Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2017 (49)
2016 (97)
2015 (75)
2014 (24)
2011 (21)
2010 (9)
Type
article (270)
other (5)
Version
No records found.
M-Rank
aM21 (1)
M21 (105)
M21a (80)
M22 (7)

Khachatryan, V.

Link to this page

Authority KeyName Variants
85fe4981-1130-4c1d-a132-ea28fd676999
  • Khachatryan, V. (275)
Projects
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA) BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Republic of Korea), WCU (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA)
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (U.S.), NSF (U.S.) FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS (France) [IN2P3], BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA)
FMSR (Austria), FNRS, FWO (Belgium), CNPq, CAPES, FAPERJ, FAPESP (Brazil), MES (Bulgaria), CERN, CAS, MoST, NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences, NICPB (Estonia), Academy of Finland, ME, HIP (Finland), CEA, CNRS/IN2P3 (France), BMBF, Germany, DFG, HGF (Germany), GSRT (Greece), OTKA, NKTH (Hungary), DAE, DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF, WCU (Korea), LAS (Lithuania), CINVESTAV, CONACYT, SEP, UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST, MAE (Russia), MSTD (Serbia), MICINN, CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK, TAEK (Turkey), STFC (United Kingdom), DOE, NSF (USA) Austrian Federal Ministry of Science and Research and the Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency(FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Mexican Funding Agency (CINVESTAV), Mexican Funding Agency (CONACYT), Mexican Funding Agency (SEP), Mexican Funding Agency (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, spain, Swiss Funding Agency (ETH Board), Swiss Funding Agency (ETH Zurich), Swiss Funding Agency (PSI), Swiss Funding Agency (SNF), Swiss Funding Agency (UniZH), Swiss Funding Agency (Canton Zurich), Swiss Funding Agency (SER), National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council and EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF
Austrian Federal Ministry of Science and Research, Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Estonian Academy of Sciences and NICPB, Academy of Finland, Finnish Ministry of Education, and Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a lEnergie Atomique, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germa-ny, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, and National Office for Research and Technology, Hungary, Department of Atomic Energy, and Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Korea, Lithuanian Academy of Sciences, Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI), Pakistan Atomic Energy Commission, State Commission for Scientific Research, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan), Ministry of Science and Technologies of the Russian Federation, and Russian Ministry of Atomic Energy, Ministry of Science and Technological Development of Serbia, Ministerio de Ciencia e Innovacion, Spain, Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER), National Science Council, Taipei, Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority, Science and Technology Facilities Council, U. K., US Department of Energy, US National Science Foundation, European Research Council (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy), Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lindustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Marie-Curie programme Austrian Federal Ministry of Science and Research, Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIEN-CIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Estonian Academy of Sciences, NICPB, Academy of Finland, Finnish Ministry of Education, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher For-schungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Korea, Lithuanian Academy of Sciences, Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI), Pakistan Atomic Energy Commission, State Commission for Scientific Research, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan), Ministry of Science and Technologies of the Russian Federation, Russian Ministry of Atomic Energy, Ministry of Science and Technological Development of Serbia, Ministerio de Ciencia e Innovacion, Spain, Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER), National Science Council, Taipei, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, European Union, Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy), Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lindustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium)
Austrian Federal Ministry of Science and Research, Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onder-zoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, COLCIENCIAS, Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Estonian Academy of Sciences, NICPB, Academy of Finland, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, NRF, Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Pakistan Atomic Energy Commission, State Commission for Scientific Research, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan), Ministry of Science and Technologies of the Russian Federation, Russian Ministry of Atomic Energy, Ministry of Science and Technological Development of Serbia, Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, European Union, Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy) Austrian Federal Ministry of Science and Research, Belgium Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency CNPq, Brazilian Funding Agency CAPES, Brazilian Funding Agency FAPERJ, Brazilian Funding Agency FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Estonian Academy of Sciences, NICPB, Academy of Finland, Finnish Ministry of Education, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, NRF, Korea, Lithuanian Academy of Sciences, Mexican Funding Agency CINVESTAV, Mexican Funding Agency CONACYT, Mexican Funding Agency SEP, Mexican Funding Agency UASLP-FAI, Pakistan Atomic Energy Commission, State Commission for Scientific Research, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Armenia, JINR, Belarus, JINR, Georgia, JINR, Ukraine, JINR, Uzbekistan, Ministry of Science and Technologies of the Russian Federation, Russian Ministry of Atomic Energy, Ministry of Science and Technological Development of Serbia, Ministerio de Ciencia e Innovacion, Programa Consolider-Ingenio 2010, Spain, Swiss Funding Agency ETH Board, Swiss Funding Agency ETH Zurich, Swiss Funding Agency PSI, Swiss Funding Agency SNF, Swiss Funding Agency UniZH, Swiss Funding Agency Canton Zurich, Swiss Funding Agency SER, National Science Council, Taipei, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, European Union, Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy), Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lindustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium)
Austrian Federal Ministry of Science and Research, Belgium Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Estonian Academy of Sciences and NICPB, Academy of Finland, Finnish Ministry of Education, and Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a lEnergie Atomique, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, and National Office for Research and Technology, Hungary, Department of Atomic Energy, and Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Pakistan Atomic Energy Commission, State Commission for Scientific Research, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), Ministry of Science and Technologies of the Russian Federation, Russian Ministry of Atomic Energy, Ministry of Science and Technological Development of Serbia, Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, European Union, Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy) Austrian Federal Ministry of Science and Research, Belgium Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Estonian Academy of Sciences, NICPB, Academy of Finland, Finnish Ministry of Education, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, NRF, Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Pakistan Atomic Energy Commission, State Commission for Scientific Research, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan), Ministry of Science and Technologies of the Russian Federation, Russian Ministry of Atomic Energy, Ministry of Science and Technological Development of Serbia, Ministerio de Ciencia e Innovacion, Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy), Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium)
Austrian Federal Ministry of Science, Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, Republic of Korea, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education (Malaysia), University of Malaya (Malaysia), Mexican Funding Agency (BUAP), Mexican Funding Agency (CINVESTAV), Mexican Funding Agency (CONACYT), Mexican Funding Agency (LNS), Mexican Funding Agency (SEP), Mexican Funding Agency (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Spain, Programa Consolider-Ingenio, Spain, Swiss Funding Agency (ETH Board), Swiss Funding Agency (ETH Zurich), Swiss Funding Agency (PSI), Swiss Funding Agency (SNF), Swiss Funding Agency (UniZH), Swiss Funding Agency (Canton Zurich), Swiss Funding Agency (SER), Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus programme of the Ministry of Science and Higher Education (Poland), OPUS programme of the National Science Center (Poland), MIUR (Italy) [20108T4XTM], Thalis programme, Aristeia programme, EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845] Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council, European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat lIEnergie Atomique et Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, and National Innovation Office, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, the Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, the Ministry of Science and Higher Education and the National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain, Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER), the Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union), Leventis Foundation, the A. P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR project [20108T4XTM], Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Welch Foundation
Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency CNPq, Brazilian Funding Agency CAPES, Brazilian Funding Agency FAPERJ, Brazilian Funding Agency FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a l Energie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, University of Malaya (Malaysia), Mexican Funding Agency CINVESTAV, Mexican Funding Agency CONACYT, Mexican Funding Agency SEP, Mexican Funding Agency UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agency ETH Board, Swiss Funding Agency ETH Zurich, Swiss Funding Agency PSI, Swiss Funding Agency SNF, Swiss Funding Agency UniZH, Swiss Funding Agency Canton Zurich, Swiss Funding Agency SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U. K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund, Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR project (Italy) [20108T4XTM], Thalis and Aristeia programmes, EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLPFAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education and the National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH BoardETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, United Kingdom, U.S. Department of Energy, U.S. National Science Foundation, EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Consorzio per la Fisica (Trieste) [20108T4XTM]
Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie program, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, OPUS program of the National Science Center (Poland), Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR (Italy) [20108T4XTM], Thalis program, Aristeia program, EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Welch Foundation [C-1845] Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], Brazilian Funding Agency (CNPq), Estonia, Brazilian Funding Agency (CAPES), Estonia, Brazilian Funding Agency (FAPERJ), Estonia, Brazilian Funding Agency (Regional Development Fund), Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Ministry of Education and Research, Estonia, Estonian Research Council, Estonia [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, France, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, Republic of Korea, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), Mexican Funding Agency (CINVESTAV), Mexican Funding Agency (CONACYT), Mexican Funding Agency (SEP), Mexican Funding Agency (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agency (ETH Board), Swiss Funding Agency (ETH Zurich), Swiss Funding Agency (PSI), Swiss Funding Agency (SNF), Swiss Funding Agency (UniZH), Swiss Funding Agency (Canton Zurich), Swiss Funding Agency (SER), Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, U.S. Department of Energy, U.S. National Science Foundation, Marie Curie program (European Union), European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, OPUS program of the National Science Center (Poland), Compagnia di San Paolo (Torino), Consorzioper la Fisica (Trieste), MIUR Project (Italy) [20108T4XTM], Thalis program - EU-ESF, Aristeia program - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, RachadapisekSompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Welch Foundation [C-1845]
Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique and Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, National Research Foundation, Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), Mexican Funding Agency (CINVESTAV), Mexican Funding Agency (CONACYT), Mexican Funding Agency (SEP), Mexican Funding Agency (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agency (ETH Board), Swiss Funding Agency (ETH Zurich), Swiss Funding Agency (PSI), Swiss Funding Agency (SNF), Swiss Funding Agency (UniZH), Swiss Funding Agency (Canton Zurich), Swiss Funding Agency (SER), Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey and Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine and State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie program, European Research Council and EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR Project (Italy) [20108T4XTM], Thalis and Aristeia programs - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Welch Foundation Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Counci [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, University of Malaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K., U.S. Department of Energy, U.S. National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, OPUS programme of the National Science Center (Poland), Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR (Italy) [20108T4XTM], EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Welch Foundation [C-1845]
Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung and Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretarla de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, OPUS programme of the National Science Center (Poland), Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR [20108T4XTM], Thalis and Aristeia programmes - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Welch Foundation [C-1845] Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, OPUS programme of the National Science Center (Poland), Compagnia di San Paolo (Torino), MIUR project (Italy) [20108T4XTM], Thalis programme, Aristeia programme, EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Welch Foundation [C-1845]
Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonia, Estonian Research Council, Estonia [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, Republic of Korea, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education (Malaysia), Mexican Funding Agency (CINVESTAV), Mexican Funding Agency (CONACYT), Mexican Funding Agency (SEP), Mexican Funding Agency (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Spain, Swiss Funding Agency (ETH Board), Swiss Funding Agency (ETH Zurich), Swiss Funding Agency (PSI), Swiss Funding Agency (SNF), Swiss Funding Agency (UniZH), Swiss Funding Agency (Canton Zurich), Swiss Funding Agency (SER), Ministry of Science and Technology, Taipei, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie program (European Union), European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, OPUS program of the National Science Center (Poland), Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR project (Italy) [20108T4XTM], Thalis programme - EU-ESF, Aristeia programme - EU-ESF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Welch Foundation [C-1845], Greek NSRF, University of Malaya (Malaysia), Fonds voor Wetenschappelijk Onderzoek, Programa Consolider-Ingenio, Spain, Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Brazilian Funding Agency CNPq, Brazilian Funding Agency CAPES, Brazilian Funding Agency FAPERJ, Brazilian Funding Agency FAPESP, Fonds voor Wetenschappelijk Onderzoek, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Secretariat for Higher Education, Science, Technology and Innovation, Ecuador, Ministry of Education and Research, Estonian Research Council, Estonia [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Innovation Office, Hungary, Department of Atomic Energy, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, Republic of Korea, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, (Malaysia), BUAP, CINVESTAV, CONACYT, LNS, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Spain, Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme (European Union), European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus programme of the Ministry of Science and Higher Education, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543, 2014/15/B/ST2/03998], Thalis programme - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Rachadapisek Sompot Fund for Postdoctoral Fellowship (Thailand), Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845], Department of Science and Technology, India, University of Malaya (Malaysia), Sonata-bis [2012/07/E/ST2/01406], Aristeia programme - EU-ESF, Helsinki Institute of Physics, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France
Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Agency CNPq, Brazilian Agency CAPES, Brazilian Agency FAPERJ, Brazilian Agency FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Estonian Research Council, Estonia [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, France, Finnish Ministry of Education and Culture, France, Helsinki Institute of Physics, France, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, France, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, Ministry of Education and Research, Estonia, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), Mexican Funding Agency CINVESTAV, Mexican Funding Agency CONACYT, Mexican Funding Agency SEP, Mexican Funding Agency UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education and the National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Spain, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agency ETH Board, Swiss Funding Agency ETH Zurich, Swiss Funding Agency PSI, Swiss Funding Agency SNF, Swiss Funding Agency UniZH, Swiss Funding Agency Canton Zurich, Swiss Funding Agency SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, U.S. Department of Energy, U.S. National Science Foundation, Marie-Curie program, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustire et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, OPUS program of the National Science Center (Poland), Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR (Italy) [20108T4XTM], EU-ESF, Greek NSRF, Qatar National Research Fund, Rachadapisek SomWetenschappelijk Onderzopot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Welch Foundation [C-1845] Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agencie (CNPq), Brazilian Funding Agencie (CAPES), Brazilian Funding Agencie (FAPERJ), Brazilian Funding Agencie (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, University of Malaya (Malaysia), Mexican Funding Agencie (CINVESTAV), Mexican Funding Agencie (CONACYT), Mexican Funding Agencie (SEP), Mexican Funding Agencie (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agencie (ETH Board), Swiss Funding Agencie (ETH Zurich), Swiss Funding Agencie (PSI), Swiss Funding Agencie (SNF), Swiss Funding Agencie (UniZH), Swiss Funding Agencie (Canton Zurich), Swiss Funding Agencie (SER), Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund, Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR (Italy) [20108T4XTM], Thalis and Aristeia programmes, EU-ESF, Greek NSRF, Qatar National Research Fund
Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agencie (CNPq), Brazilian Funding Agencie (CAPES), Brazilian Funding Agencie (FAPERJ), Brazilian Funding Agencie (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a IEnergie Atomiqui et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, University of Malaya (Malaysia), Mexican Funding Agencie (CINVESTAV), Mexican Funding Agencie (CONACYT), Mexican Funding Agencie (SEP), Mexican Funding Agencie (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agencie (ETH Board), Swiss Funding Agencie (ETH Zurich), Swiss Funding Agencie (PSI), Swiss Funding Agencie (SNF), Swiss Funding Agencie (UniZH), Swiss Funding Agencie (Canton Zurich), Swiss Funding Agencie (SER), Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, U.S. Department of Energy, U.S. National Science Foundation, Marie-Curie program, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, OPUS program of the National Science Center (Poland), Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR (Italy) [20108T4XTM], Thalis program, Aristeia program, EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Welch Foundation [C-1845] Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agencies (CNPq), Brazilian Funding Agencies (CAPES), Brazilian Funding Agencies (FAPERJ), Brazilian Funding Agencies (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science,Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Secretariat for Higher Education, Science, Technology and Innovation, Ecuador, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT236], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleeaire et de Physique des Particules /CNRS, Commissariat a l Energie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, University of Malaya (Malaysia), Mexican Funding Agencies (BUAP), Mexican Funding Agencies (CINVESTAV), Mexican Funding Agencies (CONACYT), Mexican Funding Agencies (LNS), Mexican Funding Agencies (SEP), Mexican Funding Agencies (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretara de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K, US Department of Energy, and the US National Science Foundation, Marie-Curie programme and the European Research Council and EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus programme of the Ministry of Science and Higher Education, National Science Center (Poland), Harmonia [2014/14/M/ST2/00428], Opus [2013/11/B/ST2/04202, 2014/13/B/ST2/02543, 2014/15/B/ST2/03998], Sonata-bis [2012/07/E/ST2/01406], Thalis and Aristeia programmes - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845]
Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Spor, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council, Estonia [1UT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung and Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Innovation Office, Hungary, Department of Atomic Energy India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education (Malaysia), University of Malaya (Malaysia), Mexican Funding Agency (BUAP), Mexican Funding Agency (CINVES-TAV), Mexican Funding Agency (CONACYT), Mexican Funding Agency (LNS), Mexican Funding Agency (SEP), Mexican Funding Agency (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agency (ETH Board), Swiss Funding Agency (ETH Zurich), Swiss Funding Agency (PSI), Swiss Funding Agency (SNF), Swiss Funding Agency (UniZH), Swiss Funding Agency (Canton Zurich), Swiss Funding Agency (SER), Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey,, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie program (European Union), European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus program of the Ministry of Science and Higher Education (Poland), OPUS program of the National Science Center (Poland), MIUR (Italy) [20108T4XTM], Thalis program - EU-ESF, Aristeia program - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845] Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology and National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, France, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, Republic of Korea, National Research Foundation, Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, Malaysia, University of Malaya, Malaysia, Mexican Funding Agency (BUAP), Mexican Funding Agency (CINVESTAV), Mexican Funding Agency (CONACYT), Mexican Funding Agency (LNS), Mexican Funding Agency (SEP), Mexican Funding Agency (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, Joint Institute for Nunclear Research in Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Spain, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agency (ETH Board), Swiss Funding Agency (ETH Zurich), Swiss Funding Agency (PSI), Swiss Funding Agency (SNF), Swiss Funding Agency (UniZH), Swiss Funding Agency (Canton Zurich), Swiss Funding Agency (SER), Ministry of Science and Technology, Taiwan, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie program, European Research Council, EPLANET, European Union, Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture, Belgium, Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus program of the Ministry of Science and Higher Education, Poland, OPUS program of the National Science Center, Poland, Thalis program, Aristeia program, EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Thailand, Chulalongkorn Academic into Its 2nd Century Project Advancement Project, Thailand, Welch Foundation [C-1845]

Author's Bibliography

Observation of Charge-Dependent Azimuthal Correlations in p-Pb Collisions and Its Implication for the Search for the Chiral Magnetic Effect

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1487
AB  - Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range broken vertical bar eta broken vertical bar LT 2.4, and a third particle measured in the hadron forward calorimeters (4.4 LT broken vertical bar eta broken vertical bar LT 5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and. gap between the two charged particles, are of similar magnitude in p-Pb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.
T2  - Physical Review Letters
T1  - Observation of Charge-Dependent Azimuthal Correlations in p-Pb Collisions and Its Implication for the Search for the Chiral Magnetic Effect
VL  - 118
IS  - 12
DO  - 10.1103/PhysRevLett.118.122301
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1487",
abstract = "Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range broken vertical bar eta broken vertical bar LT 2.4, and a third particle measured in the hadron forward calorimeters (4.4 LT broken vertical bar eta broken vertical bar LT 5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and. gap between the two charged particles, are of similar magnitude in p-Pb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.",
journal = "Physical Review Letters",
title = "Observation of Charge-Dependent Azimuthal Correlations in p-Pb Collisions and Its Implication for the Search for the Chiral Magnetic Effect",
volume = "118",
number = "12",
doi = "10.1103/PhysRevLett.118.122301"
}
127
62
58
78

Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1386
AB  - A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions at root s = 8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 fb(-1), recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. The most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.
T2  - Physical Review Letters
T1  - Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV
VL  - 118
IS  - 2
DO  - 10.1103/PhysRevLett.118.021802
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1386",
abstract = "A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions at root s = 8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 fb(-1), recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. The most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.",
journal = "Physical Review Letters",
title = "Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV",
volume = "118",
number = "2",
doi = "10.1103/PhysRevLett.118.021802"
}
72
21
16
20

Search for narrow resonances in dilepton mass spectra in proton-proton collisions at root s=13 TeV and combination with 8 TeV data

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1547
AB  - A search for narrow resonances in dielectron and dimuon invariant mass spectra has been performed using data obtained from proton-proton collisions at root s = 13 TeV collected with the CMS detector. The integrated luminosity for the dielectron sample is 2.7 fb(-1) and for the dimuon sample 2.9 fb(-1). The sensitivity of the search is increased by combining these data with a previously analyzed set of data obtained at root s = 8 TeV and corresponding to a luminosity of 20 fb(-1). No evidence for non-standard-model physics is found, either in the 13 TeV data set alone, or in the combined data set. Upper limits on the product of production cross section and branching fraction have also been calculated in a model-independent manner to enable interpretation in models predicting a narrow dielectron or dimuon resonance structure. Limits are set on the masses of hypothetical particles that could appear in new-physics scenarios. For the Z(SSM) particle, which arises in the sequential standard model, and for the superstring inspired Z(psi) particle, 95% confidence level lower mass limits for the combined data sets and combined channels are found to be 3.37 and 2.82 TeV, respectively. The corresponding limits for the lightest Kaluza-Klein graviton arising in the Randall-Sundrum model of extra dimensions with coupling parameters 0.01 and 0.10 are 1.46 and 3.11 TeV, respectively. These results significantly exceed the limits based on the 8 TeV LHC data. (C) 2017 The Author. Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Search for narrow resonances in dilepton mass spectra in proton-proton collisions at root s=13 TeV and combination with 8 TeV data
VL  - 768
SP  - 57
EP  - 80
DO  - 10.1016/j.physletb.2017.02.010
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1547",
abstract = "A search for narrow resonances in dielectron and dimuon invariant mass spectra has been performed using data obtained from proton-proton collisions at root s = 13 TeV collected with the CMS detector. The integrated luminosity for the dielectron sample is 2.7 fb(-1) and for the dimuon sample 2.9 fb(-1). The sensitivity of the search is increased by combining these data with a previously analyzed set of data obtained at root s = 8 TeV and corresponding to a luminosity of 20 fb(-1). No evidence for non-standard-model physics is found, either in the 13 TeV data set alone, or in the combined data set. Upper limits on the product of production cross section and branching fraction have also been calculated in a model-independent manner to enable interpretation in models predicting a narrow dielectron or dimuon resonance structure. Limits are set on the masses of hypothetical particles that could appear in new-physics scenarios. For the Z(SSM) particle, which arises in the sequential standard model, and for the superstring inspired Z(psi) particle, 95% confidence level lower mass limits for the combined data sets and combined channels are found to be 3.37 and 2.82 TeV, respectively. The corresponding limits for the lightest Kaluza-Klein graviton arising in the Randall-Sundrum model of extra dimensions with coupling parameters 0.01 and 0.10 are 1.46 and 3.11 TeV, respectively. These results significantly exceed the limits based on the 8 TeV LHC data. (C) 2017 The Author. Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Search for narrow resonances in dilepton mass spectra in proton-proton collisions at root s=13 TeV and combination with 8 TeV data",
volume = "768",
pages = "57-80",
doi = "10.1016/j.physletb.2017.02.010"
}
2
46
66
63

Search for heavy gauge W bosons in events with an energetic lepton and large missing transverse momentum at root s=13TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1618
AB  - A search is presented for W bosons in events with an electron or muon and large missing transverse momentum, using proton-proton collision data at root s = 13 TeV collected with the CMS detector in 2015 and corresponding to an integrated luminosity of 2.3 fb(-1). No evidence of an excess of events relative to the standard model expectations is observed. For a W boson described by the sequential standard model, upper limits at 95% confidence level are set on the product of the production cross section and branching fraction and lower limits are established on the new boson mass. Masses below 4.1 TeV are excluded combining electron and muon decay channels, significantly improving upon the results obtained with the 8 TeV data. Exclusion limits at 95% confidence level on the product of the W production cross section and branching fraction are also derived in combination with the 8 TeV data. Finally, exclusion limits are set for the production of generic W bosons decaying into this final state using a model-independent approach. (C) 2017 The Author. Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Search for heavy gauge W bosons in events with an energetic lepton and large missing transverse momentum at root s=13TeV
VL  - 770
SP  - 278
EP  - 301
DO  - 10.1016/j.physletb.2017.04.043
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1618",
abstract = "A search is presented for W bosons in events with an electron or muon and large missing transverse momentum, using proton-proton collision data at root s = 13 TeV collected with the CMS detector in 2015 and corresponding to an integrated luminosity of 2.3 fb(-1). No evidence of an excess of events relative to the standard model expectations is observed. For a W boson described by the sequential standard model, upper limits at 95% confidence level are set on the product of the production cross section and branching fraction and lower limits are established on the new boson mass. Masses below 4.1 TeV are excluded combining electron and muon decay channels, significantly improving upon the results obtained with the 8 TeV data. Exclusion limits at 95% confidence level on the product of the W production cross section and branching fraction are also derived in combination with the 8 TeV data. Finally, exclusion limits are set for the production of generic W bosons decaying into this final state using a model-independent approach. (C) 2017 The Author. Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Search for heavy gauge W bosons in events with an energetic lepton and large missing transverse momentum at root s=13TeV",
volume = "770",
pages = "278-301",
doi = "10.1016/j.physletb.2017.04.043"
}
2
20
30
30

Measurement of electroweak-induced production of W gamma with two jets in pp collisions at root s=8TeV and constraints on anomalous quartic gauge couplings

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1615
AB  - A measurement of electroweak-induced production of W gamma and two jets is performed, where the W boson decays leptonically. The data used in the analysis correspond to an integrated luminosity of 19.7 fb(-1) collected by the CMS experiment in root s = 8TeV proton-proton collisions produced at the LHC. Candidate events are selected with exactly one muon or electron, missing transverse momentum, one photon, and two jets with large rapidity separation. An excess over the hypothesis of the standard model without electroweak production of W gamma with two jets is observed with a signi fi cance of 2.7 standard deviations. The cross section measured in the fi ducial region is 10.8 +/- 4.1(stat) +/- 3.4(syst) +/- 0. 3(lumi) fb, which is consistent with the standard model electroweak prediction. The total cross section for W gamma in association with two jets in the same fi ducial region is measured to be 23.2 +/- 4.3(stat) +/- 1.7(syst) +/- 0.6(lumi) fb, which is consistent with the standard model prediction from the combination of electroweakand quantum chromodynamics-induced processes. No deviations are observed from the standard model predictions and experimental limits on anomalous quartic gauge couplings integral M,0- 7 /Lambda(4), integral T,0- 2 /Lambda(4), and integral T,5-7/Lambda(4) are set at 95% con fi dence level.
T2  - Journal of High Energy Physics
T1  - Measurement of electroweak-induced production of W gamma with two jets in pp collisions at root s=8TeV and constraints on anomalous quartic gauge couplings
IS  - 6
DO  - 10.1007/JHEP06(2017)106
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1615",
abstract = "A measurement of electroweak-induced production of W gamma and two jets is performed, where the W boson decays leptonically. The data used in the analysis correspond to an integrated luminosity of 19.7 fb(-1) collected by the CMS experiment in root s = 8TeV proton-proton collisions produced at the LHC. Candidate events are selected with exactly one muon or electron, missing transverse momentum, one photon, and two jets with large rapidity separation. An excess over the hypothesis of the standard model without electroweak production of W gamma with two jets is observed with a signi fi cance of 2.7 standard deviations. The cross section measured in the fi ducial region is 10.8 +/- 4.1(stat) +/- 3.4(syst) +/- 0. 3(lumi) fb, which is consistent with the standard model electroweak prediction. The total cross section for W gamma in association with two jets in the same fi ducial region is measured to be 23.2 +/- 4.3(stat) +/- 1.7(syst) +/- 0.6(lumi) fb, which is consistent with the standard model prediction from the combination of electroweakand quantum chromodynamics-induced processes. No deviations are observed from the standard model predictions and experimental limits on anomalous quartic gauge couplings integral M,0- 7 /Lambda(4), integral T,0- 2 /Lambda(4), and integral T,5-7/Lambda(4) are set at 95% con fi dence level.",
journal = "Journal of High Energy Physics",
title = "Measurement of electroweak-induced production of W gamma with two jets in pp collisions at root s=8TeV and constraints on anomalous quartic gauge couplings",
number = "6",
doi = "10.1007/JHEP06(2017)106"
}
1
11
6
17

Observation of the decay B+ - GT psi(2S)phi(1020)K+ in pp collisions at root s=8 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1342
AB  - The decay B+ - GT psi(2S) phi(1020) K+ is observed for the first time using data collected from pp collisions at root S = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb(-1). The branching fraction of this decay is measured, using the mode B+ - GT psi(2S) K+ as normalization, to be (4.0 +/- 0.4 (stat)+/- 0.6 (syst)+/- 0.2 (B)) x 10(-6), where the third uncertainty is from the measured branching fraction of the normalization channel. (C) 2016 The Author(s). Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Observation of the decay B+ - GT psi(2S)phi(1020)K+ in pp collisions at root s=8 TeV
VL  - 764
SP  - 66
EP  - 86
DO  - 10.1016/j.physletb.2016.11.001
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1342",
abstract = "The decay B+ - GT psi(2S) phi(1020) K+ is observed for the first time using data collected from pp collisions at root S = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb(-1). The branching fraction of this decay is measured, using the mode B+ - GT psi(2S) K+ as normalization, to be (4.0 +/- 0.4 (stat)+/- 0.6 (syst)+/- 0.2 (B)) x 10(-6), where the third uncertainty is from the measured branching fraction of the normalization channel. (C) 2016 The Author(s). Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Observation of the decay B+ - GT psi(2S)phi(1020)K+ in pp collisions at root s=8 TeV",
volume = "764",
pages = "66-86",
doi = "10.1016/j.physletb.2016.11.001"
}
3
1
3
1

Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at root s=8 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1437
AB  - A search is performed for Higgs-boson-mediated flavor-changing neutral currents in the decays of top quarks. The search is based on proton-proton collision data corresponding to an integrated luminosity of 19.7 fb(-1) at a center-of-mass energy of 8 TeV collected with the CMS detector at the LHC. Events in which a top quark pair is produced with one top quark decaying into a charm or up quark and a Higgs boson (H), and the other top quark decaying into a bottom quark and a W boson are selected. The Higgs boson in these events is assumed to subsequently decay into either dibosons or difermions. No signi fi cant excess is observed above the expected standard model background, and an upper limit at the 95% con fi dence level is set on the branching fraction B (t - GT Hc) of 0.40% and B (t - GT Hu) of 0.55%, where the expected upper limits are 0.43% and 0.40%, respectively. These results correspond to upper limits on the square of the flavor-changing Higgs boson Yukawa couplings vertical bar lambda(H)(tc)vertical bar(2) LT 6 . 9 x 10(-3) and vertical bar lambda(H)(tu)vertical bar(2) LT 9 . 8 x 10(-3).
T2  - Journal of High Energy Physics
T1  - Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at root s=8 TeV
IS  - 2
DO  - 10.1007/JHEP02(2017)079
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1437",
abstract = "A search is performed for Higgs-boson-mediated flavor-changing neutral currents in the decays of top quarks. The search is based on proton-proton collision data corresponding to an integrated luminosity of 19.7 fb(-1) at a center-of-mass energy of 8 TeV collected with the CMS detector at the LHC. Events in which a top quark pair is produced with one top quark decaying into a charm or up quark and a Higgs boson (H), and the other top quark decaying into a bottom quark and a W boson are selected. The Higgs boson in these events is assumed to subsequently decay into either dibosons or difermions. No signi fi cant excess is observed above the expected standard model background, and an upper limit at the 95% con fi dence level is set on the branching fraction B (t - GT Hc) of 0.40% and B (t - GT Hu) of 0.55%, where the expected upper limits are 0.43% and 0.40%, respectively. These results correspond to upper limits on the square of the flavor-changing Higgs boson Yukawa couplings vertical bar lambda(H)(tc)vertical bar(2) LT 6 . 9 x 10(-3) and vertical bar lambda(H)(tu)vertical bar(2) LT 9 . 8 x 10(-3).",
journal = "Journal of High Energy Physics",
title = "Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at root s=8 TeV",
number = "2",
doi = "10.1007/JHEP02(2017)079"
}
1
13
19
23

Search for high-mass Z gamma resonances in e(+)e(-)gamma and mu(+)mu(-)gamma final states in proton-proton collisions at root s=8 and 13 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1478
AB  - This paper describes the search for a high-mass narrow-width scalar particle decaying into a Z boson and a photon. The analysis is performed using proton-proton collision data recorded with the CMS detector at the LHC at center-of-mass energies of 8 and 13TeV, corresponding to integrated luminosities of 19.7 and 2.7 fb(-1), respectively. The Z bosons are reconstructed from opposite-sign electron or muon pairs. No statistically signi fi cant deviation from the standard model predictions has been found in the 200-2000 GeV mass range. Upper limits at 95% con fi dence level have been derived on the product of the scalar particle production cross section and the branching fraction of the Z decaying into electrons or muons, which range from 280 to 20 fb for resonance masses between 200 and 2000 GeV.
T2  - Journal of High Energy Physics
T1  - Search for high-mass Z gamma resonances in e(+)e(-)gamma and mu(+)mu(-)gamma final states in proton-proton collisions at root s=8 and 13 TeV
IS  - 1
DO  - 10.1007/JHEP01(2017)076
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1478",
abstract = "This paper describes the search for a high-mass narrow-width scalar particle decaying into a Z boson and a photon. The analysis is performed using proton-proton collision data recorded with the CMS detector at the LHC at center-of-mass energies of 8 and 13TeV, corresponding to integrated luminosities of 19.7 and 2.7 fb(-1), respectively. The Z bosons are reconstructed from opposite-sign electron or muon pairs. No statistically signi fi cant deviation from the standard model predictions has been found in the 200-2000 GeV mass range. Upper limits at 95% con fi dence level have been derived on the product of the scalar particle production cross section and the branching fraction of the Z decaying into electrons or muons, which range from 280 to 20 fb for resonance masses between 200 and 2000 GeV.",
journal = "Journal of High Energy Physics",
title = "Search for high-mass Z gamma resonances in e(+)e(-)gamma and mu(+)mu(-)gamma final states in proton-proton collisions at root s=8 and 13 TeV",
number = "1",
doi = "10.1007/JHEP01(2017)076"
}
18
9
3
11

Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying tau leptons and two jets in proton-proton collisions at root s=13 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1482
AB  - A search for new particles has been conducted using events with two high transverse momentum ((pT)) T leptons that decay hadronically, at least two high-pT jets, and missing transverse energy from the T lepton decays. The analysis is performed using data from proton-proton collisions, collected by the CMS experiment in 2015 at root s = 13 TeV, corresponding to an integrated luminosity of 2.1 fb(-1). The results are interpreted in two physics models. The first model involves heavy right-handed neutrinos, N-l (l = e, mu, T), and right-handed charged bosons, WR, arising in a left-right symmetric extension of the standard model. Masses of the W-R boson below 2.35 (1.63) TeV are excluded at 95% confidence level, assuming the N-tau mass is 0.8 (0.2) times the mass of the W-R boson and that only the NT flavor contributes to the WR decay width. In the second model, pair production of third-generation scalar leptoquarks that decay into (TT)bb is considered. Third-generation scalar leptoquarks with masses below 740 GeV are excluded, assuming a 100% branching fraction for the leptoquark decay to a T lepton and a bottom quark. This is the first search at hadron colliders for the third-generation Majorana neutrino, as well as the first search for third-generation leptoquarks in the final state with a pair of hadronically decaying T leptons and jets.
T2  - Journal of High Energy Physics
T1  - Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying tau leptons and two jets in proton-proton collisions at root s=13 TeV
IS  - 3
DO  - 10.1007/JHEP03(2017)077
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1482",
abstract = "A search for new particles has been conducted using events with two high transverse momentum ((pT)) T leptons that decay hadronically, at least two high-pT jets, and missing transverse energy from the T lepton decays. The analysis is performed using data from proton-proton collisions, collected by the CMS experiment in 2015 at root s = 13 TeV, corresponding to an integrated luminosity of 2.1 fb(-1). The results are interpreted in two physics models. The first model involves heavy right-handed neutrinos, N-l (l = e, mu, T), and right-handed charged bosons, WR, arising in a left-right symmetric extension of the standard model. Masses of the W-R boson below 2.35 (1.63) TeV are excluded at 95% confidence level, assuming the N-tau mass is 0.8 (0.2) times the mass of the W-R boson and that only the NT flavor contributes to the WR decay width. In the second model, pair production of third-generation scalar leptoquarks that decay into (TT)bb is considered. Third-generation scalar leptoquarks with masses below 740 GeV are excluded, assuming a 100% branching fraction for the leptoquark decay to a T lepton and a bottom quark. This is the first search at hadron colliders for the third-generation Majorana neutrino, as well as the first search for third-generation leptoquarks in the final state with a pair of hadronically decaying T leptons and jets.",
journal = "Journal of High Energy Physics",
title = "Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying tau leptons and two jets in proton-proton collisions at root s=13 TeV",
number = "3",
doi = "10.1007/JHEP03(2017)077"
}
1
19
12
25

Measurement of the WZ production cross section in pp collisions at root s=7 and 8 TeV and search for anomalous triple gauge couplings at root s=8 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1515
AB  - The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton proton collision data samples corresponding to integrated luminosities of 4.9 fb(-1) collected at root s = 7 TeV, and 19.6fb(-1) at root s = 8 TeV. The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for 71 LT m(Z) LT 111 GeV are sigma (pp - GT WZ; root s = 7 TeV) = 20.14 +/- 1.32 (stat)+/- 0.38 (theo)+/- 1.06 (exp)+/- 0.44 (lumi) pb and sigma (pp - GT WZ; root s = 8 TeV) = 24.09 +/- 0.87 (stat) 0.80 (theo) +/- 1.40 (exp) +/- 0.63 (lumi) pb. Differential cross sections with respect to the Z boson p(T), the leading jet p(T), and the number of jets are obtained using the root s = 8 TeV data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.
T2  - European Physical Journal C. Particles and Fields
T1  - Measurement of the WZ production cross section in pp collisions at root s=7 and 8 TeV and search for anomalous triple gauge couplings at root s=8 TeV
VL  - 77
IS  - 4
DO  - 10.1140/epjc/s10052-017-4730-z
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1515",
abstract = "The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton proton collision data samples corresponding to integrated luminosities of 4.9 fb(-1) collected at root s = 7 TeV, and 19.6fb(-1) at root s = 8 TeV. The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for 71 LT m(Z) LT 111 GeV are sigma (pp - GT WZ; root s = 7 TeV) = 20.14 +/- 1.32 (stat)+/- 0.38 (theo)+/- 1.06 (exp)+/- 0.44 (lumi) pb and sigma (pp - GT WZ; root s = 8 TeV) = 24.09 +/- 0.87 (stat) 0.80 (theo) +/- 1.40 (exp) +/- 0.63 (lumi) pb. Differential cross sections with respect to the Z boson p(T), the leading jet p(T), and the number of jets are obtained using the root s = 8 TeV data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.",
journal = "European Physical Journal C. Particles and Fields",
title = "Measurement of the WZ production cross section in pp collisions at root s=7 and 8 TeV and search for anomalous triple gauge couplings at root s=8 TeV",
volume = "77",
number = "4",
doi = "10.1140/epjc/s10052-017-4730-z"
}
1
19
28
30

Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at root s=8 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1453
AB  - Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 fb(-1). The W bosons are identified through their decay mode W - GT mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta ( H-T) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of H-T and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-nextto-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+ jets background processes in searches for new physics at the LHC.
T2  - Physical Review D
T1  - Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at root s=8 TeV
VL  - 95
IS  - 5
DO  - 10.1103/PhysRevD.95.052002
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1453",
abstract = "Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 fb(-1). The W bosons are identified through their decay mode W - GT mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta ( H-T) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of H-T and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-nextto-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+ jets background processes in searches for new physics at the LHC.",
journal = "Physical Review D",
title = "Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at root s=8 TeV",
volume = "95",
number = "5",
doi = "10.1103/PhysRevD.95.052002"
}
1
9
6
15

Measurement of the t(t)over-bar production cross section using events in the e mu final state in pp collisions at root s=13 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1534
AB  - The cross section of top quark-antiquark pair production in proton-proton collisions at root s = 13 TeV is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2 fb(-1). The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is 815 +/- 9 (stat) +/- 38 (syst) +/- 19 (lumi) pb, in agreement with the expectation from the standard model.
T2  - European Physical Journal C. Particles and Fields
T1  - Measurement of the t(t)over-bar production cross section using events in the e mu final state in pp collisions at root s=13 TeV
VL  - 77
IS  - 3
DO  - 10.1140/epjc/s10052-017-4718-8
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1534",
abstract = "The cross section of top quark-antiquark pair production in proton-proton collisions at root s = 13 TeV is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2 fb(-1). The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is 815 +/- 9 (stat) +/- 38 (syst) +/- 19 (lumi) pb, in agreement with the expectation from the standard model.",
journal = "European Physical Journal C. Particles and Fields",
title = "Measurement of the t(t)over-bar production cross section using events in the e mu final state in pp collisions at root s=13 TeV",
volume = "77",
number = "3",
doi = "10.1140/epjc/s10052-017-4718-8"
}
1
16
30
30

search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jet (vol 12, 083, 2016)

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

@misc{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1683",
journal = "Journal of High Energy Physics",
title = "search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jet (vol 12, 083, 2016)",
number = "8",
doi = "10.1007/JHEP08(2017)035"
}
1
4
3

Searches for invisible decays of the Higgs boson in pp collisions at root S=7, 8, and 13 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1480
AB  - Searches for invisible decays of the Higgs boson are presented. The data collected with the CMS detector at the LHC correspond to integrated luminosities of 5.1, 19.7, and 2.3 fb(-1) at centre-of-mass energies of 7, 8, and 13TeV, respectively. The search channels target Higgs boson production via gluon fusion, vector boson fusion, and in association with a vector boson. Upper limits are placed on the branching fraction of the Higgs boson decay to invisible particles, as a function of the assumed production cross sections. The combination of all channels, assuming standard model production, yields an observed (expected) upper limit on the invisible branching fraction of 0.24 (0.23) at the 95% confidence level. The results are also interpreted in the context of Higgs-portal dark matter models.
T2  - Journal of High Energy Physics
T1  - Searches for invisible decays of the Higgs boson in pp collisions at root S=7, 8, and 13 TeV
IS  - 2
DO  - 10.1007/JHEP02(2017)135
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1480",
abstract = "Searches for invisible decays of the Higgs boson are presented. The data collected with the CMS detector at the LHC correspond to integrated luminosities of 5.1, 19.7, and 2.3 fb(-1) at centre-of-mass energies of 7, 8, and 13TeV, respectively. The search channels target Higgs boson production via gluon fusion, vector boson fusion, and in association with a vector boson. Upper limits are placed on the branching fraction of the Higgs boson decay to invisible particles, as a function of the assumed production cross sections. The combination of all channels, assuming standard model production, yields an observed (expected) upper limit on the invisible branching fraction of 0.24 (0.23) at the 95% confidence level. The results are also interpreted in the context of Higgs-portal dark matter models.",
journal = "Journal of High Energy Physics",
title = "Searches for invisible decays of the Higgs boson in pp collisions at root S=7, 8, and 13 TeV",
number = "2",
doi = "10.1007/JHEP02(2017)135"
}
26
75
125
110

Suppression and azimuthal anisotropy of prompt and nonprompt J/psi production in PbPb collisions at root S-NN=2.76 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1530
AB  - The nuclear modification factor R-AA and the azimuthal anisotropy coefficient v(2) ofprompt and nonprompt (i.e. those from decays of b hadrons) J/psi mesons, measured from PbPb and pp collisions at root S-NN = 2.76 rfeV at itheLHC, are reported. The results are presented in several event centrality intervals and several kinematic regions, for transverse momenta p(T) GT 6.5 GeV/c and rapidity vertical bar y vertical bar LT 2.4, extending down to p(T) = 3 GeV/c in the 1.6 LT vertical bar y vertical bar LT 2.4 range. The v(2) of prompt J/psi is found to be nonzero, but with no strong dependence on centrality, rapidity, or p(T) over the full kinematic range studied. The measured v(2) of nonprompt J/psi is consistent with zero. The R-AA of prompt J/psi exhibits a suppression that increases from peripheral to central collisions but does not vary strongly as a function of either y or pT in the fiducial range. The nonprompt J/psi RAA shows a suppression which becomes stronger as rapidity or p(T) increases. The v(2) and R-AA of open and hidden charm, and of open charm and beauty, are compared.
T2  - European Physical Journal C. Particles and Fields
T1  - Suppression and azimuthal anisotropy of prompt and nonprompt J/psi production in PbPb collisions at root S-NN=2.76 TeV
VL  - 77
IS  - 4
DO  - 10.1140/epjc/s10052-017-4781-1
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1530",
abstract = "The nuclear modification factor R-AA and the azimuthal anisotropy coefficient v(2) ofprompt and nonprompt (i.e. those from decays of b hadrons) J/psi mesons, measured from PbPb and pp collisions at root S-NN = 2.76 rfeV at itheLHC, are reported. The results are presented in several event centrality intervals and several kinematic regions, for transverse momenta p(T) GT 6.5 GeV/c and rapidity vertical bar y vertical bar LT 2.4, extending down to p(T) = 3 GeV/c in the 1.6 LT vertical bar y vertical bar LT 2.4 range. The v(2) of prompt J/psi is found to be nonzero, but with no strong dependence on centrality, rapidity, or p(T) over the full kinematic range studied. The measured v(2) of nonprompt J/psi is consistent with zero. The R-AA of prompt J/psi exhibits a suppression that increases from peripheral to central collisions but does not vary strongly as a function of either y or pT in the fiducial range. The nonprompt J/psi RAA shows a suppression which becomes stronger as rapidity or p(T) increases. The v(2) and R-AA of open and hidden charm, and of open charm and beauty, are compared.",
journal = "European Physical Journal C. Particles and Fields",
title = "Suppression and azimuthal anisotropy of prompt and nonprompt J/psi production in PbPb collisions at root S-NN=2.76 TeV",
volume = "77",
number = "4",
doi = "10.1140/epjc/s10052-017-4781-1"
}
1
35
40
56

Coherent J/psi photoproduction in ultra-peripheral PbPb collisions at root s(NN)=2.76 TeV with the CMS experiment

Khachatryan, V.; Adzic, R.; Ćirković, Predrag; Devetak, Damir; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adzic, R.
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1742
AB  - The cross section for coherent J/psi photoproduction accompanied by at least one neutron on one side of the interaction point and no neutron activity on the other side, Xn0n, is measured with the CMS experiment in ultra-peripheral PbPb collisions at root sNN= 2.76TeV. The analysis is based on a data sample corresponding to an integrated luminosity of 159 mu b(-1), collected during the 2011 PbPb run. The J/psi mesons are reconstructed in the dimuon decay channel, while neutrons are detected using zero degree calorimeters. The measured cross section is d sigma(Xn)o(n)(coh)/dy(J/psi) = 0.36 +/- 0.04 (stat)+/- 0.04 (syst) mbin the rapidity interval 1.8 LT vertical bar y vertical bar LT 2.3. Using a model for the relative rate of coherent photoproduction processes, this Xn0nmeasurement gives a total coherent photoproduction cross section of d sigma(coh/) dy(J/psi) = 1.82 +/- 0.22 (stat)+/- 0.20 (syst)+/- 0.19 (theo) mb. The data strongly disfavorthe impulse approximation model prediction, indicating that nuclear effects are needed to describe coherent J/psi photoproduction in.+ Pbinteractions. The data are found to be consistent with the leading twist approximation, which includes nuclear gluon shadowing. (C) 2017 The Author(s). Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Coherent J/psi photoproduction in ultra-peripheral PbPb collisions at root s(NN)=2.76 TeV with the CMS experiment
VL  - 772
SP  - 489
EP  - 511
DO  - 10.1016/j.physletb.2017.07.001
ER  - 
@article{
author = "Khachatryan, V. and Adzic, R. and Ćirković, Predrag and Devetak, Damir and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1742",
abstract = "The cross section for coherent J/psi photoproduction accompanied by at least one neutron on one side of the interaction point and no neutron activity on the other side, Xn0n, is measured with the CMS experiment in ultra-peripheral PbPb collisions at root sNN= 2.76TeV. The analysis is based on a data sample corresponding to an integrated luminosity of 159 mu b(-1), collected during the 2011 PbPb run. The J/psi mesons are reconstructed in the dimuon decay channel, while neutrons are detected using zero degree calorimeters. The measured cross section is d sigma(Xn)o(n)(coh)/dy(J/psi) = 0.36 +/- 0.04 (stat)+/- 0.04 (syst) mbin the rapidity interval 1.8 LT vertical bar y vertical bar LT 2.3. Using a model for the relative rate of coherent photoproduction processes, this Xn0nmeasurement gives a total coherent photoproduction cross section of d sigma(coh/) dy(J/psi) = 1.82 +/- 0.22 (stat)+/- 0.20 (syst)+/- 0.19 (theo) mb. The data strongly disfavorthe impulse approximation model prediction, indicating that nuclear effects are needed to describe coherent J/psi photoproduction in.+ Pbinteractions. The data are found to be consistent with the leading twist approximation, which includes nuclear gluon shadowing. (C) 2017 The Author(s). Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Coherent J/psi photoproduction in ultra-peripheral PbPb collisions at root s(NN)=2.76 TeV with the CMS experiment",
volume = "772",
pages = "489-511",
doi = "10.1016/j.physletb.2017.07.001"
}
2
39
44
52

Evidence for collectivity in pp collisions at the LHC

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1419
AB  - Measurements of two- and multi-particle angular correlations in pp collisions at root s = 5, 7, and 13TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 pb(-1) (5 TeV), 6.2 pb(-1) (7 TeV), and 0.7 pb(-1) (13 TeV), were collected using the CMS detector at the LHC. The second-order (v(2)) and third-order (v(3)) azimuthal anisotropy harmonics of unidentified charged particles, as well as v(2) of K-S(0) and Lambda/(Lambda) over bar particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v(2) values of charged hadrons (mostly pions), K-S(0), and Lambda/(Lambda) over bar, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pT approximate to GeV/c. For 13 TeV data, the v(2) signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions. (C) 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license.
T2  - Physics Letters B
T1  - Evidence for collectivity in pp collisions at the LHC
VL  - 765
SP  - 193
EP  - 220
DO  - 10.1016/j.physletb.2016.12.009
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1419",
abstract = "Measurements of two- and multi-particle angular correlations in pp collisions at root s = 5, 7, and 13TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 pb(-1) (5 TeV), 6.2 pb(-1) (7 TeV), and 0.7 pb(-1) (13 TeV), were collected using the CMS detector at the LHC. The second-order (v(2)) and third-order (v(3)) azimuthal anisotropy harmonics of unidentified charged particles, as well as v(2) of K-S(0) and Lambda/(Lambda) over bar particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v(2) values of charged hadrons (mostly pions), K-S(0), and Lambda/(Lambda) over bar, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pT approximate to GeV/c. For 13 TeV data, the v(2) signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions. (C) 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license.",
journal = "Physics Letters B",
title = "Evidence for collectivity in pp collisions at the LHC",
volume = "765",
pages = "193-220",
doi = "10.1016/j.physletb.2016.12.009"
}
2
127
142
158

Measurement of the production cross section of a W boson in association with two b jets in pp collisions at root s=8TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1533
AB  - The production cross section of a W boson in association with two b jets is measured using a sample of proton-proton collisions at root s = 8 TeV collected by the CMS experiment at the CERN LHC. The data sample corresponds to an integrated luminosity of 19.8 fb(-1). The W bosons are reconstructed via their leptonic decays, W - GT l(v) where l = mu or e. The fiducial region studied contains exactly one lepton with transverse momentum pT(l) GT 30 GeV and pseudorapidity |eta(l)| LT 2.1, with exactly two b jets with pT GT 25 GeV and |eta(l)| LT 2.4 and no other jets with pT GT 25 GeV and |eta(l)| LT 4.7. The cross section is measured to be sigma(pp - GT W(lv)+b LT (b)over bar GT ) = 0.64 +/- 0.03 (stat) +/- 0.10 (syst) +/- 0.06 (theo) +/- 0.02 (lumi) pb, in agreement with standard model predictions.
T2  - European Physical Journal C. Particles and Fields
T1  - Measurement of the production cross section of a W boson in association with two b jets in pp collisions at root s=8TeV
VL  - 77
IS  - 2
DO  - 10.1140/epjc/s10052-016-4573-z
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1533",
abstract = "The production cross section of a W boson in association with two b jets is measured using a sample of proton-proton collisions at root s = 8 TeV collected by the CMS experiment at the CERN LHC. The data sample corresponds to an integrated luminosity of 19.8 fb(-1). The W bosons are reconstructed via their leptonic decays, W - GT l(v) where l = mu or e. The fiducial region studied contains exactly one lepton with transverse momentum pT(l) GT 30 GeV and pseudorapidity |eta(l)| LT 2.1, with exactly two b jets with pT GT 25 GeV and |eta(l)| LT 2.4 and no other jets with pT GT 25 GeV and |eta(l)| LT 4.7. The cross section is measured to be sigma(pp - GT W(lv)+b LT (b)over bar GT ) = 0.64 +/- 0.03 (stat) +/- 0.10 (syst) +/- 0.06 (theo) +/- 0.02 (lumi) pb, in agreement with standard model predictions.",
journal = "European Physical Journal C. Particles and Fields",
title = "Measurement of the production cross section of a W boson in association with two b jets in pp collisions at root s=8TeV",
volume = "77",
number = "2",
doi = "10.1140/epjc/s10052-016-4573-z"
}
2
9
13
13

Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1549
AB  - A search for heavy resonances decaying to a Higgs boson and a vector boson is presented. The analysis is performed using data samples collected in 2015 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13TeV, corresponding to integrated luminosities of 2.2-2.5 fb(-1). The search is performed in channels in which the vector boson decays into leptonic final states ( Z - GT nu nu., W - GT l nu, and Z - GT ll, with l = e, mu), while the Higgs boson decays to collimated b quark pairs detected as a single massive jet. The discriminating power of a jet mass requirement and a b jet tagging algorithm are exploited to suppress the standard model backgrounds. The event yields observed in data are consistent with the background expectation. In the context of a theoretical model with a heavy vector triplet, a resonance with mass less than 2TeV is excluded at 95% confidence level. The results are also interpreted in terms of limits on the parameters of the model, improving on the reach of previous searches. (C) 2017 The Author. Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks
VL  - 768
SP  - 137
EP  - 162
DO  - 10.1016/j.physletb.2017.02.040
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1549",
abstract = "A search for heavy resonances decaying to a Higgs boson and a vector boson is presented. The analysis is performed using data samples collected in 2015 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13TeV, corresponding to integrated luminosities of 2.2-2.5 fb(-1). The search is performed in channels in which the vector boson decays into leptonic final states ( Z - GT nu nu., W - GT l nu, and Z - GT ll, with l = e, mu), while the Higgs boson decays to collimated b quark pairs detected as a single massive jet. The discriminating power of a jet mass requirement and a b jet tagging algorithm are exploited to suppress the standard model backgrounds. The event yields observed in data are consistent with the background expectation. In the context of a theoretical model with a heavy vector triplet, a resonance with mass less than 2TeV is excluded at 95% confidence level. The results are also interpreted in terms of limits on the parameters of the model, improving on the reach of previous searches. (C) 2017 The Author. Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks",
volume = "768",
pages = "137-162",
doi = "10.1016/j.physletb.2017.02.040"
}
3
10
25
22

Search for new phenomena with multiple charged leptons in proton-proton collisions at root s=13TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1750
AB  - Results are reported from a search for physics beyond the standard model in final states with at least three charged leptons, in any combination of electrons or muons. The data sample corresponds to an integrated luminosity of 2.3 fb(-1) of proton-proton collisions at root s = 13 TeV, recorded by the CMS experiment at the LHC in 2015. Two jets are required in each event, providing good sensitivity to strong production of gluinos and squarks. The search regions, sensitive to a range of different new physics scenarios, are defined using the number of jets tagged as originating from bottom quarks, the sum of the magnitudes of the transverse momenta of the jets, the imbalance in the overall transverse momentum in the event, and the invariant mass of opposite-sign, same-flavor lepton pairs. The event yields observed in data are consistent with the expected background contributions from standard model processes. These results are used to derive limits in terms of R-parity conserving simplified models of supersymmetry that describe strong production of gluinos and squarks. Model-independent limits are presented to facilitate the reinterpretation of the results in a broad range of scenarios for physics beyond the standard model.
T2  - European Physical Journal C. Particles and Fields
T1  - Search for new phenomena with multiple charged leptons in proton-proton collisions at root s=13TeV
VL  - 77
IS  - 9
DO  - 10.1140/epjc/s10052-017-5182-1
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1750",
abstract = "Results are reported from a search for physics beyond the standard model in final states with at least three charged leptons, in any combination of electrons or muons. The data sample corresponds to an integrated luminosity of 2.3 fb(-1) of proton-proton collisions at root s = 13 TeV, recorded by the CMS experiment at the LHC in 2015. Two jets are required in each event, providing good sensitivity to strong production of gluinos and squarks. The search regions, sensitive to a range of different new physics scenarios, are defined using the number of jets tagged as originating from bottom quarks, the sum of the magnitudes of the transverse momenta of the jets, the imbalance in the overall transverse momentum in the event, and the invariant mass of opposite-sign, same-flavor lepton pairs. The event yields observed in data are consistent with the expected background contributions from standard model processes. These results are used to derive limits in terms of R-parity conserving simplified models of supersymmetry that describe strong production of gluinos and squarks. Model-independent limits are presented to facilitate the reinterpretation of the results in a broad range of scenarios for physics beyond the standard model.",
journal = "European Physical Journal C. Particles and Fields",
title = "Search for new phenomena with multiple charged leptons in proton-proton collisions at root s=13TeV",
volume = "77",
number = "9",
doi = "10.1140/epjc/s10052-017-5182-1"
}
12
2
9
8

Search for electroweak production of charginos in final states with two T leptons in pp collisions at root s=8 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1497
AB  - Results are presented from a search for the electroweak production of supersymmetric particles in pp collisions in final states with two T leptons. The data sample corresponds to an integrated luminosity between 18.1 fb(-1) and 19.6 fb(-1) depending on the final state of T lepton decays, at root s = 8 TeV, collected by the CMS experiment at the LHC. The observed event yields in the signal regions are consistent with the expected standard model backgrounds. The results are interpreted using simplified models describing the pair production and decays of charginos or T sleptons. For models describing the pair production of the lightest chargino, exclusion regions are obtained in the plane of chargino mass vs. neutralino mass under the following assumptions: the chargino decays into third-generation sleptons, which are taken to be the lightest sleptons, and the sleptons masses lie midway between those of the chargino and the neutralino. Chargino masses below 420 GeV are excluded at a 95% confidence level in the limit of a massless neutralino, and for neutralino masses up to 100 GeV, chargino masses up to 325 GeV are excluded at 95% confidence level. Constraints are also placed on the cross section for pair production of T sleptons as a function of mass, assuming a massless neutralino.
T2  - Journal of High Energy Physics
T1  - Search for electroweak production of charginos in final states with two T leptons in pp collisions at root s=8 TeV
IS  - 4
DO  - 10.1007/JHEP04(2017)018
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1497",
abstract = "Results are presented from a search for the electroweak production of supersymmetric particles in pp collisions in final states with two T leptons. The data sample corresponds to an integrated luminosity between 18.1 fb(-1) and 19.6 fb(-1) depending on the final state of T lepton decays, at root s = 8 TeV, collected by the CMS experiment at the LHC. The observed event yields in the signal regions are consistent with the expected standard model backgrounds. The results are interpreted using simplified models describing the pair production and decays of charginos or T sleptons. For models describing the pair production of the lightest chargino, exclusion regions are obtained in the plane of chargino mass vs. neutralino mass under the following assumptions: the chargino decays into third-generation sleptons, which are taken to be the lightest sleptons, and the sleptons masses lie midway between those of the chargino and the neutralino. Chargino masses below 420 GeV are excluded at a 95% confidence level in the limit of a massless neutralino, and for neutralino masses up to 100 GeV, chargino masses up to 325 GeV are excluded at 95% confidence level. Constraints are also placed on the cross section for pair production of T sleptons as a function of mass, assuming a massless neutralino.",
journal = "Journal of High Energy Physics",
title = "Search for electroweak production of charginos in final states with two T leptons in pp collisions at root s=8 TeV",
number = "4",
doi = "10.1007/JHEP04(2017)018"
}
1
8
14
10

Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1498
AB  - Cross sections for the production of a Z boson in association with jets in proton-proton collisions at a centre-of-mass energy of root s = 8 TeV are measured using a data sample collected by the CMS experiment at the LHC corresponding to 19.6 fb(-1). Differential cross sections are presented as functions of up to three observables that describe the jet kinematics and the jet activity. Correlations between the azimuthal directions and the rapidities of the jets and the Z boson are studied in detail. The predictions of a number of multileg generators with leading or next-to-leading order accuracy are compared with the measurements. The comparison shows the importance of including multi-parton contributions in the matrix elements and the improvement in the predictions when nextto- leading order terms are included.
T2  - Journal of High Energy Physics
T1  - Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV
IS  - 4
DO  - 10.1007/JHEP04(2017)022
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1498",
abstract = "Cross sections for the production of a Z boson in association with jets in proton-proton collisions at a centre-of-mass energy of root s = 8 TeV are measured using a data sample collected by the CMS experiment at the LHC corresponding to 19.6 fb(-1). Differential cross sections are presented as functions of up to three observables that describe the jet kinematics and the jet activity. Correlations between the azimuthal directions and the rapidities of the jets and the Z boson are studied in detail. The predictions of a number of multileg generators with leading or next-to-leading order accuracy are compared with the measurements. The comparison shows the importance of including multi-parton contributions in the matrix elements and the improvement in the predictions when nextto- leading order terms are included.",
journal = "Journal of High Energy Physics",
title = "Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV",
number = "4",
doi = "10.1007/JHEP04(2017)022"
}
10
10
7
13

Multiplicity and rapidity dependence of strange hadron production in pp, pPb, and PbPb collisions at the LHC

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1548
AB  - Measurements of strange hadron (K-S(0), Lambda +(Lambda) over bar, and Xi(-)+(Xi) over bar (+)) transverse momentum spectra in pp, pPb, and PbPb collisions are presented over a wide range of rapidity and event charged-particle multiplicity. The data were collected with the CMS detector at the CERN LHC in pp collisions at root s= 7 TeV, pPb collisions at root(NN)-N-s= 5.02 TeV, and PbPb collisions at root(NN)-N-s = 2.76 TeV. The average transverse kinetic energy is found to increase with multiplicity, at a faster rate for heavier strange particle species in all systems. At similar multiplicities, the difference in average transverse kinetic energy between different particle species is observed to be larger for pp and pPb events than for PbPb events. In pPb collisions, the average transverse kinetic energy is found to be slightly larger in the Pb-going direction than in the p-going direction for events with large multiplicity. The spectra are compared to models motivated by hydrodynamics. (c) 2017 The Author(s). Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Multiplicity and rapidity dependence of strange hadron production in pp, pPb, and PbPb collisions at the LHC
VL  - 768
SP  - 103
EP  - 129
DO  - 10.1016/j.physletb.2017.01.075
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1548",
abstract = "Measurements of strange hadron (K-S(0), Lambda +(Lambda) over bar, and Xi(-)+(Xi) over bar (+)) transverse momentum spectra in pp, pPb, and PbPb collisions are presented over a wide range of rapidity and event charged-particle multiplicity. The data were collected with the CMS detector at the CERN LHC in pp collisions at root s= 7 TeV, pPb collisions at root(NN)-N-s= 5.02 TeV, and PbPb collisions at root(NN)-N-s = 2.76 TeV. The average transverse kinetic energy is found to increase with multiplicity, at a faster rate for heavier strange particle species in all systems. At similar multiplicities, the difference in average transverse kinetic energy between different particle species is observed to be larger for pp and pPb events than for PbPb events. In pPb collisions, the average transverse kinetic energy is found to be slightly larger in the Pb-going direction than in the p-going direction for events with large multiplicity. The spectra are compared to models motivated by hydrodynamics. (c) 2017 The Author(s). Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Multiplicity and rapidity dependence of strange hadron production in pp, pPb, and PbPb collisions at the LHC",
volume = "768",
pages = "103-129",
doi = "10.1016/j.physletb.2017.01.075"
}
2
21
24
27

Measurement of differential cross sections for top quark pair production using the lepton plus jets final state in proton-proton collisions at 13 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1546
AB  - Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at 13 TeV are measured as a function of jet multiplicity and of kinematic variables of the top quarks and the top quark-antiquark system. This analysis is based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 2.3 fb(-1). The measurements are performed in the lepton + jets decay channels with a single muon or electron in the final state. The differential cross sections are presented at particle level, within a phase space close to the experimental acceptance, and at parton level in the full phase space. The results are compared to several standard model predictions.
T2  - Physical Review D
T1  - Measurement of differential cross sections for top quark pair production using the lepton plus jets final state in proton-proton collisions at 13 TeV
VL  - 95
IS  - 9
DO  - 10.1103/PhysRevD.95.092001
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1546",
abstract = "Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at 13 TeV are measured as a function of jet multiplicity and of kinematic variables of the top quarks and the top quark-antiquark system. This analysis is based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 2.3 fb(-1). The measurements are performed in the lepton + jets decay channels with a single muon or electron in the final state. The differential cross sections are presented at particle level, within a phase space close to the experimental acceptance, and at parton level in the full phase space. The results are compared to several standard model predictions.",
journal = "Physical Review D",
title = "Measurement of differential cross sections for top quark pair production using the lepton plus jets final state in proton-proton collisions at 13 TeV",
volume = "95",
number = "9",
doi = "10.1103/PhysRevD.95.092001"
}
1
42
65
65

Search for top squark pair production in compressed-mass-spectrum scenarios in proton-proton collisions at root s=8 TeV using the alpha(T) variable

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1491
AB  - An inclusive search is performed for supersymmetry in final states containing jets and an apparent imbalance in transverse momentum, (p) over right arrow (miss)(T),due to the production of unobserved weakly interacting particles in pp collisions at a centre-of-mass energy of 8 TeV. The data, recorded with the CMS detector at the CERN LHC, correspond to an integrated luminosity of 18.5fb(-1). The dimensionless kinematic variable alpha(T) is used to discriminate between events with genuine (p) over right arrow (miss)(T)associated with unobserved particles and spurious values of (p) over right arrow (miss)(T) Tarising from jet energy mismeasurements. No excess of event yields above the expected standard model backgrounds is observed. The results are interpreted in terms of constraints on the parameter space of several simplified models of supersymmetry that assume the pair production of top squarks. The search provides sensitivity to a broad range of top squark ((t) over tilde) decay modes, including the two-body decay (t)over tilde GT - GT c (chi) over tilde (0)(1),where c is a charm quark (chi) over tilde (0)(1) and is the lightest neutralino, as well as the four-body decay (t)over tilde GT - GT bf (f) over bar (chi) over bar (0)(1),where b is a bottom quark and f and (f) over bar are fermions produced in the decay of an intermediate off-shell W boson. These modes dominate in scenarios in which the top squark and lightest neutralino are nearly degenerate in mass. For these modes, top squarks with masses as large as 260 and 225 GeV are excluded, respectively, for the two-and four-body decays. (C) 2017 The Author. Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Search for top squark pair production in compressed-mass-spectrum scenarios in proton-proton collisions at root s=8 TeV using the alpha(T) variable
VL  - 767
SP  - 403
EP  - 430
DO  - 10.1016/j.physletb.2017.02.007
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1491",
abstract = "An inclusive search is performed for supersymmetry in final states containing jets and an apparent imbalance in transverse momentum, (p) over right arrow (miss)(T),due to the production of unobserved weakly interacting particles in pp collisions at a centre-of-mass energy of 8 TeV. The data, recorded with the CMS detector at the CERN LHC, correspond to an integrated luminosity of 18.5fb(-1). The dimensionless kinematic variable alpha(T) is used to discriminate between events with genuine (p) over right arrow (miss)(T)associated with unobserved particles and spurious values of (p) over right arrow (miss)(T) Tarising from jet energy mismeasurements. No excess of event yields above the expected standard model backgrounds is observed. The results are interpreted in terms of constraints on the parameter space of several simplified models of supersymmetry that assume the pair production of top squarks. The search provides sensitivity to a broad range of top squark ((t) over tilde) decay modes, including the two-body decay (t)over tilde GT - GT c (chi) over tilde (0)(1),where c is a charm quark (chi) over tilde (0)(1) and is the lightest neutralino, as well as the four-body decay (t)over tilde GT - GT bf (f) over bar (chi) over bar (0)(1),where b is a bottom quark and f and (f) over bar are fermions produced in the decay of an intermediate off-shell W boson. These modes dominate in scenarios in which the top squark and lightest neutralino are nearly degenerate in mass. For these modes, top squarks with masses as large as 260 and 225 GeV are excluded, respectively, for the two-and four-body decays. (C) 2017 The Author. Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Search for top squark pair production in compressed-mass-spectrum scenarios in proton-proton collisions at root s=8 TeV using the alpha(T) variable",
volume = "767",
pages = "403-430",
doi = "10.1016/j.physletb.2017.02.007"
}
12
16
21
19