet and with at least two b jets. In addition, a cross section ratio is extracted for a Z boson produced with at least one b jet, relative to a Z boson produced with at least one jet. The measured cross sections are compared to various theoretical predictions, and the data favour the predictions in the five-flavour scheme, where b quarks are assumed massless. The kinematic properties of the reconstructed particles are compared with the predictions from the MadGraph event generator using the pythia parton shower simulation.",
journal = "Journal of High Energy Physics",
title = "Measurement of the production cross sections for a Z boson and one or more b jets in pp collisions at root s=7 TeV",
number = "6",
doi = "10.1007/JHEP06(2014)120"
}
3
23
36
29

Search for pair production of excited top quarks in the lepton plus jets final state

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/6060
AB  - A search is performed for pair-produced spin-3/2 excited top quarks , each decaying to a top quark and a gluon. The search uses data collected with the CMS detector from pp collisions at a center-of-mass energy of = 8 TeV, selecting events that have a single isolated muon or electron, an imbalance in transverse momentum, and at least six jets, of which one must be compatible with originating from the fragmentation of a b quark. The data, corresponding to an integrated luminosity of 19.5 fb(-1), show no significant excess over standard model predictions, and provide a lower limit of 803 GeV at 95% confidence on the mass of the spin-3/2 t(*) quark in an extension of the Randall-Sundrum model, assuming a 100% branching fraction of its decay into a top quark and a gluon. This is the first search for a spin-3/2 excited top quark performed at the LHC.
T2  - Journal of High Energy Physics
T1  - Search for pair production of excited top quarks in the lepton plus jets final state
IS  - 6
DO  - 10.1007/JHEP06(2014)125
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/6060",
abstract = "A search is performed for pair-produced spin-3/2 excited top quarks , each decaying to a top quark and a gluon. The search uses data collected with the CMS detector from pp collisions at a center-of-mass energy of = 8 TeV, selecting events that have a single isolated muon or electron, an imbalance in transverse momentum, and at least six jets, of which one must be compatible with originating from the fragmentation of a b quark. The data, corresponding to an integrated luminosity of 19.5 fb(-1), show no significant excess over standard model predictions, and provide a lower limit of 803 GeV at 95% confidence on the mass of the spin-3/2 t(*) quark in an extension of the Randall-Sundrum model, assuming a 100% branching fraction of its decay into a top quark and a gluon. This is the first search for a spin-3/2 excited top quark performed at the LHC.",
journal = "Journal of High Energy Physics",
title = "Search for pair production of excited top quarks in the lepton plus jets final state",
number = "6",
doi = "10.1007/JHEP06(2014)125"
}
9
6
12
10

Observation of a peaking structure in the J/psi phi mass spectrum from B-+/- - GT J/psi phi K-+/- decays

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/6069
AB  - A peaking structure in the J/psi phi mass spectrum near threshold is observed in B-+/- - GT J/psi phi K-+/- decays, produced in pp collisions at root s = 7 TeV collected with the CMS detector at the LHC. The data sample, selected on the basis of the dimuon decay mode of the J/psi, corresponds to an integrated luminosity of 5.2 fb(-1). Fitting the structure to an S-wave relativistic Breit-Wigner lineshape above a three-body phase-space nonresonant component gives a signal statistical significance exceeding five standard deviations. The fitted mass and width values are m = 4148.0 +/- 2.4 (stat.) +/- 6.3 (syst.) MeV and Gamma = 28(-11)(+15) (stat.) +/- 19 (syst.) MeV, respectively. Evidence for an additional peaking structure at higher J/psi phi mass is also reported. (C) 2014 The Authors. Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Observation of a peaking structure in the J/psi phi mass spectrum from B-+/- - GT J/psi phi K-+/- decays
VL  - 734
SP  - 261
EP  - 281
DO  - 10.1016/j.physletb.2014.05.055
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/6069",
abstract = "A peaking structure in the J/psi phi mass spectrum near threshold is observed in B-+/- - GT J/psi phi K-+/- decays, produced in pp collisions at root s = 7 TeV collected with the CMS detector at the LHC. The data sample, selected on the basis of the dimuon decay mode of the J/psi, corresponds to an integrated luminosity of 5.2 fb(-1). Fitting the structure to an S-wave relativistic Breit-Wigner lineshape above a three-body phase-space nonresonant component gives a signal statistical significance exceeding five standard deviations. The fitted mass and width values are m = 4148.0 +/- 2.4 (stat.) +/- 6.3 (syst.) MeV and Gamma = 28(-11)(+15) (stat.) +/- 19 (syst.) MeV, respectively. Evidence for an additional peaking structure at higher J/psi phi mass is also reported. (C) 2014 The Authors. Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Observation of a peaking structure in the J/psi phi mass spectrum from B-+/- - GT J/psi phi K-+/- decays",
volume = "734",
pages = "261-281",
doi = "10.1016/j.physletb.2014.05.055"
}
1
75
99
102

Modification of jet shapes in PbPb collisions at root s(NN)=2.76 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5933
AB  - The first measurement of jet shapes, defined as the fractional transverse momentum radial distribution, for inclusive jets produced in heavy-ion collisions is presented. Data samples of PbPb and pp collisions, corresponding to integrated luminosities of 150 mu b(-1) and 5.3 pb(-1) respectively, were collected at a nucleon-nucleon centre-of-mass energy of root s(NN) = 2.76 TeV with the CMS detector at the LHC. The jets are reconstructed with the anti-k(T) algorithm with a distance parameter R = 0.3, and the jet shapes are measured for charged particles with transverse momentum P-T GT 1 GeV/c. The jet shapes measured in PbPb collisions in different collision centralities are compared to reference distributions based on the pp data. A centrality-dependent modification of the jet shapes is observed in the more central PbPb collisions, indicating a redistribution of the energy inside the jet cone. This measurement provides information about the parton shower mechanism in the hot and dense medium produced in heavy-ion collisions. (C) 2014 The Authors. Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Modification of jet shapes in PbPb collisions at root s(NN)=2.76 TeV
VL  - 730
SP  - 243
EP  - 263
DO  - 10.1016/j.physletb.2014.01.042
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5933",
abstract = "The first measurement of jet shapes, defined as the fractional transverse momentum radial distribution, for inclusive jets produced in heavy-ion collisions is presented. Data samples of PbPb and pp collisions, corresponding to integrated luminosities of 150 mu b(-1) and 5.3 pb(-1) respectively, were collected at a nucleon-nucleon centre-of-mass energy of root s(NN) = 2.76 TeV with the CMS detector at the LHC. The jets are reconstructed with the anti-k(T) algorithm with a distance parameter R = 0.3, and the jet shapes are measured for charged particles with transverse momentum P-T GT 1 GeV/c. The jet shapes measured in PbPb collisions in different collision centralities are compared to reference distributions based on the pp data. A centrality-dependent modification of the jet shapes is observed in the more central PbPb collisions, indicating a redistribution of the energy inside the jet cone. This measurement provides information about the parton shower mechanism in the hot and dense medium produced in heavy-ion collisions. (C) 2014 The Authors. Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Modification of jet shapes in PbPb collisions at root s(NN)=2.76 TeV",
volume = "730",
pages = "243-263",
doi = "10.1016/j.physletb.2014.01.042"
}
1
112
132
134

Determination of the top-quark pole mass and strong coupling constant from the t(t)over-bar production cross section in pp collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5861
AB  - The inclusive cross section for top-quark pair production measured by the CMS experiment in protonproton collisions at a center-of-mass energy of 7 TeV is compared to the QCD prediction at next-to-next-to-leading order with various parton distribution functions to determine the top-quark pole mass, m(t)(pole), or the strong coupling constant, alpha(S). With the parton distribution function set NNPDF2.3, a pole mass of 176.7(-3.4)(+3.8) GeV is obtained when constraining alpha(S) at the scale of the Z boson mass, m(Z), to the current world average. Alternatively, by constraining m(t)(pole) to the latest average from direct mass measurements, a value of alpha(S)(m(Z)) = 0.1151(-0.0032)(+0.0033) is extracted. This is the first determination of alpha(S) using events from top-quark production. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
T2  - Physics Letters B
T1  - Determination of the top-quark pole mass and strong coupling constant from the t(t)over-bar production cross section in pp collisions at root s=7 TeV
VL  - 728
SP  - 496
EP  - 517
DO  - 10.1016/j.physletb.2013.12.009
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5861",
abstract = "The inclusive cross section for top-quark pair production measured by the CMS experiment in protonproton collisions at a center-of-mass energy of 7 TeV is compared to the QCD prediction at next-to-next-to-leading order with various parton distribution functions to determine the top-quark pole mass, m(t)(pole), or the strong coupling constant, alpha(S). With the parton distribution function set NNPDF2.3, a pole mass of 176.7(-3.4)(+3.8) GeV is obtained when constraining alpha(S) at the scale of the Z boson mass, m(Z), to the current world average. Alternatively, by constraining m(t)(pole) to the latest average from direct mass measurements, a value of alpha(S)(m(Z)) = 0.1151(-0.0032)(+0.0033) is extracted. This is the first determination of alpha(S) using events from top-quark production. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.",
journal = "Physics Letters B",
title = "Determination of the top-quark pole mass and strong coupling constant from the t(t)over-bar production cross section in pp collisions at root s=7 TeV",
volume = "728",
pages = "496-517",
doi = "10.1016/j.physletb.2013.12.009"
}
4
55
87
97

Study of the production of charged pions, kaons, and protons in pPb collisions at root SNN=5.02 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/6031
AB  - Spectra of identified charged hadrons are measured in pPb collisions with the CMS detector at the LHC at . Charged pions, kaons, and protons in the transverse-momentum range -1.7 and laboratory rapidity are identified via their energy loss in the silicon tracker. The average increases with particle mass and the charged multiplicity of the event. The increase of the average with charged multiplicity is greater for heavier hadrons. Comparisons to Monte Carlo event generators reveal that Epos Lhc, which incorporates additional hydrodynamic evolution of the created system, is able to reproduce most of the data features, unlike Hijing and Ampt. The spectra and integrated yields are also compared to those measured in pp and PbPb collisions at various energies. The average transverse momentum and particle ratio measurements indicate that particle production at LHC energies is strongly correlated with event particle multiplicity.
T2  - European Physical Journal C. Particles and Fields
T1  - Study of the production of charged pions, kaons, and protons in pPb collisions at root SNN=5.02 TeV
VL  - 74
IS  - 6
DO  - 10.1140/epjc/s10052-014-2847-x
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/6031",
abstract = "Spectra of identified charged hadrons are measured in pPb collisions with the CMS detector at the LHC at . Charged pions, kaons, and protons in the transverse-momentum range -1.7 and laboratory rapidity are identified via their energy loss in the silicon tracker. The average increases with particle mass and the charged multiplicity of the event. The increase of the average with charged multiplicity is greater for heavier hadrons. Comparisons to Monte Carlo event generators reveal that Epos Lhc, which incorporates additional hydrodynamic evolution of the created system, is able to reproduce most of the data features, unlike Hijing and Ampt. The spectra and integrated yields are also compared to those measured in pp and PbPb collisions at various energies. The average transverse momentum and particle ratio measurements indicate that particle production at LHC energies is strongly correlated with event particle multiplicity.",
journal = "European Physical Journal C. Particles and Fields",
title = "Study of the production of charged pions, kaons, and protons in pPb collisions at root SNN=5.02 TeV",
volume = "74",
number = "6",
doi = "10.1140/epjc/s10052-014-2847-x"
}
1
65
68
66

Measurement of the triple-differential cross section for photon plus jets production in proton-proton collisions at=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedzic, M.; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedzic, M.
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5441
AB  - A measurement of the triple-differential cross section, , in photon + jets final states using a data sample from proton-proton collisions at = 7 TeV is presented. This sample corresponds to an integrated luminosity of 2.14 fb(-1) collected by the CMS detector at the LHC. Photons and jets are reconstructed within a pseudorapidity range of |eta| LT 2.5, and are required to have transverse momenta in the range 40 LT LT 300 GeV and GT 30 GeV, respectively. The measurements are compared to theoretical predictions from the sherpa leading-order QCD Monte Carlo event generator and the next-to-leading-order perturbative QCD calculation from jetphox. The predictions are found to be consistent with the data over most of the examined kinematic region.
T2  - Journal of High Energy Physics
T1  - Measurement of the triple-differential cross section for photon plus jets production in proton-proton collisions at=7 TeV
IS  - 6
DO  - 10.1007/JHEP06(2014)009
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedzic, M. and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5441",
abstract = "A measurement of the triple-differential cross section, , in photon + jets final states using a data sample from proton-proton collisions at = 7 TeV is presented. This sample corresponds to an integrated luminosity of 2.14 fb(-1) collected by the CMS detector at the LHC. Photons and jets are reconstructed within a pseudorapidity range of |eta| LT 2.5, and are required to have transverse momenta in the range 40 LT LT 300 GeV and GT 30 GeV, respectively. The measurements are compared to theoretical predictions from the sherpa leading-order QCD Monte Carlo event generator and the next-to-leading-order perturbative QCD calculation from jetphox. The predictions are found to be consistent with the data over most of the examined kinematic region.",
journal = "Journal of High Energy Physics",
title = "Measurement of the triple-differential cross section for photon plus jets production in proton-proton collisions at=7 TeV",
number = "6",
doi = "10.1007/JHEP06(2014)009"
}
1
13
8
17

Search for anomalous production in the highly-boosted all-hadronic final state (vol 09, 029, 2012)

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2014)

@misc{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5951",
journal = "Journal of High Energy Physics",
title = "Search for anomalous production in the highly-boosted all-hadronic final state (vol 09, 029, 2012)",
number = "3",
doi = "10.1007/JHEP03(2014)132"
}
1
3
3

Measurement of the W gamma and Z gamma inclusive cross sections in pp collisions at root s=7 TeV and limits on anomalous triple gauge boson couplings

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5996
AB  - Measurements of W gamma and Z gamma production in proton-proton collisions at root s = 7 TeV are used to extract limits on anomalous triple gauge couplings. The results are based on data recorded by the CMS experiment at the LHC that correspond to an integrated luminosity of 5.0 fb(-1). The cross sections are measured for photon transverse momenta p(T)(gamma) GT 15 GeV, and for separations between photons and final-state charged leptons in the pseudorapidity-azimuthal plane of Delta R(l,gamma) GT 0.7 in l nu gamma and ll gamma final states, where l refers either to an electron or a muon. A dilepton invariant mass requirement of m(ll) GT 50 GeV is imposed for the Z gamma process. No deviations are observed relative to predictions from the standard model, and limits are set on anomalous WW gamma, ZZ gamma, and Z gamma gamma triple gauge couplings.
T2  - Physical Review D
T1  - Measurement of the W gamma and Z gamma inclusive cross sections in pp collisions at root s=7 TeV and limits on anomalous triple gauge boson couplings
VL  - 89
IS  - 9
DO  - 10.1103/PhysRevD.89.092005
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5996",
abstract = "Measurements of W gamma and Z gamma production in proton-proton collisions at root s = 7 TeV are used to extract limits on anomalous triple gauge couplings. The results are based on data recorded by the CMS experiment at the LHC that correspond to an integrated luminosity of 5.0 fb(-1). The cross sections are measured for photon transverse momenta p(T)(gamma) GT 15 GeV, and for separations between photons and final-state charged leptons in the pseudorapidity-azimuthal plane of Delta R(l,gamma) GT 0.7 in l nu gamma and ll gamma final states, where l refers either to an electron or a muon. A dilepton invariant mass requirement of m(ll) GT 50 GeV is imposed for the Z gamma process. No deviations are observed relative to predictions from the standard model, and limits are set on anomalous WW gamma, ZZ gamma, and Z gamma gamma triple gauge couplings.",
journal = "Physical Review D",
title = "Measurement of the W gamma and Z gamma inclusive cross sections in pp collisions at root s=7 TeV and limits on anomalous triple gauge boson couplings",
volume = "89",
number = "9",
doi = "10.1103/PhysRevD.89.092005"
}
1
30
19
46

Evidence for Associated Production of a Single Top Quark and W Boson in pp Collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedzic, M.; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2013)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedzic, M.
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5261
AB  - Evidence is presented for the associated production of a single top quark and W boson in pp collisions at root s = 7 TeV with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 4.9 fb(-1). The measurement is performed using events with two leptons and a jet originated from a b quark. A multivariate analysis based on kinematic properties is utilized to separate the t (t) over bar background from the signal. The observed signal has a significance of 4.0 sigma and corresponds to a cross section of 16(-4)(+5) pb, in agreement with the standard model expectation of 15.6 +/- 0.4(-1.2)(+1.0) pb. DOI: 10.1103/PhysRevLett.110.022003
T2  - Physical Review Letters
T1  - Evidence for Associated Production of a Single Top Quark and W Boson in pp Collisions at root s=7 TeV
VL  - 110
IS  - 2
DO  - 10.1103/PhysRevLett.110.022003
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedzic, M. and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5261",
abstract = "Evidence is presented for the associated production of a single top quark and W boson in pp collisions at root s = 7 TeV with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 4.9 fb(-1). The measurement is performed using events with two leptons and a jet originated from a b quark. A multivariate analysis based on kinematic properties is utilized to separate the t (t) over bar background from the signal. The observed signal has a significance of 4.0 sigma and corresponds to a cross section of 16(-4)(+5) pb, in agreement with the standard model expectation of 15.6 +/- 0.4(-1.2)(+1.0) pb. DOI: 10.1103/PhysRevLett.110.022003",
journal = "Physical Review Letters",
title = "Evidence for Associated Production of a Single Top Quark and W Boson in pp Collisions at root s=7 TeV",
volume = "110",
number = "2",
doi = "10.1103/PhysRevLett.110.022003"
}
2
58
128
82

Measurement of the Azimuthal Anisotropy of Neutral Pions in Pb-Pb Collisions at root S-NN=2.76 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedzic, M.; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2013)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedzic, M.
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5276
AB  - First measurements of the azimuthal anisotropy of neutral pions produced in Pb-Pb collisions at a center-of-mass energy of root S-NN = 2.76 TeV are presented. The amplitudes of the second Fourier component (upsilon(2)) of the pi(0) azimuthal distributions are extracted using an event-plane technique. The values of upsilon(2) are studied as a function of the neutral pion transverse momentum (p(T)) for different classes of collision centrality in the kinematic range 1.6 LT p(T) LT 8.0 GeV/c, within the pseudorapidity interval vertical bar eta vertical bar LT 0.8. The CMS measurements of upsilon(2)(p(T)) are similar to previously reported pi(0) azimuthal anisotropy results from root S-NN = 200 GeV Au-Au collisions at RHIC, despite a factor of similar to 14 increase in the centerof-mass energy. In the momentum range 2.5 LT p(T) LT 5.0 GeV/c, the neutral pion anisotropies are found to be smaller than those observed by CMS for inclusive charged particles. DOI: 10.1103/PhysRevLett.110.042301
T2  - Physical Review Letters
T1  - Measurement of the Azimuthal Anisotropy of Neutral Pions in Pb-Pb Collisions at root S-NN=2.76 TeV
VL  - 110
IS  - 4
DO  - 10.1103/PhysRevLett.110.042301
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedzic, M. and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5276",
abstract = "First measurements of the azimuthal anisotropy of neutral pions produced in Pb-Pb collisions at a center-of-mass energy of root S-NN = 2.76 TeV are presented. The amplitudes of the second Fourier component (upsilon(2)) of the pi(0) azimuthal distributions are extracted using an event-plane technique. The values of upsilon(2) are studied as a function of the neutral pion transverse momentum (p(T)) for different classes of collision centrality in the kinematic range 1.6 LT p(T) LT 8.0 GeV/c, within the pseudorapidity interval vertical bar eta vertical bar LT 0.8. The CMS measurements of upsilon(2)(p(T)) are similar to previously reported pi(0) azimuthal anisotropy results from root S-NN = 200 GeV Au-Au collisions at RHIC, despite a factor of similar to 14 increase in the centerof-mass energy. In the momentum range 2.5 LT p(T) LT 5.0 GeV/c, the neutral pion anisotropies are found to be smaller than those observed by CMS for inclusive charged particles. DOI: 10.1103/PhysRevLett.110.042301",
journal = "Physical Review Letters",
title = "Measurement of the Azimuthal Anisotropy of Neutral Pions in Pb-Pb Collisions at root S-NN=2.76 TeV",
volume = "110",
number = "4",
doi = "10.1103/PhysRevLett.110.042301"
}
2
22
17
21

Search for Pair Production of Third-Generation Leptoquarks and Top Squarks in pp Collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedzic, M.; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2013)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedzic, M.
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5317
AB  - Results are presented from a search for the pair production of third-generation scalar and vector leptoquarks, as well as for top squarks in R-parity-violating supersymmetric models. In either scenario, the new, heavy particle decays into a tau lepton and a b quark. The search is based on a data sample of pp collisions at root s = 7 TeV, which is collected by the CMS detector at the LHC and corresponds to an integrated luminosity of 4.8 fb(-1). The number of observed events is found to be in agreement with the standard model prediction, and exclusion limits on mass parameters are obtained at the 95% confidence level. Vector leptoquarks with masses below 760 GeV are excluded and, if the branching fraction of the scalar leptoquark decay to a tau lepton and a b quark is assumed to be unity, third-generation scalar leptoquarks with masses below 525 GeV are ruled out. Top squarks with masses below 453 GeV are excluded for a typical benchmark scenario, and limits on the coupling between the top squark, tau lepton, and b quark, lambda(333) are obtained. These results are the most stringent for these scenarios to date. DOI: 10.1103/PhysRevLett.110.081801
T2  - Physical Review Letters
T1  - Search for Pair Production of Third-Generation Leptoquarks and Top Squarks in pp Collisions at root s=7 TeV
VL  - 110
IS  - 8
DO  - 10.1103/PhysRevLett.110.081801
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedzic, M. and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5317",
abstract = "Results are presented from a search for the pair production of third-generation scalar and vector leptoquarks, as well as for top squarks in R-parity-violating supersymmetric models. In either scenario, the new, heavy particle decays into a tau lepton and a b quark. The search is based on a data sample of pp collisions at root s = 7 TeV, which is collected by the CMS detector at the LHC and corresponds to an integrated luminosity of 4.8 fb(-1). The number of observed events is found to be in agreement with the standard model prediction, and exclusion limits on mass parameters are obtained at the 95% confidence level. Vector leptoquarks with masses below 760 GeV are excluded and, if the branching fraction of the scalar leptoquark decay to a tau lepton and a b quark is assumed to be unity, third-generation scalar leptoquarks with masses below 525 GeV are ruled out. Top squarks with masses below 453 GeV are excluded for a typical benchmark scenario, and limits on the coupling between the top squark, tau lepton, and b quark, lambda(333) are obtained. These results are the most stringent for these scenarios to date. DOI: 10.1103/PhysRevLett.110.081801",
journal = "Physical Review Letters",
title = "Search for Pair Production of Third-Generation Leptoquarks and Top Squarks in pp Collisions at root s=7 TeV",
volume = "110",
number = "8",
doi = "10.1103/PhysRevLett.110.081801"
}
2
43
41
46

Measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) Polarizations in pp Collisions at root s 7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedzic, M.; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2013)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedzic, M.
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5318
AB  - The polarizations of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) mesons are measured in proton-proton collisions at root s = 7 TeV, using a data sample of Upsilon(nS) - GT mu(+)mu(-) decays collected by the CMS experiment, corresponding to an integrated luminosity of 4.9 fb(-1). The dimuon decay angular distributions are analyzed in three different polarization frames. The polarization parameters lambda(theta), lambda(phi), and lambda(theta phi), as well as the frame-invariant quantity (lambda) over tilde, are presented as a function of the Upsilon(nS) transverse momentum between 10 and 50 GeV, in the rapidity ranges vertical bar y vertical bar LT 0: 6 and 0: 6 LT vertical bar y vertical bar LT 1.2. No evidence of large transverse or longitudinal polarizations is seen in the explored kinematic region. DOI: 10.1103/PhysRevLett.110.081802
T2  - Physical Review Letters
T1  - Measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) Polarizations in pp Collisions at root s 7 TeV
VL  - 110
IS  - 8
DO  - 10.1103/PhysRevLett.110.081802
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedzic, M. and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5318",
abstract = "The polarizations of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) mesons are measured in proton-proton collisions at root s = 7 TeV, using a data sample of Upsilon(nS) - GT mu(+)mu(-) decays collected by the CMS experiment, corresponding to an integrated luminosity of 4.9 fb(-1). The dimuon decay angular distributions are analyzed in three different polarization frames. The polarization parameters lambda(theta), lambda(phi), and lambda(theta phi), as well as the frame-invariant quantity (lambda) over tilde, are presented as a function of the Upsilon(nS) transverse momentum between 10 and 50 GeV, in the rapidity ranges vertical bar y vertical bar LT 0: 6 and 0: 6 LT vertical bar y vertical bar LT 1.2. No evidence of large transverse or longitudinal polarizations is seen in the explored kinematic region. DOI: 10.1103/PhysRevLett.110.081802",
journal = "Physical Review Letters",
title = "Measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) Polarizations in pp Collisions at root s 7 TeV",
volume = "110",
number = "8",
doi = "10.1103/PhysRevLett.110.081802"
}
2
69
33
77

Study of the Mass and Spin-Parity of the Higgs Boson Candidate via Its Decays to Z Boson Pairs

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedzic, M.; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2013)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedzic, M.
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5327
AB  - A study is presented of the mass and spin-parity of the new boson recently observed at the LHC at a mass near 125 GeV. An integrated luminosity of 17: 3 fb(-1), collected by the CMS experiment in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, is used. The measured mass in the ZZ channel, where both Z bosons decay to e or mu pairs, is 126: 2 +/- 0.6(stat) +/- 0. 2(syst) GeV. The angular distributions of the lepton pairs in this channel are sensitive to the spin-parity of the boson. Under the assumption of spin 0, the present data are consistent with the pure scalar hypothesis, while disfavoring the pure pseudoscalar hypothesis. DOI: 10.1103/PhysRevLett.110.081803
T2  - Physical Review Letters
T1  - Study of the Mass and Spin-Parity of the Higgs Boson Candidate via Its Decays to Z Boson Pairs
VL  - 110
IS  - 8
DO  - 10.1103/PhysRevLett.110.081803
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedzic, M. and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5327",
abstract = "A study is presented of the mass and spin-parity of the new boson recently observed at the LHC at a mass near 125 GeV. An integrated luminosity of 17: 3 fb(-1), collected by the CMS experiment in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, is used. The measured mass in the ZZ channel, where both Z bosons decay to e or mu pairs, is 126: 2 +/- 0.6(stat) +/- 0. 2(syst) GeV. The angular distributions of the lepton pairs in this channel are sensitive to the spin-parity of the boson. Under the assumption of spin 0, the present data are consistent with the pure scalar hypothesis, while disfavoring the pure pseudoscalar hypothesis. DOI: 10.1103/PhysRevLett.110.081803",
journal = "Physical Review Letters",
title = "Study of the Mass and Spin-Parity of the Higgs Boson Candidate via Its Decays to Z Boson Pairs",
volume = "110",
number = "8",
doi = "10.1103/PhysRevLett.110.081803"
}
20
240
269
262

Search for pair-produced dijet resonances in four-jet final states in pp collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedzic, M.; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2013)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedzic, M.
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5405
AB  - A search for the pair production of a heavy, narrow resonance decaying into two jets has been performed using events collected in root s = 7 TeV pp collisions with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 5.0 fb(-1). Events are selected with at least four jets and two dijet combinations with similar dijet mass. No resonances are found in the dijet mass spectrum. The upper limit at 95% confidence level on the product of the resonance pair production cross section, the branching fractions into dijets, and the acceptance varies from 0.22 to 0.005 pb, for resonance masses between 250 and 1200 GeV. Pair-produced colorons decaying into q (q) over bar are excluded for coloron masses between 250 and 740 GeV. DOI:10.1103/PhysRevLett.110.141802
T2  - Physical Review Letters
T1  - Search for pair-produced dijet resonances in four-jet final states in pp collisions at root s=7 TeV
VL  - 110
IS  - 14
DO  - 10.1103/PhysRevLett.110.141802
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedzic, M. and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5405",
abstract = "A search for the pair production of a heavy, narrow resonance decaying into two jets has been performed using events collected in root s = 7 TeV pp collisions with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 5.0 fb(-1). Events are selected with at least four jets and two dijet combinations with similar dijet mass. No resonances are found in the dijet mass spectrum. The upper limit at 95% confidence level on the product of the resonance pair production cross section, the branching fractions into dijets, and the acceptance varies from 0.22 to 0.005 pb, for resonance masses between 250 and 1200 GeV. Pair-produced colorons decaying into q (q) over bar are excluded for coloron masses between 250 and 740 GeV. DOI:10.1103/PhysRevLett.110.141802",
journal = "Physical Review Letters",
title = "Search for pair-produced dijet resonances in four-jet final states in pp collisions at root s=7 TeV",
volume = "110",
number = "14",
doi = "10.1103/PhysRevLett.110.141802"
}
9
43
45
40

Search for Top Squarks in R-Parity-Violating Supersymmetry Using Three or More Leptons and b-Tagged Jets

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedzic, M.; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2013)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedzic, M.
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5437
AB  - A search for anomalous production of events with three or more isolated leptons and bottom-quark jets produced in pp collisions at root s = 8 TeV is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 19: 5 fb(-1) collected by the CMS experiment at the LHC in 2012. No excess above the standard model expectations is observed. The results are interpreted in the context of supersymmetric models with signatures that have low missing transverse energy arising from light top-squark pair production with R-parity-violating decays of the lightest supersymmetric particle. In two models with different R-parity-violating couplings, top squarks are excluded below masses of 1020 GeV and 820 GeV when the lightest supersymmetric particle has a mass of 200 GeV.
T2  - Physical Review Letters
T1  - Search for Top Squarks in R-Parity-Violating Supersymmetry Using Three or More Leptons and b-Tagged Jets
VL  - 111
IS  - 22
DO  - 10.1103/PhysRevLett.111.221801
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedzic, M. and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5437",
abstract = "A search for anomalous production of events with three or more isolated leptons and bottom-quark jets produced in pp collisions at root s = 8 TeV is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 19: 5 fb(-1) collected by the CMS experiment at the LHC in 2012. No excess above the standard model expectations is observed. The results are interpreted in the context of supersymmetric models with signatures that have low missing transverse energy arising from light top-squark pair production with R-parity-violating decays of the lightest supersymmetric particle. In two models with different R-parity-violating couplings, top squarks are excluded below masses of 1020 GeV and 820 GeV when the lightest supersymmetric particle has a mass of 200 GeV.",
journal = "Physical Review Letters",
title = "Search for Top Squarks in R-Parity-Violating Supersymmetry Using Three or More Leptons and b-Tagged Jets",
volume = "111",
number = "22",
doi = "10.1103/PhysRevLett.111.221801"
}
13
39
44
40

Measurement of associated production of vector bosons and top quark-antiquark pairs in pp collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedzic, M.; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2013)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedzic, M.
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5476
AB  - The first measurement of vector-boson production associated with a top quark-antiquark pair in proton-proton collisions at root s = 7 TeV is presented. The results are based on a data set corresponding to an integrated luminosity of 5.0 fb(-1), recorded by the CMS detector at the LHC in 2011. The measurement is performed in two independent channels through a trilepton analysis of t (t) over barZ events and a same-sign dilepton analysis of t (t) over barV (V = W or Z) events. In the trilepton channel a direct measurement of the t (t) over barZ cross section sigma(t (t) over barZ) = 0.28(-0.11)(+0.14) (stat)(-0.03)(+0.06) (syst) pb is obtained. In the dilepton channel a measurement of the t (t) over barV cross section yields sigma(t (t) over barV) = 0.43(-0.15)(+0.17) (stat)(-0.07)(+0.09) (syst) pb. These measurements have a significance, respectively, of 3.3 and 3.0 standard deviations from the background hypotheses and are compatible, within uncertainties, with the corresponding next-to-leading order predictions of 0.137(-0.016)(+0.012) and 0.306(-0.053)(+0.031) pb. DOI: 10.1103/PhysRevLett.110.172002
T2  - Physical Review Letters
T1  - Measurement of associated production of vector bosons and top quark-antiquark pairs in pp collisions at root s=7 TeV
VL  - 110
IS  - 17
DO  - 10.1103/PhysRevLett.110.172002
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedzic, M. and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5476",
abstract = "The first measurement of vector-boson production associated with a top quark-antiquark pair in proton-proton collisions at root s = 7 TeV is presented. The results are based on a data set corresponding to an integrated luminosity of 5.0 fb(-1), recorded by the CMS detector at the LHC in 2011. The measurement is performed in two independent channels through a trilepton analysis of t (t) over barZ events and a same-sign dilepton analysis of t (t) over barV (V = W or Z) events. In the trilepton channel a direct measurement of the t (t) over barZ cross section sigma(t (t) over barZ) = 0.28(-0.11)(+0.14) (stat)(-0.03)(+0.06) (syst) pb is obtained. In the dilepton channel a measurement of the t (t) over barV cross section yields sigma(t (t) over barV) = 0.43(-0.15)(+0.17) (stat)(-0.07)(+0.09) (syst) pb. These measurements have a significance, respectively, of 3.3 and 3.0 standard deviations from the background hypotheses and are compatible, within uncertainties, with the corresponding next-to-leading order predictions of 0.137(-0.016)(+0.012) and 0.306(-0.053)(+0.031) pb. DOI: 10.1103/PhysRevLett.110.172002",
journal = "Physical Review Letters",
title = "Measurement of associated production of vector bosons and top quark-antiquark pairs in pp collisions at root s=7 TeV",
volume = "110",
number = "17",
doi = "10.1103/PhysRevLett.110.172002"
}
5
36
38
42

Inclusive Search for Supersymmetry Using Razor Variables in pp Collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedzic, M.; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2013)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedzic, M.
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5644
AB  - An inclusive search is presented for new heavy particle pairs produced in root s = 7 TeV proton-proton collisions at the LHC using 4.7 +/- 0.1 fb(-1) of integrated luminosity. The selected events are analyzed in the 2D razor space of M-R, an event-by-event indicator of the heavy particle mass scale, and R, a dimensionless variable related to the missing transverse energy. The third-generation sector is probed using the event heavy-flavor content. The search is sensitive to generic supersymmetry models with minimal assumptions about the superpartner decay chains. No excess is observed in the number of events beyond that predicted by the standard model. Exclusion limits are derived in the CMSSM framework as well as for simplified models. Within the CMSSM parameter space considered, gluino masses up to 800 GeV and squark masses up to 1.35 TeV are excluded at 95% confidence level depending on the model parameters. The direct production of pairs of top or bottom squarks is excluded for masses as high as 400 GeV.
T2  - Physical Review Letters
T1  - Inclusive Search for Supersymmetry Using Razor Variables in pp Collisions at root s=7 TeV
VL  - 111
IS  - 8
DO  - 10.1103/PhysRevLett.111.081802
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedzic, M. and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5644",
abstract = "An inclusive search is presented for new heavy particle pairs produced in root s = 7 TeV proton-proton collisions at the LHC using 4.7 +/- 0.1 fb(-1) of integrated luminosity. The selected events are analyzed in the 2D razor space of M-R, an event-by-event indicator of the heavy particle mass scale, and R, a dimensionless variable related to the missing transverse energy. The third-generation sector is probed using the event heavy-flavor content. The search is sensitive to generic supersymmetry models with minimal assumptions about the superpartner decay chains. No excess is observed in the number of events beyond that predicted by the standard model. Exclusion limits are derived in the CMSSM framework as well as for simplified models. Within the CMSSM parameter space considered, gluino masses up to 800 GeV and squark masses up to 1.35 TeV are excluded at 95% confidence level depending on the model parameters. The direct production of pairs of top or bottom squarks is excluded for masses as high as 400 GeV.",
journal = "Physical Review Letters",
title = "Inclusive Search for Supersymmetry Using Razor Variables in pp Collisions at root s=7 TeV",
volume = "111",
number = "8",
doi = "10.1103/PhysRevLett.111.081802"
}
10
41
56
38

Searches for new physics using the t(t)over-bar invariant mass distribution in pp collisions at root s=8 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedzic, M.; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2013)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedzic, M.
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5763
AB  - Searches for anomalous top quark-antiquark production are presented, based on pp collisions at root s = 8 TeV. The data, corresponding to an integrated luminosity of 19.7 fb(-1), were collected with the CMS detector at the LHC. The observed t (t) over bar invariant mass spectrum is found to be compatible with the standard model prediction. Limits on the production cross section times branching fraction probe, for the first time, a region of parameter space for certain models of new physics not yet constrained by precision measurements.
T2  - Physical Review Letters
T1  - Searches for new physics using the t(t)over-bar invariant mass distribution in pp collisions at root s=8 TeV
VL  - 111
IS  - 21
DO  - 10.1103/PhysRevLett.111.211804
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedzic, M. and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5763",
abstract = "Searches for anomalous top quark-antiquark production are presented, based on pp collisions at root s = 8 TeV. The data, corresponding to an integrated luminosity of 19.7 fb(-1), were collected with the CMS detector at the LHC. The observed t (t) over bar invariant mass spectrum is found to be compatible with the standard model prediction. Limits on the production cross section times branching fraction probe, for the first time, a region of parameter space for certain models of new physics not yet constrained by precision measurements.",
journal = "Physical Review Letters",
title = "Searches for new physics using the t(t)over-bar invariant mass distribution in pp collisions at root s=8 TeV",
volume = "111",
number = "21",
doi = "10.1103/PhysRevLett.111.211804"
}
2
75
91
77

Search for a narrow, spin-2 resonance decaying to a pair of Z bosons in the q(q)over-barl(+)l(-) final state

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedzic, M.; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2013)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedzic, M.
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5297
AB  - Results are presented from a search for a narrow, spin-2 resonance decaying into a pair of Z bosons, with one Z-boson decaying into leptons (e(+)e(-) or mu(+)mu(-)) and the other into jets. An example of such a resonance is the Kaluza-Klein graviton, G(KK), predicted in Randall-Sundrum models. The analysis is based on a 4.9 fb(-1) sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected with the CMS detector at the LHC. Kinematic and topological properties including decay angular distributions are used to discriminate between signal and background. No evidence for a resonance is observed, and upper limits on the production cross sections times branching fractions are set. In two models that predict Z-boson spin correlations in graviton decays, graviton masses are excluded lower than a value which varies between 610 and 945 GeV, depending on the model and the strength of the graviton couplings. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
T2  - Physics Letters B
T1  - Search for a narrow, spin-2 resonance decaying to a pair of Z bosons in the q(q)over-barl(+)l(-) final state
VL  - 718
IS  - 4-5
SP  - 1208
EP  - 1228
DO  - 10.1016/j.physletb.2012.11.063
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedzic, M. and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5297",
abstract = "Results are presented from a search for a narrow, spin-2 resonance decaying into a pair of Z bosons, with one Z-boson decaying into leptons (e(+)e(-) or mu(+)mu(-)) and the other into jets. An example of such a resonance is the Kaluza-Klein graviton, G(KK), predicted in Randall-Sundrum models. The analysis is based on a 4.9 fb(-1) sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected with the CMS detector at the LHC. Kinematic and topological properties including decay angular distributions are used to discriminate between signal and background. No evidence for a resonance is observed, and upper limits on the production cross sections times branching fractions are set. In two models that predict Z-boson spin correlations in graviton decays, graviton masses are excluded lower than a value which varies between 610 and 945 GeV, depending on the model and the strength of the graviton couplings. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.",
journal = "Physics Letters B",
title = "Search for a narrow, spin-2 resonance decaying to a pair of Z bosons in the q(q)over-barl(+)l(-) final state",
volume = "718",
number = "4-5",
pages = "1208-1228",
doi = "10.1016/j.physletb.2012.11.063"
}
1
8
13
16

Search for heavy narrow dilepton resonances in pp collisions at root s=7 TeV and root s=8 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedzic, M.; Krpic, D.; Milošević, Jovan; Milenović, Predrag; Rekovic, V.

(2013)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedzic, M.
AU  - Krpic, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Rekovic, V.
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5374
AB  - An updated search for heavy narrow resonances decaying to muon or electron pairs using the CMS detector is presented. Data samples from pp collisions at root s = 7 TeV and 8 TeV at the LHC, with integrated luminosities of up to 5.3 and 4.1 fb(-1), respectively, are combined. No evidence for a heavy narrow resonance is observed. The analysis of the combined data sets excludes, at 95% confidence level, a Sequential Standard Model Z (SSM) resonance lighter than 2590 GeV, a superstring-inspired Z (psi) lighter than 2260 GeV, and Kaluza-Klein gravitons lighter than 2390 (2030) GeV, assuming that the coupling parameter k/(M) over bar (Pl) is 0.10 (0.05). These are the most stringent limits to date. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved.
T2  - Physics Letters B
T1  - Search for heavy narrow dilepton resonances in pp collisions at root s=7 TeV and root s=8 TeV
VL  - 720
IS  - 1-3
SP  - 63
EP  - 82
DO  - 10.1016/j.physletb.2013.02.003
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedzic, M. and Krpic, D. and Milošević, Jovan and Milenović, Predrag and Rekovic, V.",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5374",
abstract = "An updated search for heavy narrow resonances decaying to muon or electron pairs using the CMS detector is presented. Data samples from pp collisions at root s = 7 TeV and 8 TeV at the LHC, with integrated luminosities of up to 5.3 and 4.1 fb(-1), respectively, are combined. No evidence for a heavy narrow resonance is observed. The analysis of the combined data sets excludes, at 95% confidence level, a Sequential Standard Model Z (SSM) resonance lighter than 2590 GeV, a superstring-inspired Z (psi) lighter than 2260 GeV, and Kaluza-Klein gravitons lighter than 2390 (2030) GeV, assuming that the coupling parameter k/(M) over bar (Pl) is 0.10 (0.05). These are the most stringent limits to date. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved.",
journal = "Physics Letters B",
title = "Search for heavy narrow dilepton resonances in pp collisions at root s=7 TeV and root s=8 TeV",
volume = "720",
number = "1-3",
pages = "63-82",
doi = "10.1016/j.physletb.2013.02.003"
}
2
78
102
80